Что значит функция отрицательна

Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.

теория по математике 📈 функции

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

Что значит функция отрицательна

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

Что значит функция отрицательнаНа рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Таким образом, мы нашли нуль функции: х=2

Пример №2. Найти нули функции у=f(x) по заданному графику.

Что значит функция отрицательна

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Что значит функция отрицательна

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Что значит функция отрицательна

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

Что значит функция отрицательна

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Источник

Что значит функция отрицательна

Функция

Что значит функция отрицательна

Область определения

Вершина параболы

Что значит функция отрицательна

Нули функции

Что значит функция отрицательна

Экстремумы

если a 0, то максимум в вершине

Область значений

Что значит функция отрицательна

Что значит функция отрицательна

Четность

ни четная, ни нечетная

Функция

Что значит функция отрицательнаЧто значит функция отрицательна

Область определения

Область значений

Четность

Нули функции

Экстремумы

х = 0 — точка минимума

Монотонность

возрастает при х ϵ R

при х ≤ 0 убывает
при х > 0 возрастает

Функция

Что значит функция отрицательнаЧто значит функция отрицательна

Область определения

Область значений

Четность

Нули функции

Экстремумы

Монотонность

Функция

Что значит функция отрицательна

Что значит функция отрицательна

Область определения

Что значит функция отрицательна

Что значит функция отрицательна

Область значений

Что значит функция отрицательна

Что значит функция отрицательна

Нули функции

Экстремумы

Монотонность

возрастает при х ϵ D(f)

возрастает при х ϵ D(f)

Функция

Область определения

Область значений

Нули функции

Экстремумы

Монотонность

убывает при х ϵ D ( f )

возрастает при х ϵ D ( f )

Функция

Область определения

Область значений

Нули функции

Экстремумы

Монотонность

убывает при х ϵ D ( f )

возрастает при х ϵ D ( f )

Функция

Область определения

Область значений

Нули функции

Что значит функция отрицательна

Что значит функция отрицательна

Четность

Периодичность

Что значит функция отрицательна

Что значит функция отрицательна

Экстремумы

Что значит функция отрицательна

Что значит функция отрицательна

Монотонность

Что значит функция отрицательна

Что значит функция отрицательна

Что значит функция отрицательна

Что значит функция отрицательна

Функция

Область определения

R кроме Что значит функция отрицательна

R кроме Что значит функция отрицательна

Источник

Производная функции. Геометрический смысл производной

Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна. Мы не будем сейчас стремиться к математической строгости изложения. Самое главное — понять смысл.

Производная — это скорость изменения функции.

На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?

Что значит функция отрицательна

Ответ очевиден — третья. У нее самая большая скорость изменения, то есть самая большая производная.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

Что значит функция отрицательна

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, — разная. Что касается Матвея — у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.

Покажем, как найти с помощью графика.

Что значит функция отрицательна

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике.

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Что значит функция отрицательна

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка — точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

Ты нашел то, что искал? Поделись с друзьями!

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое — на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая точка перегиба:

Что значит функция отрицательна

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала — и после точки продолжает возрастать. Знак производной не меняется — она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

Что значит функция отрицательна

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется таблица производных.

Источник

Свойства функций

Урок 2. Алгебра 9 класс ФГОС

Что значит функция отрицательна

Что значит функция отрицательна

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Что значит функция отрицательна

Что значит функция отрицательна

Что значит функция отрицательна

Конспект урока «Свойства функций»

На прошлом уроке мы с вами изучили понятие функция. Изучили её график и научились находить область определения и область значений функции.

Что значит функция отрицательна

· промежутки знакопостоянства функции;

· промежутки монотонности функции.

Нулями функции называют такие значения аргумента, при которых функция равна нулю.

Что значит функция отрицательна

В данном случае функция задана графически и мы определили нули функции по графику. Так же нули функции можно находить по формуле, с помощью которой задана функция.

Что значит функция отрицательна

Решив уравнение, мы найдём те значения х, при которых функция равна нулю.

Стоит обратить внимание на то, что не каждая функция имеет нули.

Что значит функция отрицательна

График не пересекает ось икс ни в одной точке.

Что значит функция отрицательна

Промежутки знакопостоянства функции

Что значит функция отрицательна

Функция принимает положительные значения:

Что значит функция отрицательна

И отрицательные значения:

Что значит функция отрицательна

Запишите промежутки знакопостоянства функции:

Что значит функция отрицательна

Положительные и отрицательные значения функции:

Что значит функция отрицательна

Промежутки монотонности функции

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Что значит функция отрицательна

Что значит функция отрицательна

Функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Что значит функция отрицательна

Что значит функция отрицательна

Промежутками монотонности называют такие промежутки из области определения, на которых функция либо возрастает, либо убывает.

Что значит функция отрицательна

Опишем свойства функции:

Что значит функция отрицательна

Графиком является прямая, поэтому для построения достаточно двух точек:

Что значит функция отрицательна

Найдём значения функции:

Что значит функция отрицательна

Областью определения и областью значений будет множество всех действительных чисел. Ведь х и у могут быть любыми числами.

Источник

Алгебра

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Понятие функции

Понятие функции в школьной программе впервые встречается в 7 классе, поэтому настоятельно рекомендуем перечитать посвященный этой теме урок. Напомним, что функцией (в учебной литературе может использоваться сокращение ф-ция) называется соответствие между элементами двух множеств или, другими словами, зависимость между двумя величинами. Чаще всего в алгебре рассматриваются числовые ф-ции, которые заданы аналитически, то есть формулой. В качестве примера можно привести запись

Здесь х – это независимая переменная, или аргумент, а у – зависимая величина, или просто функция. Принципиально важно, что каждому значению аргумента соответствует только одно значение зависимой величины. Часто в математике используют запись

Она читается как «игрек равен эф от икс» и означает, что величина у как-то зависит от х. По сути, она равноценна записи

Если в скобках стоит конкретное число, то запись означает значение ф-ции при этом значении аргумента.

У каждой ф-ции есть область допустимых значений (используется сокращение ОДЗ), или область определения функции. Это те значения аргумента, при которых ф-ция определена. Здесь возможны два случая. В первом область определения указывается прямо. Например, если рассматривается функция у = х 4 при значениях х от 1 до 3, то и областью определения будет всё множество чисел от 1 до 3. Для обозначения области определения используется запись D(y) или D(f). При изучении неравенств мы уже познакомились с такими объектами, как числовые промежутки. Именно с их помощью указывают ОДЗ.

Пример. Постройте график функции у = х, если D(y) = [– 3; 4].

Решение. Ф-ция у = х – это линейная функция, мы уже умеем строить их графики (они представляют собой прямую линию). Выглядеть он будет так:

Однако в условии также есть запись D (y) = [– 3; 4], которая означает, что ф-ция определена только при х от – 3 до 4. С учетом этого условия график несколько преобразится:

Грубо говоря, часть графика, которая не входит в область определения, просто «отрезана».

Значительно чаще область определения явно не указывается. В этом случае предполагается, что ф-ция определена во всех точках числовой прямой, в которых ее вообще возможно вычислить. Например, ф-цию у = 9х 3 – 47 можно вычислить при любом значении х, поэтому ее область определения – вся числовая прямая, то есть D(y) = (– ∞; + ∞).

А когда же вычислить функцию невозможно? К этому уроку нам известны две таких ситуации:

Например, вычислить ф-цию у = 5/х при х = 0 невозможно, поэтому ее область определения – вся числовая прямая, кроме нуля, то есть

имеет область определения D(y) = [5; + ∞), так как при х 2 при D(y) = [– 2; 2] областью значений будет промежуток [0; 4], то есть Е(у) = [0; 4]. Это видно из графика функции:

Ещё раз напомним, что область определения и область значения функции указываются с помощью числовых промежутков.

Теперь перейдем к тем понятиям, которые не изучались ранее. Первое из них – это нули функции. Так называют те значения аргумента, при которых функция обращается в ноль.

есть два нуля, х = 4 и х = 5. Убедиться в этом можно подстановкой:

у(4) = 4 2 – 9•4 + 20 = 0

у (5) = 5 2 – 9•5 + 20 = 0

Для нахождения нулей ф-ции у = f(x) надо просто решить уравнение

Например, чтобы найти нули приведенной выше функции

надо решить уравнение

Сделаем это, ведь мы уже умеем решать квадратные уравнения:

На графике нули ф-ции – это те точки, в которых график пересекает ось Ох:

Ещё одно новое понятие – промежутки знакопостоянства. Так называют промежутки числовой прямой, на которых ф-ция либо только положительна, либо только отрицательна. Для наглядности покажем их на графике:

Пусть есть ф-ция у = f(x). Для нахождения промежутков знакопостоянства необходимо решить неравенства f(x)>0 и у = f(x) 0:

Получаем, что функция положительна на промежутке (12; + ∞).

Аналогично решив неравенство 3х – 36 2 – 5х. Найдите такое значение величины а, для которого выполняется условие у(а) = у(а + 2).

Решение. Очевидно, что у(а) = а 2 – 5а. Теперь вычислим у(а + 2):

у(а + 2) = (а + 2) 2 – 5(а + 2) = а 2 + 4а + 4 – 5а – 10 = а 2 – а – 6.

Теперь приравняем значения у(а) и у(а + 2):

а 2 – 5а = а 2 – а – 6

а 2 – 5а – а 2 + а = – 6

Убедимся, что мы нашли требуемое значение а:

у(1,5) = 1,5 2 – 5•1,5 = 2,25 – 7,5 = – 5,25

у(1,5 + 2) = у(3,5) = 3,5 2 – 5•3,5 = 12,25 – 17,5 = – 5,25

Растяжение и сжатие графиков функций

Пусть на координатной плоскости есть точка А с координатами (х0; у0). Куда переместится эта точка, если ее ордината (то есть у0) увеличится, например, в два или в три раза? Она отодвинется от оси Ох. Если же ее ордината уменьшится, то точка приблизится к оси. Наконец, если ордината поменяет знак, то точка, изначально, лежащая выше оси, окажется ниже её. Проиллюстрируем это на картинке:

Пусть есть пара функций у(х) и g = k•у(х), где k– какое-то постоянное число (константа), не равная нулю. Примерами таких пар являются:

Посмотрим, как связаны графики таких функций. На рисунке красным цветом показана функция у(х), а синим g = 2у(x):

При любом значении аргумента выполняется условие g(х) = 2у(х). Это значит, что ордината (координата у) каждой точки графика g(х) вдвое больше, чем ордината соответствующей точки графика у(х). В частности, отрезок АА2 вдвое длиннее отрезка АА1:

Аналогично можно записать, что

Таким образом, график g(x) выглядит так, будто бы график у(х) «растянули» в 2 раза. Каждая точка «переезжает» на новое место, сдвигаясь по вертикали. Так, если точка А1 имела координаты (– 6; 2), то при растяжении графика функции она получит координаты (– 6; 4), то есть ее координата у увеличится вдвое. Точка B1 имела координаты (2; – 2), а в графике g(х) занимает позицию (2; – 4).

Убедимся в этом на примере ф-ций у = х 2 и g = 2х 2 :

В общем случае говорят, что график функции g(х) = ky(x) получается растяжением графика у(х) в k раз.

Пример. Функция у(х) задана графически:

Постройте график функции g(х) = 3у(х).

Решение. Каждую точку отодвинем от оси Ох, увеличив координату у точек в 3 раза:

При сжатии графика каждая точка параболы приближается к оси Ох, при этом ордината точек уменьшается вдвое. Так, точка А2 с координатами (3; 9) переходит в точку А1 с координатами (3; 4,5).

Отдельно стоит рассмотреть случай, при котором коэффициент k является отрицательным. В этом случае график отображается симметрично относительно оси Ох. Те точки, которые имели изначально положительную ординату и находились выше Ох, в результате получают отрицательную ординату и оказываются ниже оси Ох. Покажем на рисунке графики ф-ций у = х 2 и у = – х 2 (то есть k =– 1):

Если же, например, коэффициент k = – 2, то надо и растянуть график, и перевернуть его относительно оси Ох. В частности, так выглядит график у = – 2х 2 :

Параллельный перенос графиков функций

Теперь посмотрим, как передвинется отдельная точка на координатной плоскости, если к ее ординате добавить какое-нибудь число. Если это число положительное, то точка поднимется выше, а если отрицательное, то она опустится:

Это означает, что если к какой-нибудь функции добавить некоторое число, то график функции переместится вверх или вниз. Для примера построим графики функций у = х 2 + 2 и у = х 2 – 5:

Параллельный перенос возможен не только в вертикальном, но и в горизонтальном направлении. Для такого перемещения надо изменить абсциссу точки, а не ординату:

Аналогично может сдвинуться не только точка, но и целый график функции. Если вместо аргумента х подставить в ф-цию величину (х +n), то график сместится на n единиц влево.

у(0) = 0 2 = 0 и g(– 3) = g(– 3 + 3) 2 = 0 2 = 0

у(– 1) = (– 1) 2 = 1 и g(– 4) = g(– 4 + 3) 2 = (– 1) 2 = 1

у(– 2) = (– 2) 2 = 4 и g(– 5) = g(– 5 + 3) 2 = (– 2) 2 = 4

Точка А1 сдвинулась влево на 3 единицы и перешла в точку А2. Аналогично точка В1 отобразилась в точку В2.

Пусть в общем случае есть функции у = у(х) и g(x) = у(х +n), где n – некоторое постоянное число. Значение у(х) в точке х0 обозначается как у0. Теперь найдем значение g(x) в точке (х0 – n):

Получили, то же самое значение, что и у у(х). Покажем это на рисунке:

Рассмотрим теперь случай, когда график сдвигается вправо. Для этого из аргумента исходной функции надо вычесть какое-то число. На рисунке показаны графики функций у = 2х и у = 2(х – 4):

Каждая точка исходного графика (например, А1) «переехала» на 4 единицы вправо.

Надо понимать, что иногда один график можно получить из другого в несколько переходов. Пусть надо построить график у = – (х – 4) 2 + 5. Его можно получить из обычной параболы у = х 2 в три шага.

Последний шаг – это построение графика у = – (х – 4) 2 + 5. Его можно получить, подняв предыдущий график на 5 единиц вверх:

Гипербола и обратная пропорциональность

Найдем область определения функции у = 1/х. Ясно, что аргумент не может равняться нулю, так как иначе получим деление на ноль:

При любых других значениях х значение у вычислить можно, а потому областью определения будет промежуток (– ∞; 0)⋃(0;+ ∞).

При положительных значениях аргумента ф-ция также будет положительной:

При отрицательных х величина у будет становиться отрицательной:

Это означает, что график ф-ции будет располагаться в I и III четвертях.

Можно заметить, что чем больше х, тем ближе у к нулю:

И наоборот, чем ближе х к нулю, тем больше у:

При этом у не может равняться нулю. Действительно, дробь равна нулю только тогда, когда ее числитель равен нулю. Однако варьируя х, мы меняем только знаменатель, а в числителе остается единица. Поэтому областью значений функции у = х – 1 является промежуток (– ∞; 0)⋃(0;+ ∞).

Для построения графика найдем некоторые точки графика и занесем их в таблицу. Мы построим две таблицы – одну для положительных х, другую для отрицательных:

Теперь можно посмотреть и на сам график:

Первое, что бросается в глаза – это то, что график не представляет собой единую, непрерывную линию. Он разбит на две ветви, одна из которых располагается в III четверти, а другая – в I четверти. Такой «разрыв» связан с тем, что ноль не входит в область определения ф-ции.

Также можно заметить симметричность графика. Действительно, одна из ветвей является симметричным отображением второй ветви.

Построенный нами график называется гиперболой.

На координатной плоскости есть две прямые линии, к которым гипербола приближается, но при этом он не касается их. Это оси Ох и Оу. Для наглядности покажем их штриховой линией:

В математике подобные линии называют асимптотами функции. Горизонтальная асимптота прямая соответствует линии х = 0, а вертикальная асимптота линии у = 0.

Зная, как выглядит график у = 1/х, мы можем построить и другие, схожие с ним графики для ф-ций у = k/х, где k– это некоторое число. Их можно получить из гиперболы, используя сжатие и растяжение графиков. Если коэффициент k больше единицы, то график «отдаляется» от осей Ох и Оу:

Все эти линии являются примерами гипербол. Если коэффициент k отрицательный, то графики переворачиваются относительно оси Ох и занимают II и IV четверти:

Все приведенные зависимости вида у = k/х называют обратными пропорциональностями.

Примерами обратной пропорциональности являются ф-ции:

Обратная пропорциональность очень часто встречается в жизни. Так, время, затрачиваемое на поездку на автомобиле, обратно пропорционально средней скорости движения. Количество товара, которое можно купить на одну зарплату, обратно пропорционально стоимости этого товара.

Дробно-линейная функция

Теперь рассмотрим несколько более сложные ф-ции, чьи графики, однако, также представляют собой гиперболу. Пусть есть ф-ция вида

Как будет выглядеть ее график? Для ответа на этот вопрос выполним преобразование:

Здесь мы в числителе и знаменателе добавили и сразу вычли слагаемое 2.Этот прием помог нам выделить целую часть из дроби. В результате мы получили ф-цию, график которой можно получить с помощью двух параллельных переносов графика у = 6/х. Сначала график сместится на две единицы вправо:

На следующем шаге график поднимется на единицу вверх:

Стоит обратить внимание, что при таком передвижении гиперболы передвигаются и асимптоты графика гиперболы:

представляет собой дробь, являющуюся отношением двух линейных многочленов, х + 3 и х – 2. В математике подобные ф-ции называют дробно-линейными функциями. В качестве примеров дробно-линейных функций можно привести:

Из любой дробно-линейной функции можно выделить целую часть. Покажем это на нескольких примерах:

Во всех этих случаях график дробно-линейной функции можно построить с помощью двух параллельных переносов гиперболы.

Однако есть одно исключение. Иногда при выделении из дроби целой части дробной части не остается вовсе, то есть линейные полиномы можно сразу сократить. Например:

Графиком таких функций являются прямые горизонтальные линии. Однако на них должна быть одна «исключенная». Действительно, пусть надо построить график ф-ции

Проведя преобразования, получим

то есть у = 2. Однако в знаменателе дроби не может стоять ноль. Если же подставить в дробь х = – 2, то получим деление на ноль:

Поэтому график ф-ции будет выглядеть так:

Итак, по итогам урока мы узнали:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *