Что значит что множество замкнуто относительно

Замкнутость множеств

Определение: Множество A называется замкнутым относительно операции *, если результат применения этой операции к любым элементам множества A также является элементом множества A. (Если для любых a,bÎ A, a*bÎ A, то множество A замкнуто относительно операции *)

Для доказательства замкнутости множества относительно операции необходимо либо непосредственным перебором всех случаев убедиться в этом (пример 1б), либо провести рассуждение в общем виде (пример 2). Чтобы опровергнуть замкнутость, достаточно привести один пример, демонстрирующий нарушение замкнутости (пример 1а).

а) В качестве операции * возьмем арифметическую операцию сложения (+). Исследуем множество A на замкнутость относительно операции сложения (+):

0 + 1 = 1 Î A; 0 + 0 = 0 Î A; 1 + 0 = 1Î A; 1 + 1 = 2 Ï A.

Имеем, что в одном случае (1+1) результат применения операции (+) к элементам множества A не принадлежит множеству A. На основании этого делаем вывод о том, что множество A не является замкнутым относительно операции сложения.

б) Теперь в качестве операции * возьмем операцию умножения (×).

0×1 = 0 Î A; 0×0 = 0 Î A; 1×0 = 0 Î A; 1×1 = 1 Î A.

Для любых элементов множества A результат применения операции умножения также является элементом множества A. Следовательно, A замкнуто относительно операции умножения.

Исследовать на замкнутость относительно четырех арифметических операций множество целых чисел, кратных 7.

Z7 = <7n, n Î Z> – множество чисел, кратных семи.

Очевидно, что Z7 – незамкнуто относительно операции деления, так как, например,

Докажем замкнутость множества Z7 относительно операции сложения. Пусть m, k – произвольные целые числа, тогда 7mÎ Z7 и 7kÎ Z7. Рассмотрим сумму 7m + 7 k = 7∙(m + k).

Имеем mÎ Z, kÎ Z. Z – замкнуто относительно сложения Þ m + k = l – целое число, то есть l Î Z Þ 7l Î Z7.

Таким образом, для произвольных целых чисел m и k доказали, что (7m + 7 k) Î Z7. Следовательно, множество Z7 замкнуто относительно сложения. Аналогично доказывается замкнутость относительно операций вычитания и умножения (проделайте это самостоятельно).

Что значит что множество замкнуто относительно

1.Исследовать на замкнутость относительно арифметических операций сложения, вычитания, умножения и деления следующие множества:

а) множество четных чисел (иначе: множество целых чисел, делящихся на 2(Z2));

б) множество отрицательных целых чисел (Z – );

2.Исследовать на замкнутость относительно арифметических операций сложения, вычитания, умножения и деления следующие множества:

а) множество нечетных чисел;

б) множество натуральных чисел, последняя цифра которых нуль;

3.Исследовать на замкнутость относительно операции возведения в степень следующие множества:

а) множество N натуральных чисел;

б) множество Q рациональных чисел;

г) множество нечетных чисел.

4.Исследовать на замкнутость относительно операции возведения в степень следующие множества:

а) множество Zцелых чисел;

б) множество R действительных чисел;

в) множество четных чисел;

5.Пусть множество G, состоящее только из рациональных чисел, замкнуто относительно сложения.

а) Укажите какие-либо три числа, содержащиеся во множестве G, если известно, что оно содержит число 4.

б) Докажите, что множество G содержит число 2, если оно содержит числа 5 и 12.

6.Пусть множество K, состоящее только из целых чисел, замкнуто относительно вычитания.

а) Укажите какие-либо три числа, содержащиеся во множестве K, если известно, что оно содержит число 5.

б) Докажите, что множество K содержит число 6, если оно содержит числа 7 и 3.

7.Приведите пример множества, состоящего из натуральных чисел и незамкнутого относительно операции:

8.Приведите пример множества, содержащего число 4 и замкнутого относительно операций:

Источник

Что значит что множество замкнуто относительно

Пусть Т — бинарная операция на множестве А и Что значит что множество замкнуто относительно.

ОПРЕДЕЛЕНИЕ. Подмножество В множества А называется замкнутым относительно операции Т» если для любых а, b из В элемент Что значит что множество замкнуто относительнопринадлежит В.

Отметим, что пустое подмножество замкнуто относительно любой операции Что значит что множество замкнуто относительно.

Примеры. 1. Множество всех четных чисел замкнуто относительно сложения и умножения целых чисел.

2. Множество всех нечетных чисел замкнуто относительно умножения, но не замкнуто относительно сложения целых чисел.

3. Множество всех элементов (из А), регулярных относительно ассоциативной операции Т. замкнуто относительно Т.

ПРЕДЛОЖЕНИЕ 1.8. Множество всех элементов, симметризуемых относительно ассоциативной бинарной операции Т. замкнуто относительно Т.

Доказательство этого предложения непосредственно вытекает из теоремы 1.6.

Пусть В — непустое множество, Что значит что множество замкнуто относительно, замкнутое относительно операции Т Тогда на В можно определить бинарную операцию Т следующим образом:

Что значит что множество замкнуто относительно

Операция Т называется ограничением операции Т множеством В, а операция Т — продолжением операции Т на множество А.

Источник

ОТНОСИТЕЛЬНО ОТКРЫТОЕ (ЗАМКНУТОЕ) МНОЖЕСТВО

множество, открытое (замкнутое) относительно нек-рого множества Е,— множество Мтопологич. пространства Xтакое, что

Что значит что множество замкнуто относительно

(черта сверху означает операцию замыкания). Для того чтобы нек-рое множество было открытым (замкнутым) относительно Е, необходимо и достаточно, чтобы оно было пересечением М с нек-рым открытым (замкнутым) множеством. М. И. Войцеховский.

Смотреть что такое «ОТНОСИТЕЛЬНО ОТКРЫТОЕ (ЗАМКНУТОЕ) МНОЖЕСТВО» в других словарях:

Замкнутое множество — Для термина «Замкнутость» см. другие значения. Замкнутое множество подмножество пространства дополнение к которому открыто. Содержание 1 Определение 2 Замыкание 3 Свойства … Википедия

Замкнутое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Замкнутое подмножество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Открытое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Множество второй категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Множество первой категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Открытое множество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью. Открытое множество является фундаментальным понятием общей топологии. Термин «открытое множество» применяется к подмножествам топологических пространств и никак … Википедия

Открытое множество (топология) — Открытое множество в математическом анализе, геометрии это множество, каждая точка которого входит в него вместе с некоторой окрестностью. Открытое множество также является фундаментальным понятием общей топологии. Термин «открытое множество»… … Википедия

Открытое подмножество — Открытое множество в математическом анализе, геометрии это множество, каждая точка которого входит в него вместе с некоторой окрестностью. Открытое множество также является фундаментальным понятием общей топологии. Термин «открытое множество»… … Википедия

Массивное множество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Источник

Замкнутые и открытые множества

Одна из основных задач теории точечных множеств — изучение свойств различных типов точечных множеств. Познакомимся с этой теорией на двух примерах и изучим свойства так называемых замкнутых и открытых множеств.

Приведем примеры замкнутых и открытых множеств. Всякий отрезок есть замкнутое множество, а всякий интервал — открытое множество. Несобственные полуинтервалы и замкнуты, а несобственные интервалы и открыты. Вся прямая является одновременно и замкнутым и открытым множеством. Удобно считать пустое множество тоже одновременно замкнутым и открытым. Любое конечное множество точек на прямой замкнуто, так как оно не имеет предельных точек. Множество, состоящее из точек

Наша задача состоит в том, чтобы выяснить, как устроено произвольное замкнутое или открытое множество. Для этого нам понадобится ряд вспомогательных фактов, которые мы примем без доказательства.

1. Пересечение любого числа замкнутых множеств замкнуто.

2. Сумма любого числа открытых множеств есть открытое множество.

3. Если замкнутое множество ограничено сверху, то оно содержит свою верхнюю грань. Аналогично, если замкнутое множество ограничено снизу, то оно содержит свою нижнюю грань.

4. Если множество замкнуто, то его дополнение открыто и обратно.

Предложение 4 показывает, что между замкнутыми и открытыми множествами имеется весьма тесная связь: одни являются дополнениями других. В силу этого достаточно изучить одни замкнутые или одни открытые множества. Знание свойств множеств одного типа позволяет сразу выяснить свойства множеств другого типа. Например, всякое открытое множество получается путем удаления из прямой некоторого замкнутого множества.

В силу предложения 4, отсюда сразу вытекает, что всякое открытое множество на прямой представляет собой не более чем счетную сумму непересекающихся интервалов. В силу предложений 1 и 2, ясно также, что всякое множество, устроенное, как указано выше, действительно является замкнутым (открытым).

Как видно из нижеследующего примера, замкнутые множества могут иметь весьма сложное строение.

Канторово совершенное множество

Рассмотрим некоторые свойства этого множества. Множество замкнуто, так как оно образуется путем удаления из прямой некоторого, множества непересекающихся интервалов. Множество не пусто; во всяком случае в нем содержатся концы всех выброшенных интервалов.

Можно показать, что множество имеет мощность континуума. В частности, отсюда следует, что канторово совершенное множество содержит, кроме концов смежных интервалов, еще и другие точки. Действительно, концы смежных интервалов образуют лишь счетное множество.

Разнообразные типы точечных множеств постоянно встречаются в самых различных разделах математики, и знание их свойств совершенно необходимо при исследовании многих математических проблем. Особенно большое значение имеет теория точечных множеств для математического анализа и топологии.

Исследования Н.Н. Лузина и его учеников показали, что имеется глубокая связь между дескриптивной теорией множеств и математической логикой. Трудности, возникающие при рассмотрении ряда задач дескриптивной теории множеств (в частности, задач об определении мощности тех или иных множеств), являются трудностями логической природы. Напротив, методы математической логики позволяют более глубоко проникнуть в некоторые вопросы дескриптивной теории множеств.

Источник

Замкнутое множество

За́мкнутое мно́жество — подмножество пространства дополнение к которому открыто.

Содержание

Определение

Пусть дано топологическое пространство Что значит что множество замкнуто относительно. Множество Что значит что множество замкнуто относительноназывается замкнутым относительно топологии Что значит что множество замкнуто относительно, если существует открытое множество Что значит что множество замкнуто относительнотакое что Что значит что множество замкнуто относительно.

Замыкание

Замыканием множества Что значит что множество замкнуто относительнотопологического пространства Что значит что множество замкнуто относительноназывают минимальное по включению замкнутое множество Что значит что множество замкнуто относительносодержащее Что значит что множество замкнуто относительно.

Замыкание множества Что значит что множество замкнуто относительнообычно обозначается Что значит что множество замкнуто относительно, Что значит что множество замкнуто относительноили Что значит что множество замкнуто относительно; последнее обозначение используется если надо подчеркнуть что Что значит что множество замкнуто относительнорассматривается как множество в пространстве Что значит что множество замкнуто относительно.

Свойства

Примеры

См. также

Литература

Полезное

Смотреть что такое «Замкнутое множество» в других словарях:

замкнутое множество — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN closed set … Справочник технического переводчика

ЗАМКНУТОЕ МНОЖЕСТВО — в топологическом пространстве множество, содержащее все свои предельные точки. Таким образом, все точки дополнения к 3. м. внутренние, и потому 3. м. можно определить как дополнение к открытому. Понятие 3. м. лежит в основе определения топологич … Математическая энциклопедия

ОТНОСИТЕЛЬНО ОТКРЫТОЕ (ЗАМКНУТОЕ) МНОЖЕСТВО — множество, открытое (замкнутое) относительно нек рого множества Е, множество Мтопологич. пространства Xтакое, что (черта сверху означает операцию замыкания). Для того чтобы нек рое множество было открытым (замкнутым) относительно Е, необходимо и… … Математическая энциклопедия

ОТКРЫТО-ЗАМКНУТОЕ МНОЖЕСТВО — подмножество топологич. пространства, одновременно открытое и замкнутое в нем. Топологич. пространство Xнесвязно тогда и только тогда, когда в нем имеется отличное от Xи от О. з. м. Если семейство всех О. з. м. топологич. пространства является… … Математическая энциклопедия

Замкнутое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Замкнутое подмножество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Множество второй категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Множество первой категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Замкнутое пространство — Для одноимённого математического понятия, смотрите Замкнутое множество и Пространство (математика) Ливневая канализация … Википедия

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *