Что значит что функция определена в точке

Непрерывность функции в точке, разрывы первого и второго рода

Процесс исследования функции на непрерывность неразрывно связан с навыком нахождения односторонних пределов функции. Поэтому, чтобы приступить к изучению материала данной статьи, желательно предварительно разобрать тему предела функции.

Непрерывность функции в точке

Данное определение позволяет вывести следствие: значение предела функции в точках непрерывности совпадает со значением функции в этих точках.

Решение

Соответствующая последовательность значений функций выглядит так:

на чертеже они обозначены зеленым цветом.

Соответствующая последовательность функций:

на рисунке обозначена синим цветом.

После вычисления значения функции в заданной точке очевидно выполнение равенства:

Что значит что функция определена в точке

Устранимый разрыв первого рода

Решение

Ответ: пределы справа и слева являются равными, а заданная функция в точке х 0 = 5 не определена, т.е. в этой точке функция имеет устранимый разрыв первого рода.

Неустранимый разрыв первого рода

Неустранимый разрыв первого рода также определяется точкой скачка функции.

Решение

Определим пределы справа и слева от этих точек и значение заданной функции в этих точках:

Ответ: в конечном счете мы получили:

Нам остается только подготовить чертеж данного задания.

Что значит что функция определена в точке

Разрыв второго рода (бесконечный разрыв)

Решение

Зададим произвольную последовательность значений аргумента, сходящуюся к х 0 слева. К примеру:

Ей соответствует последовательность значений функции:

Источник

Определение непрерывности функции в точке

Что значит что функция определена в точке

Непрерывность в точке

Определение непрерывности

Определение непрерывности функции в точке
Функция f ( x ) называется непрерывной в точке x 0 , если она определена на некоторой окрестности U ( x 0) этой точки, включая саму точку, и если предел при x стремящемся к x 0 существует и равен значению функции в x 0 :
.

Здесь подразумевается, что x 0 – это конечная точка. Значение функции в ней может быть только конечным числом.

Если привлечь сюда определение конечного предела функции в конечной точке, то можно дать развернутую формулировку определения непрерывности функции. Поскольку имеется два равносильных определения предела функции (по Коши и по Гейне), то можно дать, как минимум, еще два эквивалентных определения непрерывности.

Запишем эти определения с помощью логических символов существования и всеобщности.
По Гейне:
.
По Коши:
.

Определение отсутствия непрерывности

Непрерывность на концах отрезка

Определение непрерывности справа (слева)
Функция f ( x ) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.

Примеры

Пример 1

Используем определение по Гейне

Используем определение по Коши

Пример 2

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Источник

Дифференцируемые функции в точке – определение и свойства

Что значит что функция определена в точке

Определение дифференцируемой функции

Как мы увидим ниже, определение дифференцируемой функции одной переменной эквивалентно существованию ее производной. Тогда возникает вопрос – почему нельзя сразу дать определение, что дифференцируемая функция – это функция, имеющая производную?

Ответ на этот вопрос раскрывается при рассмотрении функций нескольких переменных. Дело в том, что производные вычисляются только от функций, зависящих от одной переменной. Для функций двух и более переменных, вначале выбирают направление приближения к заданной точке (например, ось x или ось y ), а затем по этому направлению вычисляют производную. Поэтому в любой точке имеется бесконечное множество производных по различным направлением. Из-за этого производные не фигурируют в определении дифференцируемой функции.

Свойства дифференцируемой функции

Таким образом, в случае функции от одной переменной, дифференцируемость функции в точке эквивалентно существованию производной в этой точке. Забегая вперед укажем, что в случае функций многих переменных, для того чтобы функция была дифференцируемой в точке, необходимо, чтобы она имела в этой точке частные производные, и достаточно, чтобы она имела в этой точке непрерывные частные производные.

Доказательства теорем

Связь дифференцируемости функции с существованием производной

В нашем случае это означает, что
.
Отсюда
.

Связь дифференцируемости функции с ее непрерывностью

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Источник

Непрерывность функций с примерами решения и образцами выполнения

Непрерывность функции:

Непрерывные функции, точки разрыва и их классификация, действия над непрерывными функциями, свойства функций, непрерывных на сегменте.

Определение:

Функция у = f(x) называется непрерывной в точке х₀, если:

Если в точке x₀ функция непрерывна, то точка x₀ называется точкой непрерывности функции.

Пример:

Исследовать на непрерывность функцию Что значит что функция определена в точкев точке х = 1.

Решение:

Чтобы доказать, что функция Что значит что функция определена в точкенепрерывна в точке х = 1, необходимо проверить выполнение трех следующих условий (определение непрерывности):

Таким образом, доказано, что функция Что значит что функция определена в точкенепрерывна в точке х = 1.

Замечание:

Формулу (10.1) можно записать в виде
(10.2) Что значит что функция определена в точке
так как Что значит что функция определена в точке. Это значит, что при нахождении предела непрерывной функции можно переходить к пределу под знаком функции.

Введем понятие непрерывности функции в точке х₀ справа и слева.
Если, существует Что значит что функция определена в точке f(x) = f(x₀), то функция называется непрерывной в точке x₀ слева. Аналогично определяется непрерывность функции справа.

Так как ∆x = x-x₀, a ∆y = f(x)-(x₀), то условие (10.1) равносильно следующему:
Что значит что функция определена в точке

Определение:

Функция у = f(x) называется непрерывной в точке х₀, если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции
(10.3) Что значит что функция определена в точке

Пример:

Показать, что функция у = х³ непрерывна для любого значения аргумента х.

Решение:

Найдем приращение функции ∆y.

Используя теоремы о пределе суммы и произведения функции, получим
Что значит что функция определена в точке(3x²∆x 4- 3x∆x² + ∆x³) = 0.

Следовательно, функция у = х³ непрерывна при — ∞ Точки разрыва функции и их классификация

Определение:

Точка х₀ называется точкой разрыва функции у = f(x), если она принадлежит области определения функции или ее границе и не является точкой непрерывности.

Так, например, функция Что значит что функция определена в точке(рис. 89) терпит разрыв при х = 1. Эта функция не определена в точке х = 1, и не существует предела функции в этой точке.

Что значит что функция определена в точкеРис. 89. График функции Что значит что функция определена в точке

Определение:

Точка разрыва x₀ функции у = f(x) называется точкой устранимого разрыва, если существуют оба односторонних предела в точке x₀ и они равны, т. е. Что значит что функция определена в точке

Пример:

Исследовать на непрерывность функцию
Что значит что функция определена в точке

Решение:

В точке x=-1 функция не определена, так как, выполнив подстановку, получаем неопределенность Что значит что функция определена в точке. В других точках дробь можно сократить на (1 + х), так как в них 1 + х ≠ 0. Легко видеть, что односторонние пределы слева и справа в точке х = — 1 равны между собой и их можно вычислить:
Что значит что функция определена в точке

Определение:

Если в точке x₀ односторонние пределы слева и справа существуют, но не равны, точка x₀ называется точкой разрыва I рода.

Пример:

Исследовать на непрерывность функцию
Что значит что функция определена в точке(рис. 90).

Что значит что функция определена в точкеРис. 90. График функции Что значит что функция определена в точке

Решение: Вычислим односторонние пределы функции в точке ее разрыва х = 4.

Предел слева —Что значит что функция определена в точке.
Предел справа — Что значит что функция определена в точке.
Пределы слева и справа существуют, но не равны, следовательно, точка x = 4 для данной функции — точка разрыва I рода (точка скачка).

Определение:

Точки разрыва, не являющиеся точками разрыва I рода, называются точками разрыва II рода.

В точках разрыва II рода не существует хотя бы один из односторонних пределов. Функция Что значит что функция определена в точке, представленная на рис. 89, не имеет ни левого, ни правого конечного предела в точке х = 1. Следовательно, для данной функции x = 1 является точкой разрыва II рода.

Действия над непрерывными функциями

Теорема:

Непрерывность суммы, произведения и частного непрерывных функций. Если функции ϕ(x) и ψ(x) непрерывны в точке Хо, то их сумма и произведение также непрерывны в точке x₀. Если, кроме того, знаменатель в рассматриваемой точке не равен нулю, то частное непрерывных функций есть функция непрерывная.

Докажем непрерывность произведения.

Дано: непрерывность функций в точке x₀:
Что значит что функция определена в точкеи Что значит что функция определена в точке

Доказать, что f(x) — ϕ(x) ∙ ψ(x) есть функция непрерывная в точке x₀, т. е. Что значит что функция определена в точкеf(x) — f(x₀).

Доказательство:
Что значит что функция определена в точкеf(x) = Что значит что функция определена в точке[ϕ(x) ∙ ψ(x)] = Что значит что функция определена в точкеϕ(x) ∙ Что значит что функция определена в точкеψ(x) = ϕ(x₀) ∙ ψ(x₀) = f(x₀).

Можно строго доказать, что все основные элементарные функции непрерывны при всех значениях х, для которых они определены.

Например, степенная у = xⁿ, показательная у = Что значит что функция определена в точке, тригонометрические у = sin х и у = cos х функции непрерывны на всей числовой оси (х ∈ R), логарифмическая функция Что значит что функция определена в точкенепрерывна при х > 0, а тригонометрическая у = tg x непрерывна в каждом из интервалов Что значит что функция определена в точкеи терпит разрыв II рода в точках Что значит что функция определена в точке(k = 0; ±1; ±2;…).

Теорема:

Непрерывность сложной функции. Если функция и = ϕ(x) непрерывна в точке x₀, а функция у = f(u) непрерывна в точке и₀ = ϕ(x₀), то сложная функция у = f [ϕ(x)] непрерывна в точке x₀.

В заключение этого раздела рассмотрим два предела, которые нам понадобятся в дальнейшем.

Пример:

Вычислить Что значит что функция определена в точке

Решение:

Заметим, что при х → 0 числитель и знаменатель одновременно стремятся к нулю, т.е. имеет место неопределенность вида Что значит что функция определена в точке. Выполним преобразование
Что значит что функция определена в точке

Так как данная логарифмическая функция непрерывна в окрестности точки х = 0, то можно перейти к пределу под знаком функции ( Что значит что функция определена в точкеf(x)= f (Что значит что функция определена в точкеx)).
Что значит что функция определена в точке
но Что значит что функция определена в точке— второй замечательный предел.

Следовательно,
(10.4) Что значит что функция определена в точке

В частности, при а = е
(10.5) Что значит что функция определена в точке

Таким образом, у = ln( 1 + х) и у = х — эквивалентные бесконечно малые функции при х → 0.

Пример:

Вычислить Что значит что функция определена в точке

Решение:

Здесь мы имеем дело с неопределенностью вида Что значит что функция определена в точке. Для нахождения предела сделаем замену переменной, положив Что значит что функция определена в точке— 1 = t. Тогда Что значит что функция определена в точке. При х → 0 также и t → 0.
Что значит что функция определена в точке

Так как на основании результата, полученного в предыдущем примере, Что значит что функция определена в точкето
(10.6) Что значит что функция определена в точке

В частности, если а = е, имеем
Что значит что функция определена в точке
т.е. у = Что значит что функция определена в точке— 1 и y = x — эквивалентные бесконечно малые функции при х → 0.

Свойства функций, непрерывных на сегменте

Определение:

Функция у = f(x) непрерывна на сегменте [а, b], если она непрерывна во всех внутренних точках Этого сегмента, а на концах сегмента (в точках a и b) непрерывна соответственно справа и слева.

Теорема:

Если функция у = f(x) непрерывна на сегменте [а, b], то она достигает на этом сегменте своего наибольшего и(или) наименьшего значения.

Простым доказательством этой теоремы, является геометрическая иллюстрация функции у = f(x) на рисунке 91. Непрерывная на сегменте [α, b] функция достигает наименьшего своего значения в точке х = x₁= а, а наибольшего значения в точке х₂.

Что значит что функция определена в точкеРис. 91. Геометрическая иллюстрация условий теоремы 10.3

Следствие:

Если функция у = f(x) непрерывна на сегменте [a, b], то она ограничена на этом сегменте.

Действительно, если по теореме 10.3 функция достигает на сегменте наибольшего M и наименьшего т значений, то имеет место неравенство m ≤ f(x) ≤ M для всех значений функции на рассматриваемом сегменте. Т. е. |f(x)| ≤ M и, следовательно, функция у = f(x) ограничена на сегменте [а, b].

Теорема:

Теорема Больцано-Коши. Если функция у = f(x) непрерывна на сегменте [а, b] и на ее концах принимает значения разных знаков, то внутри этого сегмента найдется, по крайней мере, одна тонка С, в которой функция равна нулю.

Геометрический смысл теоремы заключается в следующем: если точки графика функции у = f(x), соответствующие концам сегмента [a, b], лежат по разные стороны от оси ОХ, то этот график хотя бы в одной точке сегмента пересекает ось OX. На данном рисунке 92 это три точки x₁, x₂, x₃.

Что значит что функция определена в точкеРис. 92. Геометрическая иллюстрация условий теоремы 10.4

Теорема:

О промежуточных значениях функции. Если функция у = f(x) непрерывна на сегменте [α, b] и f(α) = A и f(b) = В, то для любого числа С, заключенного между A и B, найдется внутри этого сегмента такая точка с, что f(c) = С.

Из графика на рисунке 93 видно, что непрерывная функция, переходя от одного значения к другому, обязательно проходит через все промежуточные значения.

Что значит что функция определена в точкеРис. 93. Геометрическая иллюстрация условий теоремы 10.5

Теорема:

О непрерывности обратной функции.) Если функция у = f(x) непрерывна на сегменте [а, b] в возрастает (убывает) на этом сегменте, то обратная функция х = f⁻¹(y) на соответствующем сегменте оси OY существует и является также непрерывной возрастающей (убывающей) функцией.

Эту теорему мы принимаем без доказательства.

Решение на тему: Непрерывная функция

Пример:

Показать, что функция у = 4x² непрерывна в точке х = 2.

Решение:

Для этого необходимо показать, что в точке х = 2 выполняется все три условия непрерывности функции:

1) функция у = 4х² определена в точке х = 2 ⇒ f(2) = 16;
2) существует Что значит что функция определена в точке f(x) = Что значит что функция определена в точке4x²= 16;
3) этот предел равен значению функции в точке х = 2

Что значит что функция определена в точкеf(x) = f(2) = 16.

Пример:

Показать, что функция у = sin x непрерывна для любого значения аргумента х.

Решение:

Найдем приращение функции ∆y, используя формулы тригонометрических тождеств
Что значит что функция определена в точке

Так как Что значит что функция определена в точкето при любом х имеем
Что значит что функция определена в точке

Эта функция (рис. 94) определена во всех точках сегмента [0,4] и ее значение при х = 3 ⇒ у = 2. Функция терпит разрыв, так как она не имеет предела при х → 3 :
Что значит что функция определена в точкеЧто значит что функция определена в точке

Следовательно, точка х = 3, точка разрыва первого рода. При этом в граничных точках исследуемого сегмента [0,4], функция f(x) непрерывна справа (х = 0) и непрерывна слева (х = 4).

Пример:

Исследовать на непрерывность функцию Что значит что функция определена в точке

Решение:

В точке х = 5 функция не определена, т.к., выполнив подстановку, получаем неопределенность вида 0/0. Легко доказать, что
Что значит что функция определена в точке

Следовательно, точка х = 5 точка устранимого разрыва.

Пример:

Исследовать на непрерывность функцию Что значит что функция определена в точке

Решение:

В точке х = 0 функция (рис. 95) терпит разрыв, так как она не определена в этой точке. Пределы функции слева и справа от точки х = 0 равны ∞. Следовательно, точка х = 0 для данной функции является точкой разрыва второго

Пример:

Исследовать на непрерывность функцию Что значит что функция определена в точке

Решение:

В точке х = 0 функция терпит разрыв 1-го рода, так как односторонние пределы существуют в этой точке, но не равны:
предел слева Что значит что функция определена в точке
предел справа Что значит что функция определена в точке

Что значит что функция определена в точкеРис. 95. График функции Что значит что функция определена в точке

Пример:

Исследовать на непрерывность функцию Что значит что функция определена в точке.

Решение:

Что значит что функция определена в точкеРис. 96. График функции Что значит что функция определена в точке

Пример:

Исследовать на непрерывность функцию Что значит что функция определена в точке

Решение:

Функция Что значит что функция определена в точкене определена в точке х = 0. Точка х = 0 является точкой разрыва I рода, так как при х → 0 существуют пределы справа и слева:
Что значит что функция определена в точке

Если доопределить функцию Что значит что функция определена в точкев точке х = 0, полагая f(0) = 1, то получим уже непрерывную функцию, определенную так:
f(х) =Что значит что функция определена в точке, если х ≠ 0; f(0) = 1.

Доопределив функцию в точке х = 0, мы устранили разрыв.

Непрерывность функций

Что значит что функция определена в точке Что значит что функция определена в точке Что значит что функция определена в точке Что значит что функция определена в точке

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Что значит что функция определена в точке

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *