Что значит число в периоде
Периодические дроби
Существуют дроби, у которых в дробной части некоторые цифры бесконечно повторяются. Выглядят эти дроби следующим образом:
Дроби такого вида называют периодическими. В данном уроке мы попробуем разобраться, что это за дроби и как с ними работать.
Получаем периодическую дробь
Попробуем разделить 1 на 3. Не будем подробно останавливаться на том, как это сделать. Этот момент подробно описан в уроке действия с десятичными дробями, в теме деление меньшего числа на большее. Продвинутый уровень.
Видно, что мы постоянно получаем остаток 1, далее приписываем к нему 0 и делим 10 на 3. И это повторяется вновь и вновь. В результате в дробной части каждый раз получается цифра 3. Деление 1 на 3 будет выполняться бесконечно, поэтому разýмнее будет остановиться на достигнутом.
Такие дроби называют периодическими, поскольку у них присутствует период цифр, который бесконечно повторяется. Период цифр может состоять из нескольких цифр, а может состоять из одной как в нашем примере.
В примере, который мы рассмотрели выше, период в дроби 0,33333 это цифра 3. Обычно такие дроби записывают сокращённо. Сначала записывают цéлую часть, затем ставят запятую и в скобках указывают период (цифру, которая повторяется).
В нашем примере повторяется цифра 3, она является периодом в дроби 0,33333. Поэтому сокращённая запись будет выглядеть так:
Читается как «ноль целых и три в периоде»
Пример 2. Разделить 5 на 11
Это тоже периодическая дробь. Период данной дроби это цифры 4 и 5, эти цифры повторяются бесконечно. Сокращённая запись будет выглядеть так:
Читается как «ноль целых и сорок пять в периоде»
Пример 3. Разделить 15 на 13
Здесь период состоит из нескольких цифр, а именно из цифр 153846. Для наглядности период отделён синей линией. Сокращённая запись для данной периодической дроби будет выглядеть так:
Читается как: «одна целая сто пятьдесят три тысячи восемьсот сорок шесть в периоде».
Пример 4. Разделить 471 на 900
В этом примере период начинается не сразу, а после цифр 5 и 2. Сокращённая запись для данной периодической дроби будет выглядеть так:
Читается как: «ноль целых пятьдесят две сотых и три в периоде».
Виды периодических дробей
Периодические дроби бывают двух видов: чистые и смéшанные.
Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют чистой. Например, следующие периодические дроби являются чистыми:
Видно, что в этих дробях период начинается сразу после запятой.
Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют смéшанной. Например, следующие периодические дроби являются смéшанными:
Видно, что в этих дробях период начинается не сразу, а после некоторого количества не повторяющихся цифр.
Избавляемся от хвоста
Подобно тому, как ящерица избавляется от хвоста, мы можем избавить периодическую дробь от повторяющегося периода. Для этого достаточно округлить эту периодическую дробь до нýжного разряда.
Например, округлим периодическую дробь 0, (3) до разряда сотых. Чтобы увидеть сохраняемую и отбрасываемую цифру, временно запишем дробь 0, (3) не в сокращённом виде, а в полном:
Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.
Значит периодическая дробь 0, (3) при округлении до сотых обращается в дробь 0,33
Округлим периодическую дробь 6,31 (6) до разряда тысячных.
Запишем эту дробь в полном виде, чтобы увидеть сохраняемую и отбрасываемую цифру:
Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.
Значит периодическая дробь 6,31 (6) при округлении до тысячных обращается в дробь 6,317
Перевод чистой периодической дроби в обыкновенную дробь
Перевод периодической дроби в обыкновенную это операция, которую мы будем применять довольно редко. Тем не менее, для общего развития желательно изучить и этот момент. А начнём мы с перевода чистой периодической дроби в обыкновенную дробь.
Мы уже говорили, что если период в периодической дроби начинается сразу после запятой, то такую дробь называют чистой.
Чтобы перевести чистую периодическую дробь в обыкновенную дробь, нужно в числитель обыкновенной дроби записать период периодической дроби, а в знаменатель обыкновенной дроби записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби.
В качестве примера, рассмотрим чистую периодическую дробь 0, (3) — ноль целых и три в периоде. Попробуем перевести её в обыкновенную дробь.
Правило гласит, что в первую очередь в числитель обыкновенной дроби нужно записать период периодической дроби.
Итак, записываем в числителе период дроби 0, (3) то есть тройку:
А в знаменатель нужно записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (3).
В периодической дроби 0, (3) период состоит из одной цифры 3. Значит в знаменателе обыкновенной дроби записываем одну девятку:
Полученную дробь можно сократить на 3, тогда получим следующее:
Получили обыкновенную дробь .
Таким образом, при переводе периодической дроби 0, (3) в обыкновенную дробь получается
Пример 2. Перевести периодическую дробь 0, (45) в обыкновенную дробь.
Здесь период составляет две цифры 4 и 5. Записываем эти две цифры в числитель обыкновенной дроби:
А в знаменатель записываем некоторое количество девяток. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (45).
В периодической дроби 0, (45) период состоит из двух цифр 4 и 5. Значит в знаменателе обыкновенной дроби записываем две девятки:
Полученную дробь можно сократить эту дробь на 9, тогда получим следующее:
Таким образом, при переводе периодической дроби 0, (45) в обыкновенную дробь получается
Перевод смешанной периодической дроби в обыкновенную дробь
Чтобы перевести смешанную периодическую дробь в обыкновенную дробь, нужно в числителе записать разность в которой уменьшаемое это цифры, стоящие после запятой в периодической дроби, а вычитаемое — цифры, стоящие между запятой и первым периодом периодической дроби.
В знаменателе же нужно записать некоторое количество девяток и нулей. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби, а количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.
Например, переведём смешанную периодическую дробь 0,31 (6) в обыкновенную дробь.
Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:
Итак, записываем в числителе разность:
А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,31 (6)
В дроби 0,31 (6) период состоит из одной цифры. Значит в знаменатель дроби записываем одну девятку:
Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.
В дроби 0,31 (6) между запятой и периодом располагается две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:
Получили выражение, которое вычисляется легко:
Получили ответ
Таким образом, при переводе периодической дроби 0,31 (6) в обыкновенную дробь, получается
Пример 2. Перевести смешанную периодическую дробь 0,72 (62) в обыкновенную дробь
Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:
Итак, записываем в числителе разность:
А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,72 (62)
В дроби 0,72 (62) период состоит из двух цифр. Значит в знаменатель дроби записываем две девятки:
Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.
В дроби 0,72 (62) между запятой и периодом располагаются две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:
Получили выражение, которое вычисляется легко:
Получили ответ
Значит при переводе периодической дроби 0,72 (62) в обыкновенную дробь, получается
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
34 thoughts on “Периодические дроби”
Когда же следующие уроки? Уже что-то долго ничего нету
Большое спасибо за урок! Откровенно говоря…эту тему не помню вообще…Будто ее и не было в школе О__о Ну или я ее проболела… (Перевод смешанной периодической дроби в обыкновенную дробь)
Вы бы хоть номер кошелька написали. А то столько трудились и никакой отдачи. С такими уроками никакой экзамен не страшен.
Спасибо большое Тэла, за столь добрый отзыв 😉
Если люди получают пользу от этих уроков — это уже отдача)
Огромное Вам спасибо за уроки! Всё объясняете доступно и наглядно! На ваших уроках готовлюсь поступать на ФИТ на программиста. Хорошо бы еще алгебру выложили.)
Вы не могли бы объяснить логику алгоритма перевода периодической дроби в обычную?
Зачем в знаменателе ставятся девятки — заместно, например, округления числа, подставляемого в числитель, до последней цифры периода, и постановки степени 10 в знаменатель? Зачем, при переводе смешанной периодической дроби, производится соотв. вычитание и чем объясняется подстановка нулей и единиц в зависимости от принадлежности цифры к периоду??…
Спасибо большое за урок 🙂 Скажите пожалуйсто при округлении(когда избавляемся от хвоста) откуда знать до каких разряд надо округлять?
Вот и здесь последняя задача говорит округлить до разряда сотых,а почему не до десятых(например)?
зависит от задачи, которую решаете. Если в задаче сказано округлять до десятых, значит округляете до десятых. Если сказано округлять до сотых — округляете до сотых
Что такое число в периоде?
Что такое число в периоде?
Повторяющуюся группу цифр после запятой называют периодом, а саму десятичную дробь — бесконечной десятичной периодической дробью. Число 7 также можно представить в виде бесконечной десятичной периодической дроби.
Как записать число в периоде?
Обычно такие дроби записывают сокращённо. Сначала записывают цéлую часть, затем ставят запятую и в скобках указывают период (цифру, которая повторяется). Читается как: «одна целая сто пятьдесят три тысячи восемьсот сорок шесть в периоде». Читается как: «ноль целых пятьдесят две сотых и три в периоде».
Что значит дробь в периоде?
Если в записи десятичной дроби одна цифра или группа цифр начинают повторяться бесконечно много раз, такую дробь называют периодической дробью. В краткой записи периодической дроби повторяющуюся цифру (или группу цифр) пишут в скобках. Эту цифру (или группу цифр) называют периодом дроби.
Как называются цифры после запятой?
— десятичные цифры. Причём последовательность цифр до запятой (слева от неё) конечна (как минимум одна цифра), а после запятой (справа от неё) — может быть как конечной (в частности, цифры после запятой могут вообще отсутствовать), так и бесконечной.
Как называется число с бесконечным числом после запятой?
Если последовательность цифр после запятой является бесконечной, то десятичная дробь называется бесконечной. называется периодической. Такая запись означает, что последовательность цифр после запятой, начиная с некоторого номера, включает в себя повторяющуюся группу цифр.
Как правильно читать цифры после запятой?
Десятые, сотые и тысячные Чтобы правильно прочитать десятичную дробь нужно: Прочитать число слева от запятой и добавить слово «целыx», так как слева от запятой находится целая часть десятичной дроби. Читаем: «сорок три целых». Затем прочитать число справа от запятой: «семь тысяч пятьсот шестьдесят девять».
Сколько цифр после запятой в десятичной дроби?
Десятичная дробь, как и любое число, состоит из цифр (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Место каждой цифры в числе важно: оно определяет разряд числа. Десятичная дробь состоит из целой части (все цифры до запятой) и дробной части (все цифры после запятой).
Что такое десятичное число?
Десятичное число — основной тип данных ЭКВМ. Используется для хранения в десятичных регистрах как целых чисел (англ. integer), так чисел с естественной (десятичные дроби) и плавающей запятой (англ. При вводе и выводе десятичных чисел в качестве разделителя целой и дробной части числа используется десятичная запятая.
Как тысячные перевести в сотые?
Чтобы округлить данное число до сотых, после запятой оставим лишь две цифры, а остальные — отбросим. Первая из отброшенных цифр равна 5, поэтому предыдущую цифру увеличиваем на единицу. Читают: «Нуль целых тысяча двести пятьдесят четыре тысячных приближенно равно нуль целых тринадцать сотых».
Как перевести сумму в тысячные?
Чтобы перевести числа в тысячи, нужно эти числа разделить на тысячу.
Что больше десятые сотые или тысячные?
Если десятые части равны, сравнить сотые части. То число, у которого сотых частей больше, и будет больше. То число, у которого тысячных частей больше, и будет больше.
Как перевести сотые в десятые?
Чтобы округлить до десятых, нужно убрать после запятой все цифры, кроме одной. Если следующая после остающейся цифра 0, 1, 2, 3 или 4, то цифру не изменяем. Если следующая после остающейся – 5, 6, 7, 8 или 9, то цифру увеличиваем на единицу. С сотыми по тому же принципу, только после запятой оставляем 2 цифры.
Что значит округлить до сотых?
Чтобы округлить число до сотых, надо оставить после запятой две цифры, а остальные отбросить. Если первая отброшенная цифра 0, 1, 2, 3 или 4, то предыдущая цифра не изменится. Если первая из отброшенных цифр 5, 6, 7, 8 или 9, то предыдущую цифру нужно увеличить на единицу.
Как правильно округлить число до десятков?
Правило округления числа до десятков Чтобы округлить число до десятков, нужно цифру в разряде единиц заменить нулем, а если в записи числа есть цифры после запятой, то их следует отбросить.
Как округлить до единиц десятичную дробь?
Если десятичную дробь требуется округлить до целого числа (до единиц), смотрим на цифру, которая идет сразу же после запятой (разряд – десятые). Если это 5, 6, 7, 8 или 9, то к единицам в целой части прибавляем число 1, а всю дробную часть отбрасываем.
Как правильно округлять десятичные числа?
Отделите все цифры, стоящие справа. Если справа от цифры, которую нужно округлить, стоит 0, 1, 2, 3 или 4 — цифра остается без изменений. Отбросьте все цифры справа от цифры округляемого разряда. Если справа от цифры округляемого разряда стоит 5, 6, 7, 8 или 9 — к цифре округляемого разряда прибавляем один.
Как округлить число?
Чтобы округлить натуральное число, нужно в записи числа выбрать разряд, до которого производится округление. Цифра, записанная в выбранном разряде: не меняется, если следующая за ней справа цифра – 0, 1, 2, 3 или 4; увеличивается на единицу, если следующая за ней справа цифра – 5,6,7,8 или 9.
Как округлить десятичную дробь до целых?
Чтобы округлить число до целого (или округлить число до единиц), надо отбросить запятую и все числа, стоящие после запятой. Если первая из отброшенных цифр 0, 1, 2, 3 или 4, то число не изменится. Если первая из отброшенных цифр 5, 6, 7, 8 или 9, предыдущую цифру нужно увеличить на единицу.
Как округлять с 5?
Как округлить миллионы до тысяч?
Что значит округлить до целого числа?
Округлить до целых – значит заменить десятичную дробь ближайшим к ней целым числом. 1) Например, десятичную дробь 4,2 мы хотим округлить до целых. Очевидно, что 4 Как округлить до двух знаков после запятой?
Как округляются отрицательные числа?
Как математически округлить число?
В общем случае, когда число в десятичной системе округляют до N-го знака, правило может быть сформулировано следующим образом:
Округлить число до определенной цифры (знака), значит заменить его близким по значению числом с нулями на конце. Если число округляется до десятков, то нулями заменяем цифру в разряде единицы. Если число округляется до сотен, то цифра ноль должна стоять и в разряде единиц, и в разряде десятков.
Как округлить число до 1000?
Правило округления числа до тысячных Чтобы округлить десятичную дробь до тысячных, надо оставить после запятой только три цифры, а остальные следующие за ней цифры отбросить. Если первая из отброшенных цифр 0,1,2,3 или 4, то предыдущую цифру оставляем без изменений.
Как округлить в большую сторону?
Чтобы округление всегда выполнялось в большую по модулю сторону, используйте функцию ОКРУГЛВВЕРХ. Чтобы округление всегда выполнялось до ближайшего меньшего по модулю, используйте функцию ОКРУГЛВНИЗ. Чтобы число округлялось с нужной кратностью (например, до ближайшего числа, кратного 0,5), используйте функцию ОКРУГЛТ.
Как в Excel округлить в меньшую сторону?
Формула: =ОКРУГЛВВЕРХ(A1;0). Чтобы округлить в меньшую сторону в Excel, применяется функция «ОКРУГЛВНИЗ». Пример формулы: =ОКРУГЛВНИЗ(A1;1). Формулы «ОКРУГЛВВЕРХ» и «ОКРУГЛВНИЗ» используются для округления значений выражений (произведения, суммы, разности и т.
Как в Питоне округлить в большую сторону?
Как в Excel округлять до большего?
Функция ОКРУГЛВВЕРХ подобна функции ОКРУГЛ с той разницей, что округление всегда производится с избытком. Если число_разрядов больше 0, то число округляется с избытком до заданного количества десятичных разрядов после десятичной запятой. Если число_разрядов равно 0, то число округляется до ближайшего целого.
Периодические десятичные дроби
Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби»)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.
Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.
— это любая десятичная дробь, у которой:
Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:
Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.
Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.
Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.
Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом — в настоящем решении так делать не обязательно.
Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.
Как видите, определение периодической дроби основано на понятии значащей части числа. Поэтому если вы забыли что это такое, рекомендую повторить — см. урок «Умножение и деление десятичных дробей».
Переход к периодической десятичной дроби
Рассмотрим обыкновенную дробь Разложим ее знаменатель на простые множители. Возможны два варианта:
Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».
При этом будет происходить следующее:
Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди — непериодической.
Задача. Переведите обыкновенные дроби в периодические десятичные:
Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:
Как видим, остатки повторяются. Запишем дробь в «правильном» виде:
В итоге получается дробь:
Записываем в нормальном виде:
Переход от периодической десятичной дроби к обыкновенной
Рассмотрим периодическую десятичную дробь Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:
Задача. Приведите к обыкновенной неправильной дроби числа:
Работаем с первой дробью:
В скобках содержится лишь одна цифра, поэтому период Далее умножаем эту дробь Имеем:
Вычитаем исходную дробь и решаем уравнение:
Теперь разберемся со второй дробью. Итак,
Период k = 2, поэтому умножаем все
Снова вычитаем исходную дробь и решаем уравнение:
100 X − X =
99 X = 3207;
X = 3207/99 = 1069/33.
Приступаем к третьей дроби: Схема та же самая, поэтому я просто приведу выкладки:
Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;
Наконец, последняя дробь: Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем: