Что значит фронтальная прямая
Фронтальная прямая
Приведенная запись означает: для множества точек B, принадлежащих прямой υ, ордината величина постоянная, характеризует удаление точек от фронтальной плоскости проекций.
Фронтальная прямая f –
Кроме общего случая, прямая по отношению к заданной системе плоскостей проекций может занимать частое положение. Прямые частного положения подразделяются на прямые уровня и проецирующие прямые.
Фронтальная прямая относится к частному случаю расположения прямой.
Прямые, параллельные одной из плоскостей проекций, называются прямыми уровня. Существует три вида прямых уровня: горизонталь, Фронтальная прямая (фронталь) и профильная прямая.
К числу частных случаев расположения прямых можно отнести и прямые, лежащие непосредственно в плоскостях проекций. Их называют прямыми нулевого уровня.
На рисунке приведен пример прямой нулевого уровня: фронталь f лежит во фронтальной плоскости проекций, а значит ее горизонтальные проекции на эпюре (КЧ) совпадают с осью Ox.
По расположению относительно плоскостей проекций бывают прямые частного положения: Горизонтальная прямая; Профильная прямая; Проецирующие прямые.
Что значит фронтальная прямая
Прямая по отношению к плоскостям проекций она может занимать как общее, так и частные положения.
1. Прямая не параллельная ни одной плоскости проекций называется прямой общего положения (рис.18).
Рисунок 18. Прямая общего положения
2. Прямые параллельные плоскостям проекций, занимают частное положение в пространстве и называются прямыми уровня . В зависимости от того, какой плоскости проекций параллельна заданная прямая, различают:
2.1. Прямые параллельные горизонтальной плоскости проекций называются горизонтальными или горизонталями (рис.19). Для любой пары точек горизонтали должно быть справедливо равенство
Рисунок 19. Горизонтальная прямая
2.2. Прямые параллельные фронтальной плоскости проекций называются фронтальными или фронталями ( рис.20).
Рисунок 20. Фронтальная прямая
2.3. Прямые параллельные профильной плоскости проекций называются профильными (рис. 21).
Рисунок 21. Профильная прямая
Рисунок 22. Фронтально проецирующая прямая
4. Прямые параллельные биссекторным плоскостям (рис. 25)
5. Прямые перпендикулярные биссекторным плоскостям (рис. 25)
Положение прямой в пространстве
Прямая общего положения – прямая не параллельная ни одной из плоскостей проекций. Проецируется на все плоскости проекций с искажением.
Прямая уровня –это прямая параллельная одной из плоскостей проекций.
На эпюре: фронтальная и профильная проекции такой прямой параллельны горизонтальной оси. Горизонтальная проекция прямой представляет её натуральную величину.
На эпюре: Горизонтальная проекция прямой параллельна горизонтальной оси, а профильная перпендикулярна к этой же оси. Фронтальная проекция прямой представляет её натуральную величину.
На эпюре: Горизонтальная и фронтальная проекции такой прямой перпендикулярны к горизонтальной оси. Профильная проекция прямой представляет её натуральную величину.
Проецирующая – прямая, перпендикулярная к плоскости проекции.
Горизонтально-проецирующая – это прямая перпендикулярная к горизонтальной плоскости проекций.
На эпюре: на горизонтальную плоскость проекций проецируется в точку, а на две другие плоскости проекций – в прямую, перпендикулярную горизонтальной оси, при этом обе проекции равны истинной длине прямой.
Фронтально-проецирующая – прямая перпендикулярная к фронтальной плоскости проекций.
На эпюре: на фронтальную плоскость проекций проецируется в точку, а на две другие плоскости проекций – в прямые, перпендикулярные координатным осям, при этом обе проекции равны истинной длине прямой.
Профильно-проецирующая– прямая перпендикулярная к профильной плоскости проекций.
На эпюре: на профильную плоскость проекций проецируется в точку, а на две другие плоскости проекций – в прямую, параллельную горизонтальной оси, при этом обе проекции равны истинной длине прямой.
Дата добавления: 2015-09-07 ; просмотров: 2572 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Лекция 3. Плоскость
3.1. Способы задания плоскости на ортогональных чертежах
Рисунок 3.1 – Способы задания плоскостей
Плоскость общего положения – это плоскость, которая не параллельна и не перпендикулярна ни одной из плоскостей проекций.
Следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с одной из плоскостей проекций.
Плоскость общего положения может иметь три следа: горизонтальный – απ1, фронтальный – απ2 и профильный – απ3, которые она образует при пересечении с известными плоскостями проекций: горизонтальной π1, фронтальной π2 и профильной π3 (Рисунок 3.2).
Рисунок 3.2 – Следы плоскости общего положения
3.2. Плоскости частного положения
Плоскость частного положения – плоскость, перпендикулярная или параллельная плоскости проекций.
Плоскость, перпендикулярная плоскости проекций, называется проецирующей и на эту плоскость проекций она будет проецироваться в виде прямой линии.
Свойство проецирующей плоскости : все точки, линии, плоские фигуры, принадлежащие проецирующей плоскости, имеют проекции на наклонном следе плоскости (Рисунок 3.3).
Рисунок 3.3 – Фронтально-проецирующая плоскость, которой принадлежат: точки А, В, С; линии АС, АВ, ВС; плоскость треугольника АВС
Фронтально-проецирующая плоскость – плоскость, перпендикулярная фронтальной плоскости проекций (Рисунок 3.4, а).
Горизонтально-проецирующая плоскость – плоскость, перпендикулярная горизонтальной плоскости проекций (Рисунок 3.4, б).
Профильно-проецирующая плоскость – плоскость, перпендикулярная профильной плоскости проекций.
Плоскости, параллельные плоскостям проекций, называются плоскостями уровня или дважды проецирующими плоскостями.
Фронтальная плоскость уровня – плоскость, параллельная фронтальной плоскости проекций (Рисунок 3.4, в).
Горизонтальная плоскость уровня – плоскость, параллельная горизонтальной плоскости проекций (Рисунок 3.4, г).
Профильная плоскость уровня – плоскость, параллельная профильной плоскости проекций (Рисунок 3.4, д).
Рисунок 3.4 – Эпюры плоскостей частного положения
3.3. Точка и прямая в плоскости. Принадлежность точки и прямой плоскости
Точка принадлежит плоскости, если она принадлежит какой-либо прямой, лежащей в этой плоскости (Рисунок 3.5). Прямая принадлежит плоскости, если она имеет с плоскостью хотя бы две общие точки (Рисунок 3.6).
Рисунок 3.5 – Принадлежность точки плоскости
Рисунок 3.6 – Принадлежность прямой плоскости
\left.\begin
Упражнение
Рисунок 3.7 – Решение задачи
3.4. Главные линии плоскости
В плоскости можно построить бесконечное множество прямых, но есть особые прямые, лежащие в плоскости, называемые главными линиями плоскости (Рисунок 3.8 – 3.11).
Прямой уровня или параллелью плоскости называется прямая, лежащая в данной плоскости и параллельная одной из плоскостей проекций.
Горизонталь или горизонтальная прямая уровня h (первая параллель) – это прямая, лежащая в данной плоскости и параллельная горизонтальной плоскости проекций (π1) (Рисунок 3.8, а; 3.9).
Фронталь или фронтальная прямая уровня f (вторая параллель) – это прямая лежащая в данной плоскости и параллельная фронтальной плоскости проекций (π2) (Рисунок 3.8, б; 3.10).
Профильная прямая уровня p (третья параллель) – это прямая лежащая в данной плоскости и параллельная профильной плоскости проекций (π3) (Рисунок 3.8, в; 3.11).
Рисунок 3.8 а – Горизонтальная прямая уровня в плоскости, заданной треугольником
Рисунок 3.8 б – Фронтальная прямая уровня в плоскости, заданной треугольником
Рисунок 3.8 в – Профильная прямая уровня в плоскости, заданной треугольником
Рисунок 3.9 – Горизонтальная прямая уровня в плоскости, заданной следами
Рисунок 3.10 – Фронтальная прямая уровня в плоскости, заданной следами
Рисунок 3.11 – Профильная прямая уровня в плоскости, заданной следами
3.5. Взаимное положение прямой и плоскости
Прямая по отношению к заданной плоскости может быть параллельной и может с ней иметь общую точку, то есть пересекаться.
3.5.1. Параллельность прямой плоскости
Признак параллельности прямой плоскости : прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей этой плоскости (Рисунок 3.12).
\alpha=m\cap n\\\left.\begin
Рисунок 3.12 – Параллельность прямой плоскости
3.5.2. Пересечение прямой с плоскостью
Для построения точки пересечения прямой с плоскостью общего положения (Рисунок 3.13), необходимо:
Рисунок 3.13 – Построение точки встречи прямой с плоскостью
Упражнение
Заданы: прямая АВ общего положения, плоскость σ⊥π1. (Рисунок 3.14). Построить точку пересечения прямой АВ с плоскостью σ.
Рисунок 3.14 – Пересечение прямой общего положения с плоскостью частного положения
Упражнение
Заданы: плоскость σ = ΔАВС – общего положения, прямая EF (Рисунок 3.15).
Требуется построить точку пересечения прямой EF с плоскостью σ.
Рисунок 3.15 – Пересечение прямой с плоскостью
3.6. Определение видимости методом конкурирующих точек
При оценке положения данной прямой, необходимо определить – точка какого участка прямой расположена ближе (дальше) к нам, как к наблюдателям, при взгляде на плоскость проекций π1 или π2.
Точки, которые принадлежат разным объектам, а на одной из плоскостей проекций их проекции совпадают (то есть, две точки проецируются в одну), называются конкурирующими на этой плоскости проекций.
Необходимо отдельно определить видимость на каждой плоскости проекций.
Видимость на π2 (рис. 3.15)
Выберем точки, конкурирующие на π2 – точки 3 и 4. Пусть точка 3∈ВС∈σ, точка 4∈EF.
Чтобы определить видимость точек на плоскости проекций π2 надо определить расположение этих точек на горизонтальной плоскости проекций при взгляде на π2.
Направление взгляда на π2 показано стрелкой.
По горизонтальным проекциям точек 3 и 4, при взгляде на π2, видно, что точка 41 располагается ближе к наблюдателю, чем 31.
41∈E1F1 ⇒ 4∈EF ⇒ на π2 будет видима точка 4, лежащая на прямой EF, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена перед плоскостью σ и будет видима до точки K – точки пересечения прямой с плоскостью σ.
Видимость на π1.
Для определения видимости выберем точки, конкурирующие на π1 – точки 2 и 5.
Чтобы определить видимость точек на плоскости проекций π1 надо определить расположение этих точек на фронтальной плоскости проекций при взгляде на π1.
Направление взгляда на π1 показано стрелкой.
По фронтальным проекциям точек 2 и 5, при взгляде на π1, видно, что точка 22 располагается ближе к наблюдателю, чем 52.
22∈А2В2 ⇒ 2∈АВ ⇒ на π1 будет видима точка 2, лежащая на прямой АВ, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена под плоскостью σ и будет невидима до точки K – точки пересечения прямой с плоскостью σ.
Видимой из двух конкурирующих точек будет та, у которой координата «Z» или(и) «Y» больше.
3.7. Перпендикулярность прямой плоскости
Признак перпендикулярности прямой плоскости : прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости.
Рисунок 3.16 – Задание прямой, перпендикулярной плоскости
Теорема. Если прямая перпендикулярна плоскости, то на эпюре: горизонтальная проекции прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция прямой перпендикулярна фронтальной проекции фронтали (Рисунок 3.16, б)
Теорема доказывается через теорему о проецировании прямого угла в частном случае.
Если плоскость задана следами, то проекции прямой перпендикулярной плоскости перпендикулярны соответствующим следам плоскости (Рисунок 3.16, а).
Пусть прямая p перпендикулярна плоскости σ=ΔАВС и проходит через точку K.
3.8. Взаимное положение двух плоскостей
3.8.1. Параллельность плоскостей
Две плоскости могут быть параллельными и пересекающимися между собой.
Признак параллельности двух плоскостей : две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.
Упражнение
Задана плоскость общего положения α=ΔАВС и точка F∉α (Рисунок 3.17).
Через точку F провести плоскость β, параллельную плоскости α.
Рисунок 3.17 – Построение плоскости, параллельной заданной
3.8.2. Пересечение плоскостей
Результатом пересечения 2-х плоскостей является прямая. Любая прямая на плоскости или в пространстве может быть однозначно задана двумя точками. Поэтому для того, чтобы построить линию пересечения двух плоскостей, следует найти две точки, общие для обеих плоскостей, после чего соединить их.
Рассмотрим примеры пересечения двух плоскостей при различных способах их задания: следами; тремя точками, не лежащими на одной прямой; параллельными прямыми; пересекающимися прямыми и др.
Упражнение
Рисунок 3.18 – Пересечение плоскостей общего положения, заданных следами
Упражнение
Алгоритм решения задачи :
\left.\begin
KL – линия пересечения ΔАВС и σ (α∩σ = KL).
Рисунок 3.19 – Пересечение плоскостей общего и частного положения
Упражнение
Рисунок 3.20 – Пересечение двух плоскостей общего положения (общий случай)
Алгоритм решения задачи :
\left.\begin
Упражнение
Заданы плоскости α = ΔАВС и β = a//b. Построить линию пересечения заданных плоскостей (Рисунок 3.21).
Рисунок 3.21 Решение задачи на пересечение плоскостей
Решение: Воспользуемся вспомогательными секущими плоскостями частного положения. Введём их так, чтобы сократить количество построений. Например, введём плоскость σ⊥π2, заключив прямую a во вспомогательную плоскость σ (σ∈a). Плоскость σ пересекает плоскость α по прямой (1-2), а σ∩β=а. Следовательно (1-2)∩а=K. Точка К принадлежит обеим плоскостям α и β. Следовательно, точка K, является одной из искомых точек, через которые проходит прямая пересечения заданных плоскостей α и β. Для нахождения второй точки, принадлежащей прямой пересечения α и β, заключим прямую b во вспомогательную плоскость τ⊥π2 (τ∈b). Соединив точки K и L, получим прямую пересечения плоскостей α и β.
3.8.3. Взаимно перпендикулярные плоскости
Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой.
Упражнение
Задана плоскость σ⊥π2 и прямая общего положения – DE (Рисунок 3.22)
Требуется построить через DE плоскость τ⊥σ.
Рисунок 3.22 – Построение плоскости, перпендикулярной к заданной плоскости
По теореме о проецировании прямого угла C1D1 должна быть параллельна оси проекций. Пересекающиеся прямые CD∩DE задают плоскость τ. Итак, τ⊥σ. Аналогичные рассуждения, в случае плоскости общего положения.
Упражнение
Рисунок 3.23 – Построение плоскости, перпендикулярной к заданной ΔАВС
3.9. Задачи для самостоятельного решения
1. Задана плоскость α = m//n (Рисунок 3.24). Известно, что K∈α.
Постройте фронтальную проекцию точки К.
2. Постройте следы прямой, заданной отрезком CB, и определите квадранты, через которые она проходит (Рисунок 3.25).
3. Постройте проекции квадрата, принадлежащего плоскости α⊥π2, если его диагональ MN //π2 (Рисунок 3.26).
4. Построить прямоугольник ABCD с большей стороной ВС на прямой m, исходя из условия, что отношение его сторон равно 2 (Рисунок 3.27).
5. Задана плоскость α=a//b (Рисунок 3.28). Построить плоскость β параллельную плоскости α и удаленную от нее на расстоянии 20 мм.
6. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D плоскость β⊥α и β⊥π1.
7. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D прямую DE//α и DE//π1.
Статьи о радиотехнике, технологиях, чертежах, 3D-моделировании
Публикации для людей, интересующихся наукой и техникой
Начертательная геометрия является технической учебной дисциплиной, изучаемой в ВУЗах. Она изучает и объясняет способы изображений пространственных форм (линий, поверхностей, тел) на области и способы решений вопросов геометрического характера по заданным изображениям указанных форм.
СПЛОШНАЯ ТОЛСТАЯ ЛИНИЯ (стл) – отображение ортогонального и аксонометрического чертежа. Это результат прямоугольного проецирования видимых зрителю ребер объёмного объекта и контуров его кривых поверхностей. Согласно гост 2.303-68 стл используется для изображения линий рамки и основной надписи чертежа.
СПЛОШНАЯ ТОНКАЯ ЛИНИЯ (стнл) – вертикальные и горизонтальные линии чертежа, соединяющие между собой следов смежных проекционных плоскостей какой-либо вершины трехмерного объекта. Стнл используются на учебных чертежах, на производственных чертежах и называются проекционными линиями связи.
ШТРИХОВАЯ ЛИНИЯ (шл) – изображение на ортогональном и аксонометрическом чертежах контуров кривых поверхностей трехмерного объекта, не видимых зрителю. Гост 2.303-68 предлагает толщину шл на половину тоньше линий видимого контура объекта, изображаемого стл. При изображении шл понимается черточка короткий отрезок.
ШТРИХПУНКТИРНАЯ ЛИНИЯ (шпл) – рисунок на ортогональном и аксонометрическом чертеже предполагаемых линий: осей вращения, координат, симметрии. Указанные линии не являются частью конструкции проецируемого объекта, они не имеют реальной материализации. Использование на чертеже различных осей уточняет графическую историю о устройстве и технологии производства 3D объекта. Подробнее о выполнении чертежей и 3D объёмного моделирования можно узнать тут. Например, изображение шпл обращает призор на симметричность частей объекта, а изображение оси вращения кривой поверхности цилиндрического отверстия указывает направление движения оси бора при изготовлении этого отверстия. Шпл представляет собой чередование коротких линий и точек. Штрих понимается как черточка, короткий отрезок, а пунктир – (.). Применение на чертеже данной линии регламентируется гостом 2.303-68, в соответствии которому линия выступает за изображение от 2 до 7 мм.
ПРОЕЦИРОВАНИЕ ПРЯМОЙ ЛИНИИ – это траектория движущейся в пространстве (.). Выделяют: кривые и прямые линии.
ВОСХОДЯЩАЯ ПРЯМАЯ ЛИНИЯ ОБЩЕГО ПОЛОЖЕНИЯ (вплоб) – пл, восходящая по мере удаления от зрителя. На чертеже размер координаты Z начала такой прямой всегда меньше, чем у точки окончания траектории этой прямой. В зависимости от того, где расположен конец вплоб, различают восходящую вправо и восходящую влево пл.
НИСХОДЯЩАЯ ПРЯМАЯ ЛИНИЯ ОБЩЕГО ПОЛОЖЕНИЯ (нплоп) – пл, убывающая по мере удаления от зрителя. На чертеже размер координаты Z начала такой прямой всегда больше, чем у точки окончания этой прямой. В зависимости от того, где расположен финиш восходящей прямой относительно наблюдателя, различают нисходящую вправо и нисходящую влево пл.
ПРЯМЫЕ ЛИНИИ ЧАСТНОГО ПОЛОЖЕНИЯ (плчп) – пл, ориентированы определенным образом относительно плоскостей проекций: ∥ и ⟂ принадлежащие плоскостям проекций.
ПРОЕЦИРУЮЩАЯ ПРЯМАЯ ЛИНИЯ (ппл) – пл, ⟂ плоскости проекций и при этом ∥ двум другим плоскостям проекций. Проекция прямой линии обращается точку на той плоскости, относительно которой отрезок ⟂, а на плоскостях проекций, которым она ∥, проецируется в натуральную величину (нв). Различают: горизонтально проецирующие, фронтально проецирующие, профильно проецирующие пл.
ГОРИЗОНТАЛЬНО ПРОЕЦИРУЮЩАЯ ПРЯМАЯ ЛИНИЯ (гппл) – пл, ⟂ горизонтальной плоскости проекций П1 и при этом ∥ фронтальной П2 и профильной П3 плоскостям проекций. Фронтальная и профильная проекции (фпп) ортогонального чертежа этой прямой равны ее нв и расположены ∥ оси координат Z, а горизонтальная проекция – (.). Размеры одноименных координат Y и X всех точек такой пл равны, а размеры координаты Z отличаются друг от друга.
ФРОНТАЛЬНО ПРОЕЦИРУЮЩАЯ ПРЯМАЯ ЛИНИЯ (фппл) – пл, ⟂ фронтальной плоскости проекций П2 и при этом ∥ горизонтальной П1 и профильной П3 плоскостям проекций. Гпп ортогонального чертежа этой пл равны ее нв и расположены ∥ оси координат Y, а фронтальная проекция – (.). Все (.) такой прямой имеют равные одноименные размеры координат X и Z.
ПРОФИЛЬНО ПРОЕЦИРУЮЩАЯ ПРЯМАЯ ЛИНИЯ (пппл) – пл, ⟂ профильной плоскости проекций П3 и при этом ∥ горизонтальной П1 и фронтальной П2 плоскостям проекций. Горизонтальная и фронтальная проекции ортогонального чертежа этой прямой линии равны ее натуральной длине и расположены параллельно оси координат X, а профильная проекция – (.). Все точки такой пл имеют равные одноименные координаты Y и Z.
ПРЯМАЯ ЛИНИЯ УРОВНЯ (плу) – пл, ∥ одной из плоскостей проекций, на которую она проецируется без изменения, и проекция которой устанавливает углы наклона этой прямой к двум другим плоскостям проекций. При этом пл уровня не ∥ и не ⟂ двум другим плоскостям проекций и проецируется на эти плоскости с изменением размера длины. Делятся на: горизонтальную, фронтальную и профильную прямые линии уровня.
ГОРИЗОНТАЛЬНАЯ ПРЯМАЯ ЛИНИЯ УРОВНЯ (гплу) – это пл, ∥ горизонтальной плоскости проекций П1 и при этом не ∥ и не ⟂ фронтальной П2 и профильной 3 плоскостям проекций. Используется сокращенное название горизонтальное расстояние уровня, либо ее называют горизонталью и на чертеже обозначают буквой h. Так как все точки этой прямой линии равноудалены от плоскости проекций П1, то фпп прямой соответственно ∥ координатным осям X и Y. На плоскость проекций П1 горизонталь h проецируется без изменения своей длины и размеров углов наклона к плоскостям проекций П2 и П3.
ФРОНТАЛЬНАЯ ПРЯМАЯ ЛИНИЯ УРОВНЯ (фплу) – это пл, ∥ фронтальной плоскости проекций П2. Используется сокращенное название фронталь и на чертеже обозначают f. Так как все точки этой пл равноудалены от плоскости проекций П2, то гпп данной прямой соответственно ∥ координатным осям X и Z. На плоскость проекций П2 без искажения проецируется длина отрезка прямой f и углы наклона этой прямой линии к плоскостям проекций П1 и П2.
ПРОФИЛЬНАЯ ПРЯМАЯ ЛИНИЯ УРОВНЯ (пплу) – это пл, ∥ профильной плоскости проекций П3. Используется сокращенное название профильная пу, которая на чертеже обозначается p. Так как все точки этой прямой линии равноудалены от плоскости проекций П3, то гфп данной прямой соответственно параллельны координатным осям Y и Z. На плоскость П3 проецируются без искажения отрезок этой прямой p и углы наклона прямой к плоскостям проекций П1 и П2. Если пплу, удаляясь от наблюдателя, поднимается, то называют восходящей. Если же пплу от наблюдателя удаляется вниз, то она считается нисходящей.
ЛИНИИ НУЛЕВОГО УРОВНЯ (лну) – пл, принадлежащие плоскостям проекций. Это частный случай горизонтальных, фронтальных и профильных прямых линий уровня. Они обозначаются: h0, f0, p0. Так как данные линии находятся на поверхностях плоскостей проекций, то одна из координат (.) этих прямых равна 0. На эпюре две проекции лну конкурируют с осями координат, а третья проекция дает возможность определить нв этой прямой и углы наклона к плоскостям проекций.
СЛЕД ПРЯМОЙ ЛИНИИ (спл) – (.), в которой она пересекается с плоскостью проекций, т.е. (.), принадлежащая одновременно и прямой и плоскости проекций. Следы прямой являются (.) частного положения, в них пл переходит из одного октанта в другой. В общем случае пл может пересекать все три плоскости проекций и иметь три следа. Так как спл принадлежит плоскости проекций, одна из его координат равна 0. Различают: горизонтальный, фронтальный и профильный следы прямой.
ВЗАИМНОЕ ПРОСТРАНСТВЕННОЕ РАСПОЛОЖЕНИЕ ПРЯМЫХ ЛИНИЙ
ПЕРЕСЕКАЮЩИЕСЯ ПРЯМЫЕ ЛИНИИ (ппл) – это пл, имеющие одну общую (.). Проекция (.) пересечения прямых линий есть (.) пересечения проекций этих прямых. Проекции (.) пересечения пл на смежных плоскостях проекций лежат на одной проекционной линии связи, перпендикулярной оси координат.
СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ ЛИНИИ (спл) – это пл, не пересекающиеся и не ∥ между собой, лежащие в двух ∥ плоскостях. На эпюре точки пересечения проекций этих прямых линий не лежат на одном отрезке проекционной связи. Для определения какая из изображенных на чертеже пл выше другой или ближе другой к наблюдателю анализируют положение конкурирующих (.) этих прямых.
Если через спл можно провести проецирующие плоскости, то тогда тени этих прямых будут ∥ на плоскости проекций, которой были ⟂ вводимые плоскости.
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ ЛИНИИ (ппл) – пл, расположенные в одной плоскости на не меняющемся расстоянии друг от друга на всем своем протяжении. ппл пересекаются только в несобственной (.). Проекции ппл на любую плоскость проекций – ∥. Особый случай представляют собой пл, ∥ одной из плоскостей проекций. Для оценки взаимного положения таких пл следует построить эпюр.
КОНКУРИРУЮЩИЕ ПРЯМЫЕ ЛИНИИ (кпл) – пл, расположенные в одной проецирующей плоскости, т.е. в плоскости ⟂ какой-либо плоскости проекций. На чертеже кпл проецируются в одну линию на одной из плоскостей проекций. Конкурирующими могут быть пересекающиеся или ∥ прямые, но не скрещивающиеся. В зависимости от положения проецирующей плоскости, в которой расположены пл, разделяют их на: горизонтально конкурирующие, фронтально конкурирующие и профильно конкурирующие пл.
ГОРИЗОНТАЛЬНО КОНКУРИРУЮЩИЕ ПРЯМЫЕ ЛИНИИ (гкпл) – пл, расположенные на поверхности плоскости ⟂ горизонтальной плоскости проекций П1. Горизонтальные проекции таких пл конкурируют с горизонтальным следом плоскости, которой они принадлежат.
ФРОНТАЛЬНО КОНКУРИРУЮЩИЕ ПРЯМЫЕ ЛИНИИ (фкпл) – пл, расположенные на поверхности фронтально проецирующей плоскости. Фп таких пл совмещены с фронтальным следом плоскости, которой они принадлежат.
ПРОФИЛЬНО КОНКУРИРУЮЩИЕ ПРЯМЫЕ ЛИНИИ (пкпл) – пл, расположенные на поверхности профильной проецирующей плоскости. Пп таких пл совмещены с профильным следом плоскости, которой они принадлежат.
ТЕОРЕМА ОБ ОРТОГОНАЛЬНОЙ ПРОЕКЦИИ ПРЯМОГО УГЛА: если одна из сторон прямого угла ∥ плоскости проекций, а другая ей не перпендикулярна, то прямой угол проецируется ортогонально на эту плоскость проекций без искажения, т.е. прямым углом.
Если ни одна из сторон прямого угла не является линией уровня, то необходимо преобразование чертежа, например, заменой плоскостей проекций.