Что значит эффективно заземленная нейтраль
Что такое эффективно заземленная нейтраль и в чем ее преимущества
Что собой представляет эффективно заземленная нейтраль, какой у нее принцип работы и область применения. Плюсы и минусы электрических сетей с эффективно заземленной нейтралью.
Для передачи электроэнергии на большие расстояния применяют сети высокого напряжения. Безопасная эксплуатация обеспечивается средствами защиты, которая для каждого напряжения своя. В зависимости питающего напряжения применяют различные виды заземления нейтрали. Согласно правилу эксплуатации электроустановок, в сетях до 0,4 КВ применяется глухозаземленная нейтраль. В сетях 0,6-35 кВ для увеличения надежности используется схема с изолированной нейтралью. Для исключения перенапряжения неповрежденных фаз при коротком замыкании одной фазы на землю в линиях 110-1150 кВ применяется эффективно заземленная нейтраль (ЭЗН). Что это такое и в чем особенность данной схемы, мы расскажем читателям сайта Сам Электрик в пределах этой статьи.
Определение эффективно заземленной нейтрали
ЭЗН применяется в высоковольтных сетях 110 кВ и более. В случае замыкания фазы на землю, представляет собой однофазное КЗ.
Оно сопровождается значительными токами в месте повреждения, в результате чего срабатывает система защиты с отключением напряжения. Дадим определение, что это такое.
Эффективно заземленная нейтраль — это заземленная нейтраль в сетях трехфазного напряжения выше 1000 В, коэффициент замыкания на землю которой ≤ 1,4.
На ниже приведенном рисунке представлена схема ЭЗН:
Это значит, что при однофазном замыкании на землю, напряжение других, не поврежденных фаз, увеличится на величину, не превышающую значения 1,4.
И рассчитывается по нижеприведенной формуле:
Это имеет большое значение для высоковольтных сетей. Т.к. при такой схеме напряжение неповрежденных фаз не значительно превышает номинальное. А это значит, что нет необходимости увеличивать изоляцию сетей и оборудования.
Эксплуатация сетей с ЭЗН будет обходиться значительно дешевле. При этом следует учитывать, что экономия увеличивается по мере возрастания напряжения в линии.
Требования ПУЭ к сетям
Для сетей с эффективно изолированной нейтралью ПУЭ регламентирует максимальное сопротивление заземления, не превышающего 0,5 Ом. При этом учитывается естественное заземление. А сопротивление искусственных заземлителей не должно быть более 1 Ом.
Это справедливо для установок свыше 1000 В, режим токов КЗ на землю у которых равен или превышает значения 500 А. При этом следует учитывать, что ЭИН и глухозаземленная нейтраль имеют аналогичные схемы без существенных отличий. Такая схема показана на рисунке снизу.
Эффективно заземления нейтраль и глухозаземленная схема заземления позволяют предупредить дуговые перенапряжения. Однако, они относятся к системам с большими токами короткого замыкания на землю (больше или равно 500А).
Для уменьшения токов КЗ используют искусственное увеличение нулевой последовательности. Для этого на подстанции заземляется только часть нейтралей трансформаторов, или нейтрали заземляются через резистор.
В результате увеличивается напряжение на неповрежденных проводниках. К наиболее тяжелым авариям относят межфазное короткое замыкание. При этом, напряжение и токи короткого замыкания будут меньше, чем при однофазном КЗ.
Поэтому расчеты выполняются на основании больших значений, т.е. однофазного короткого замыкания.
Как выглядит однофазное КЗ на рисунке снизу:
Эффективно заземленная нейтраль предназначена для высоковольтных сетей 110 кВ и более. Но допускается использовать такую схему и для напряжения менее 1 000 В. Ее применяют там, где отсутствуют и не предвидится монтаж электроустановок, в которых может возникнуть пожар или устройства, которые могут выйти из строя или взорваться.
Другими словами, ЭЗН применяется в сетях с напряжением менее 1000 В, при условии отсутствия взрыво- и пожароопасных приборов.
Эффективно используются в городских электрических сетях. Особенность работы таких линий заключается в том, что при коэффициенте замыкания на землю менее единицы, можно применить кабель, рассчитанный на напряжение 6 кВ в сетях с напряжением 10 кВ.
Это позволяет передавать большую мощность с коэффициентом 1,73. При этом замена кабеля и коммутационной аппаратуры не требуется.
Достоинства и недостатки
Эффективно заземленная нейтраль применяется в сетях 110 кВ и выше. Она обладает рядом преимуществ.
Главным назначением таких схем являются:
Кроме очевидных достоинств, сети имеют и недостатки.
Заключение
Принцип работы сетей с эффективно заземленной нейтралью можно кратко описать так. Основная часть замыканий на землю сопровождающаяся большими токами КЗ, самоустраняется после отключения напряжения. После автоматического повторного включения напряжения в ЛЭП, режим работы линии восстанавливается.
Заземление только части трансформаторов позволяет уменьшить токи КЗ. Так, если на подстанции смонтированы два трансформатора, то к заземляющему устройству подключают только один.
Электрические сети с эффективно заземленной нейтралью
Эффективно заземленной нейтралью называется заземленная нейтраль трехфазной электросети с напряжением более 1 кВ, у которой коэффициент замыкания на землю не превышает 1,4.
Что это значит? Напряжение между фазой и землей в случае замыкания одной или двух других фазных проводников на землю нужно разделить на напряжение между фазой и землей в данной точке до момента замыкания на землю, и частное не должно оказаться больше 1,4.
Другими словами, если замыкание фазы на землю происходит в трехфазной сети с изолированной нейтралью, то напряжение между остальными фазами и землей возрастает примерно в 1,73 раза, в то же самое время, для сети с эффективно заземленной нейтралью это значение не превышает 1,4.
Данный аспект важен если речь идет о сетях высокого напряжения, где благодаря эффективно заземленной нейтрали нет необходимости увеличивать количество изоляции в оборудовании и в самих сетях, то есть производство сетей и аппаратов, которые будут работать в условиях с эффективно заземленной нейтралью всегда окажется дешевле.
Международная электротехническая комиссия рекомендует сети сверхвысокого и высокого напряжения, с соединенными с землей нейтралями, либо с нейтралями, соединенными с землей через малое активное сопротивление, относить к сетям с эффективно заземленной нейтралью. В частности в России сети напряжением от 110 кВ относятся к сетям с эффективно заземленной нейтралью.
Согласно правилам технической эксплуатации электроустановок потребителей, для сетей с эффективно заземленной нейтралью регламентировано максимальное сопротивление заземляющего устройства в 0,5 Ом с учетом естественного заземления, причем искусственное заземляющее устройство не должно иметь сопротивление больше 1 Ом. Это касается электроустановок с напряжением от 1 кВ, у которых ток замыкания на землю превышает 500 А.
Данное положение диктуется необходимостью прохождения через устройство больших токов в случае короткого замыкания на землю, когда напряжение сети является сверхвысоким или высоким, и требованием ограничить напряжение между исправными фазами и землей, дабы понизить в условиях аварии опасные превышения шаговых напряжений и напряжений прикосновения, а также выносов потенциалов за пределы подстанции.
Необходимо равномерное распределение потенциалов на территории подстанции, а также исключение возникновения шаговых напряжений на расстоянии от подстанции, что достигается применением устройств выравнивания потенциалов, являющихся обязательной частью заземляющих устройств для эффективно заземляемых нейтралей.
Важные нюансы и требования при выполнении заземляющих устройств для сетей с эффективно заземленными нейтралями привносят трудности в их расчет и возведение, делают эти сооружения материалоемкими, особенно если грунт обладает высоким удельным сопротивлением, как то скальный, каменистый или песчаный грунт. Условия возведения оказываются стесненными.
Безусловно, некоторые так называемые недостатки свойственны сетям с эффективно заземленной нейтралью, и они типичны. Через заземленную нейтраль трансформатора, при коротком замыкании на землю, возникает значительный ток короткого замыкания, и это должно быстро устраняться отключением, благодаря устройствам релейной защиты.
Главным образом короткие замыкания на землю в высоковольтных сетях от 110 кВ самоустраняются, и благодаря устройствам автоматического повторного включения электроснабжение восстанавливается. Для возможности отвода больших токов сооружают контуры заземления, которые получаются, однако, дорогими.
Токи однофазного короткого замыкания на землю, в случае большого количества заземленных трансформаторных нейтралей, могут превышать ток трехфазного замыкания, и, чтобы устранить такое положение вещей, вводят режим частичного разземления трансформаторных нейтралей, для этого часть трансформаторов (110-220 кВ) не заземляют, их нейтрали изолируют, соединяя с разомкнутыми разъединителями. Либо ограничивают ток короткого замыкания трансформатора на землю путем заземления его нейтрали через специальное активное сопротивление.
Для каждого из участков сети путем расчетов находят минимальное количество заземленных нейтралей. Исходя из требований к релейной защите для поддержания токов замыкания на землю на определенном уровне, и с целью обеспечения защиты изоляции разземленных нейтралей от перенапряжений, выбирают подходящие точки заземления энергосистемы.
Дело в том, что трансформаторы на 110 — 220 кВ, традиционно для наших производителей, отличаются пониженной изоляцией нейтралей, например для трансформаторов на 110 кВ с регулировкой напряжения под нагрузкой, изоляция нейтрали соответствует 35 кВ, поскольку со стороны нейтрали включаются переключающие устройства с классом изоляции 35 кВ. Это же касается и трансформаторов на 220 кВ. Экономический эффект получается значительным.
Такие трансформаторы предназначены для работы в сетях с эффективно заземленной нейтралью, и напряжение при коротком замыкании на землю с таких сетях не превысит трети линейного значения, то есть 42 кВ для 110 кВ.
Для защиты от перенапряжений разземленных нейтралей, для защиты в ненагруженных режимах при неполнофазных включениях или отключениях трансформаторов с изолированными нейтралями, применяют устройства защиты от кратковременных перенапряжений — вентильные разрядники. Нейтрали защищают разрядниками на предельно допустимое напряжение гашения в 50 кВ.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Эффективно заземленная нейтраль
Эффективно заземленная нейтраль
При эффективном и глухо заземлении нейтрали всякое замыкание одной фазы является однофазным КЗ, сопровождающимся значительным током через место повреждения, и должно привести к срабатыванию защитных устройств, отключающих поврежденный участок от системы. На мощных подстанциях токи замыкания на землю могут достигать десятков килоампер. Чтобы частые отключения линий из-за замыканий на землю не нарушали надежности питания потребителей, на таких линиях применяют однофазное или трехфазное автоматическое повторное включение (АПВ).
Наибольшее распространение среди систем высокого напряжения получили системы с эффективно заземленными нейтралями. У таких систем нейтрали трансформаторов и автотрансформаторов заземлены наглухо или через реакторы с небольшим индуктивным сопротивлением с таким расчетом, чтобы при замыкании напряжения неповрежденных фаз относительно земли не превышали 1,4 Uф, а однофазный ток КЗ в любой точке системы был не менее 60 % тока трехфазного КЗ в той же точке. В системах с эффективно заземленной нейтралью кратность внутренних перенапряжений (k = Uвн / Uф) в момент замыкания не превышает 2,5.
Глухое и эффективное заземление нейтралей предупреждает возникновение в системе дуговых перенапряжений большого значения и приводит к облегчению их изоляции по отношению к земле, а следовательно, к снижению затрат на их сооружение; причем экономия в затратах увеличивается с ростом напряжения системы.
Системы с эффективно и глухозаземленной нейтралью относят к системам с большими токами замыкания на землю (Iз > 500 А).
Для ограничения токов замыкания на землю искусственно увеличивают сопротивление нулевой последовательности Zо за счет заземления только части нейтралей трансформаторов (одного или двух) на подстанции или заземления нейтралей через сопротивления. Однако такое увеличение приводит к дополнительному повышению напряжения на неповрежденных фазах при несимметрии КЗ.
Рассмотрим систему с глухозаземленной нейтралью при однофазном замыкании на землю фазы (рисунок а)). В этом случае напряжения на неповрежденных фазах определяют из выражений:
Ub’ = — ((3*Zо + j√3*(Zо + 2*Z2) / (2*(Z1+Z2+Zо)) * Еэ;
Uc’ = — ((3*Zо — j√3*(Zо + 2*Z2) / (2*(Z1+Z2+Zо)) * Еэ,
где Еэ — ЭДС эквивалентного генератора, численно равная напряжению в месте КЗ перед его возникновением.
Ток однофазного замыкания определяется суммой токов прямой, обратной и нулевой последовательностей, то есть:
Iз = Ia1+Ia2+Iaо = 3*Ia1,
где Ia1 = Ia2 = Iaо
На рисунке б) представлена векторная диаграмма при КЗ фазы L1 для системы с индуктивными сопротивлениями.
Векторная диаграмма получается симметричной, поскольку IUc’I = IUb’I, а концы векторов Uc’ и Ub’ скользят по прямым, параллельным вектору Uл.
Внутренние перенапряжения в системе зависят от числа заземленных нейтралей трансформаторов. Чем больше это число, тем меньше значения перенапряжений. Однако заземление большого количества нейтралей приводит к значительному увеличению тока однофазного КЗ. Поэтому, например, в системах напряжением 110 В заземляют столько нейтралей трансформаторов, сколько необходимо для создания эффективного режима работы нейтрали в системе. Иногда для уменьшения однофазного тока КЗ нейтрали трансформаторов заземляют через активное или индуктивное сопротивление. При заземлении нейтрали через индуктивное сопротивление ток в месте повреждения будет значительно больше емкостного тока замыкания на землю, но не более допустимых значений, ограниченных появлением устойчивого дугового замыкания на землю. Такое заземление нейтрали повышает устойчивость системы при однофазных замыканиях на землю и ограничивает коммутационные перенапряжения до допустимых пределов.
При заземлении нейтрали через активное сопротивление ток в месте повреждения будет больше емкостного тока замыкания на землю, но меньше, чем при заземлении нейтрали через индуктивное сопротивление. Напряжения на неповрежденных фазах при этом достигают значений (1,73 — 1,9) Uф. При правильно выбранном значении активного сопротивления устойчивость системы при однофазных замыканиях выше, чем при глухом заземлении нейтрали. Надежность заземления нейтрали через активное сопротивление выше, чем через индуктивное. Однако введение в нейтраль индуктивного сопротивления (реактора) для ограничения тока однофазного КЗ является более экономичным, чем заземление нейтрали через активное сопротивление. Последнее находит применение при заземлении нейтралей генераторов.
Основными недостатками систем с эффективно и глухозаземленной нейтралью являются: любое однофазное замыкание на землю равносильно КЗ и релейная защита немедленно отключает поврежденный участок (нарушается бесперебойность электроснабжения, что требует для ограничения бестоковых пауз применения быстродействующих АПВ и выполнения систем с резервированием для наиболее ответственных потребителей); значительное электромагнитное влияние на линии связи; удорожание релейной защиты в связи с устройством ее в трехфазном исполнении; значительные токи КЗ, приводящие к механическому разрушению электрооборудования; опасность поражения людей из-за больших напряжений прикосновения и шага и токов КЗ при однофазном замыкании на землю; значительное увеличение затрат на ЗУ.
Чем называют эффективно заземленную нейтраль?
Высоковольтные линии электропередач предназначены для передачи энергии на большие расстояния. Для обеспечения безопасной работы энергосистемы используются средства защиты. Для чего применяются различные виды заземления нейтрали. Схема подключения заземлителя зависит от питающего напряжения:
Для исключения перенапряжения неповрежденных фаз при возникновении однофазного замыкания на землю.
В электросетях с напряжением 110 КВ и выше выполняется система с эффективно заземленной нейтралью. Она представляет собой разновидность сети с глухозаземленной нейтралью. И предназначена для уменьшения коммутационного перенапряжения сети. Что уменьшает требования к изоляции. А это существенно снижает стоимость электросетей.
Позволяет применить быстродействующую защиту от коротких замыканий на землю. Что, в свою очередь, уменьшает вероятность сложных трехфазных замыканий, но в тоже время при замыкании на землю возникают большие токи.
Эффективно заземленная нейтраль
Что же такое эффективно заземленная нейтраль – это трехфазная сеть с коэффициентом замыкания на землю, который эквивалентен значению меньше или равному 1,4 в системах с питающим напряжением свыше 1000 В. И рассчитывается по формуле:
Эффективное заземление нейтрали применяется в сетях напряжением 110 КВ и выше. Применение такой схемы обусловлено стоимостью изоляции.
При использовании такой электросхемы во время замыкания одной фазы на землю, потенциал на остальных не превышает значения равного межфазному напряжению, умноженному на коэффициент 0,8. Что позволяет производить расчет изоляции на это значение. В отличие от сетей с изолированной или компенсированной нейтралью, где расчет производится на полное межфазное напряжение.
Требования к сетям, согласно нормативу
Правилами эксплуатации электроустановок потребителями предъявляются требования к заземляющему устройству, сопротивление которого не должно превышать 0,5 Ом в схеме, где применена эффективно заземленная нейтраль. При этом должно учитываться значение искусственного заземляющего устройства, сопротивление которого не должно превышать значения 1 Ом. Что справедливо для сетей с потенциалом выше 1000 В и током короткого замыкания на землю более 500 А.
Эти требования к заземляющему устройству предъявляются при возникновении КЗ фазы на землю, что является однофазным замыканием в схеме, где присутствует заземленная нейтраль, чтобы немедленно и эффективно произошло отключение.
К сложным аварийным ситуациям относятся замыкания двух или трех фаз на землю. Однако, в этом случае напряжение на неповрежденных фазах и токи замыкания будут существенно ниже, чем при однофазном.
Поэтому при расчетах принимают большие значения, а напряжение и токи двух и трехфазных замыканий не используются.
Такое подключение эффективно при аварии и служит для понижения потенциала между не отказавшей фазой и землей в сетях, где применяется заземленная нейтраль, что позволяет не допустить превышение шагового напряжения. А также не ограничивает вынос потенциала за пределы подстанции и уменьшает риск поражения электрическим током обслуживающего персонала.
Большая часть замыканий после снятия напряжения исчезает, а автоматика (АПВ) включает подачу электропитания в ЛЭП. Для уменьшения токов в аварийной ситуации заземляют не все трансформаторы, а только часть. Так, при смонтированных на подстанции двух силовых трансформаторов подключают только один. Такая система называется электросетью с эффективно заземленной нейтралью.
Преимущества и недостатки системы
Главным достоинством таких систем можно отметить ограничение потенциала в системах напряжением 110 КВ и более в неповрежденных линиях при возникновении аварийной ситуации, что оказывает существенное значение для материалов изоляции. А также применение относительно несложных устройств релейной защиты от однофазных коротких замыканий на землю.
Недостатками подобных электросетей, касательно к сетям с изолированной нейтралью, можно отнести высокие токи КЗ, что требует моментального отключения напряжения. Если этого не произойдет, то возникает опасность серьезного повреждения линии, а также возрастает вероятность поражения электрическим током обслуживающего персонала.
И велико возникновение пожара и даже взрыва. Высокие токи КЗ предъявляют особые требования к устройствам защиты, она должна срабатывать мгновенно, а это усложняет приборы защиты.
Использование в сетях ниже тысячи вольт
В последнее время такие электросхемы получили распространение в городских электросетях. Что имеет смысл при коэффициенте тока короткого замыкания на землю меньше единицы. Это дает возможность использовать кабель, рассчитанный на напряжение 6 КВ использовать в сети 10 КВ. Что позволяет увеличить передаваемую мощность на величину 1,73 без замены кабеля и коммутационной аппаратуры.
Эффективно заземленная нейтраль: как определяется, преимущества использования, схема
Передача электричества на большие расстояния осуществляется посредством сетей высокого напряжения. При этом каждая сеть дотирована собственными средствами защиты для обеспечения ее безопасной эксплуатации. Величина питающего напряжения определяет схему, по которой заземляется нейтраль. Согласно ПУЭ, в сетях, где напряжение не превышает значения в 0.4 кВ, используются глухозаземленные нейтрали, а для электросетей с напряжением в диапазоне 0.6 – 35 кB предусмотрено использование схем, в которых нейтраль изолириована. Для линий 110 – 1150 кB предусмотрена установка эффективно заземленных нейтралей – ЭЗН. Эти схемы позволяют предотвращать вероятность возникновения перенапряжения в случае возникновения КЗ одной фазы.
Определение схемы, устройство
Схема ЭЗH предназначена для использования в электросетях более 110кB. В случае замыкания одной фазы на землю такая схема представляется в виде однофазного короткого замыкания. Как правило, в местах с повреждением возникают токи большого напряжения. Благодаря срабатыванию защитной системы опасное напряжение отключается. Исходя из этого, эффективно заземленной нейтралью определяется нейтраль, имеющая заземление и включенная в схемы электросетей с подачей трехфазного напряжения, превышающего отметку в 1000B и коэффициент замыкания которого ≤ 1,4. При однофазном замыкании на землю, в фазах, где отсутствуют какие-либо повреждения, происходит увеличение напряжения на величину, которая не превышает значение 1.4.
Для расчетов используется следующая формула:
Если в высоковольтных электросетях используется такая схема заземления, в увеличении изоляции оборудования и самих сетей нет необходимости. К тому же, стоимость эксплуатации и обслуживания ЭЗH является ниже.
Нормативные требования
Согласно регламенту ПУЭ, максимальное значение сопротивления заземления в электросетях, в структуру которых включена эффективно изолированная нейтраль, не должно превышать 0.5 Ом, а уровень сопротивления искусственных заземлителей – не менее 1.0 Ом. Данное правило действительно для электроустановок более 1000B с режимом токов КЗ равными или превышающими 500А.
Схемы глухо заземленной нейтрали и ЭЗH практически аналогичны друг другу. Действие обоих направлено на предупреждение дуговых перенапряжений – токи КЗ уменьшаются искусственным увеличением нулевых последовательностей. С этой целью на подстанциях производится заземление не всех нейтралей трансформаторов, а лишь части из них. Также могут быть применены резисторы.
Результатом таких решений является увеличение напряжения на целых проводниках. Одной из самых серьезных аварий считается короткое замыкание между фазами. В то же время, токи KЗ, как и напряжение, будут иметь меньшую величину, нежели в случае однофазных коротких замыканий. Ввиду этого для проведения расчетных действий используются большие значения, характерные именно для однофазного КЗ.
Главное предназначение эффективно заземленной нейтрали – применение в схемах высоковольтных электросетей с напряжением в 110кB и больше. Также использование данной схемы возможно в сетях, где напряжение не превышает 1000B: на объектах с полным отсутствием каких-либо электрических установок и их монтаж пока не предполагается, где существует риск возникновения пожара или же смонтировано оборудование, которое может выйти из строя или является взрывоопасным.
Иными словами, эффективно заземленная нейтраль используется в электросетях, где напряжение не превышает 1000B, при этом главным условием является отсутствие пожароопасных и взрывоопасных устройств и оборудования.
Наибольшая эффективность применения ЭЗH наблюдается в городских электросетях.
Специфика функционирования подобных электролиний заключается в возможности применения кабеля, рассчитанного на 6 кB, в электросетях, где напряжение составляет 10 кB, а коэффициент замыкания на землю не превышает значения одной единицы. Благодаря этому возможна передача большей мощности, коэффициент которой составляет 1.73, а периодической замены коммутаторов и электрического кабеля не требуется.
Какими достоинствами и недостатками обладает ЭЗH?
В процессе применения эффективно заземленной нейтрали в электросетях свыше 110 кB обеспечиваются следующие преимущества:
Все же, ЭЗH имеют и некоторые недостатки. Среди них указаны:
Подводим итоги
Резюмируя все выше сказанное в статье, принцип функционирования электросетей с эффективно заземленными нейтралями можно описать следующим образом: при происхождении замыканий на землю, их большая часть сопровождается высоким током коротких замыканий, после чего происходит их самоустранение, как только отключается подача напряжения в сети. При повторном автоматическом включении напряжения в линии передачи электричества ее работа полностью восстанавливается.
В случае, если заземлена лишь часть трансформаторов, это приводит к уменьшению токов короткого замыкания. К примеру, если подстанция предполагает монтаж двух трансформаторных установок, лишь один их них будет подключен к устройству заземления.