Что значит число полный квадрат
Что значит число полный квадрат
Описание метода выделения полного квадрата
§2. Выделение полного квадрата из квадратного трёхчлена
Описание метода выделения полного квадрата
Преобразование, которое мы сделали, носит название «выделение полного квадрата из квадратного трёхчлена».
Прибавим и вычтем к полученному выражению `(1/2)^2`, получаем
Покажем, как применяется метод выделения полного квадрата из квадратного трёхчлена для разложения квадратного трёхчлена на множители.
Выделяем полный квадрат из квадратного трёхчлена:
Применяем формулу для разности квадратов, имеем:
Мы не можем представить выражение 3 x 2 как квадрат какого-то выражения, т. к. ещё не изучали этого в школе. Это будете проходить позже, и уже в Задании №4 будем изучать квадратные корни. Покажем, как можно разложить на множители заданный квадратный трёхчлен:
`(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Заметим, что при `x=1/2` значение квадратного трёхчлена равно `11/4`, а при `x!=1/2` к значению `11/4` добавляется положительное число, поэтому получаем число, большее `11/4`. Таким образом, наименьшее значение квадратного трёхчлена равно `11/4` и оно получается при `x=1/2`.
Разложите на множители числитель и знаменатель дроби `
Применим к этому многочлену метод выделения полного квадрата.
Применяем метод выделения полного квадрата. Имеем:
Применяя метод выделения полного квадрата, разложите на множители числитель и знаменатель и сократите дробь `<8x^2+10x-3>/<2x^2-x-6>`.
Что такое полный квадрат в математике
Полный квадрат, или квадратное число, — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень из которого извлекается нацело. Геометрически такое число может быть представлено в виде площади квадрата с целочисленной стороной.
Например, 9 — это квадратное число, так как оно может быть записано в виде 3 × 3, а также представляет площадь квадрата со стороной, равной 3.
Квадратное число входит в категорию классических фигурных чисел.
Содержание
Примеры [ править | править код ]
Последовательность квадратов начинается так:
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, … (последовательность A000290 в OEIS)
Представления и свойства [ править | править код ]
Квадрат натурального числа n можно представить в виде суммы первых n нечётных чисел:
1: 1 = 1
2: 4 = 1 + 3
.
7: 49 = 1 + 3 + 5 + 7 + 9 + 11 + 13
.
1: 1 = 1
2: 4 = 1 + 1 + 2
.
4: 16 = 1 + 1 + 2 + 2 + 3 + 3 + 4
.
Сумма квадратов первых n натуральных чисел вычисляется по формуле [1] :
Способ 2, метод неизвестных коэффициентов:
∑ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 + ⋯ + 1 n 2 + ⋯ = π 2 6 >>= >>+ >>+dots + >>+dots = >>
Четыре различных квадрата не могут образовывать арифметическую прогрессию. [3] Арифметические прогрессии из трёх квадратов существуют — например: 1, 25, 49.
Каждое натуральное число может быть представлено как сумма четырёх квадратов (теорема Лагранжа о сумме четырёх квадратов).
4900 — единственное число > 1, которое является одновременно квадратным и пирамидальным.
Суммы пар последовательных треугольных чисел являются квадратными числами.
В десятичной записи квадратные числа имеют следующие свойства:
Геометрически такое число может быть представлено в виде площади квадрата с целочисленной стороной.
Например, 9 — это квадратное число, так как оно может быть записано в виде 3 × 3 (может быть представлено в виде квадрата 3 × 3 точки).
Связанные понятия
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.
Упоминания в литературе
Связанные понятия (продолжение)
В теории чисел гладким числом называется целое число, все простые делители которого малы.
Однако не все его знают. В результате этого объем вычислений увеличивается, а также допускаются ошибки. Он также применяется для нахождения корней уравнений и построения графиков.
Общая информация
Выделить полный квадрат из многочлена второй степени означает, что его следует привести к более читабельной формуле. Эта операция применяется в следующих случаях: интегрирование, дифференцирование, построение графиков и решение уравнений (чаще — в последних двух).
За основу взяты три формулы сокращенного умножения (разложение квадратного многочлена на множители), которые специалисты рекомендуют запомнить или выписать отдельно.
К ним относятся следующие соотношения:
Существует правило, позволяющее выполнить операцию упрощения многочлена ay 2 + by + c второй степени путем разложения его на множители. Это означает, что его следует свести (преобразовать) к виду a * (y — y0)^2 + y0.
Универсальный алгоритм
Алгоритмом называется комплексное решение, состоящее из последовательного набора правил. Преобразование ay 2 + by + c осуществляется следующим образом:
Для квадрата разности алгоритм похожий. Формула выделения полного квадрата имеет такой вид: [(a)^(½) * y]^2 — [(2 * (a)^(½) * y)] * (b / [2 * (a)^(½)] + [(b / (2 * (a)^(½))]^2 — [(b / (2 * (a)^(½))]^2 + c. Соотношение также применяется математиками в алгебре, а также в различных дисциплинах с физико-математическим уклоном. Для этого нужно воспользоваться таким подробным объяснением правил решения:
Число «а» может быть положительным или отрицательным. Если его прибавить к «с», то должно получиться значение «с1».
При извлечении квадратного корня результат должен быть целым. Чтобы равенство не нарушалось, следует прибавить и отнять «а».
Алгоритм записан в общем виде. В теории он является сложным для понимания.
Однако при практическом применении некоторые неясности исчезают. Для начала нужно разобрать, где его нужно применять.
Сферы использования
Математики рекомендуют разобрать основные примеры выделения полного квадрата. Следует их систематизировать, поскольку это позволит оптимизировать процесс решения. Основной смысл заключается в применении соответствующих алгоритмов для экономии времени.
Некоторые считают, что шаблонами пользоваться нежелательно. Однако в этом есть и свои положительные стороны. Например, при поступлении в какое-либо высшее учебное заведение следует придерживаться общепринятых вариантов решения. При успешном зачислении в университет можно применить нестандартные подходы выполнения задания.
Шаблоны широко применяются не только в дисциплинах с физико-математическим уклоном, но и в программировании.
Распространенными заданиями с упрощением квадратного трехчлена являются:
Для нахождения решений следует подробно разобрать алгоритмы. Нет необходимости заучивать основные определения, формулы и правила. Их следует понимать, поскольку в философии есть такой закон: «переход количества в качество». Кроме того, программистами были созданы специальные онлайн-калькуляторы, позволяющие получить полный квадрат, разложить многочлен на множители и так далее.
Построение графиков
Графиком квадратичной функции z = a[y — c]^2 + d является кривая, которая называется параболой. Далее следует ввести следующие пояснения:
Следует отметить, что расположение графика функции зависит от вышеописанных коэффициентов. Для построения параболы математики рекомендуют разобрать частные случаи:
- Направление ветвей: вверх (a > 0) и вниз (a 0), по ОУ в отрицательном направлении (c 2 + bz + с = 0 означает найти все его корни или доказать, что их нет. Его можно решать несколькими методами: нахождение дискриминанта, использование теоремы Виета или представление в виде квадрата.
При использовании первого метода нужно воспользоваться таким алгоритмом:
Когда коэффициент с = 0 (az 2 + bz = 0), то решить уравнение очень просто.
Для этого нужно произвести такие действия:
Третий способ — выделение квадрата или использование формул сокращенного умножения. В этом случае нет необходимости использовать стандартный первый метод. Если построить график функции, то корнями будут являться его точки пересечения с осью абсцисс. Можно получить решения при помощи математических преобразований. Последний считается менее точным способом, поскольку корнями могут быть иррациональные числа, а не действительные.
Упрощение выражений
Бывают случаи, когда следует решить уравнение, упростив его. Например, чтобы решить равенство (2z 2 — 5z + 7) + (z + 5)(z + 3) = 0, нужно раскрыть скобки, а затем привести подобные слагаемые. Этот способ называется методом математических преобразований.
В некоторых случаях следует возвести в квадрат, а затем привести подобные слагаемые. После этого необходимо опять воспользоваться формулами, сгруппировав элементы.
Этот шаг позволяет оптимизировать процесс вычислений. Например, нет необходимости подставлять численные значения в выражение z 2 + 4z + 16 + z 2 — 16. Его можно просто упростить: z 2 + 8z + 16 + z 2 — 16 = (z + 4)^2 + (z — 4)(z + 4) = (z + 4)(z + 4 + z — 4) = 2z (z + 4).
Пример решения
Необходимо решить квадратное уравнение z^2 + 20z + 50 = 6z + 5 несколькими способами, используя следующие методы: нахождение дискриминанта, формул разложения, теоремы Виета и построить график. Вычисление корней первым методом (через дискриминант) выглядит таким образом:
Два корня подходят, поскольку равенство 0 = 0 соблюдается. Специалисты рекомендуют опускать проверку, поскольку задача решается несколькими способами.
Третий метод заключается в использовании формул разложения. Их разрешается применять несколько раз и в любом порядке. Алгоритм решения выглядит таким образом:
Использование графического метода позволит получить точные значения, поскольку во всех предыдущих способах они являются целыми числами. Необходимо записать уравнения параболы (можно воспользоваться вторым пунктом алгоритма третьего метода): (z + 7)^2 – 4. Анализ перед построением выглядит таким образом:
Полный квадрат
Геометрически такое число может быть представлено в виде площади квадрата с целочисленной стороной.
Например, 9 — это квадратное число, так как оно может быть записано в виде 3 × 3 (может быть представлено в виде квадрата 3 × 3 точки).
Связанные понятия
В математическом анализе, и прилегающих разделах математики, ограниченное множество — множество, которое в определенном смысле имеет конечный размер. Базовым является понятие ограниченности числового множества, которое обобщается на случай произвольного метрического пространства, а также на случай произвольного частично упорядоченного множества. Понятие ограниченности множества не имеет смысла в общих топологических пространствах, без метрики.
Упоминания в литературе
Связанные понятия (продолжение)
В общей алгебре, термин кручение относится к элементам группы, имеющим конечный порядок, или к элементам модуля, аннулируемым регулярным элементом кольца.
В теории чисел гладким числом называется целое число, все простые делители которого малы.
В математике (особенно в теории категорий), коммутативная диаграмма — изображаемая в наглядном виде структура наподобие графа, вершинами которой служат объекты определённой категории, а рёбрами — морфизмы. Коммутативность означает, что для любых выбранных начального и конечного объекта для соединяющих их ориентированных путей композиция соответствующих пути морфизмов не будет зависеть от выбора пути.
Квадратное число
Квадрат или квадратное число — целое число, которое может быть записано в виде квадрата некоторого другого целого числа (иными словами, число, квадратный корень которого целый). Геометрически такое число может быть представлено в виде площади квадрата с целочисленной стороной.
Например, 9 — это квадратное число, так как оно может быть записано в виде 3 × 3 (может быть представлено в виде квадрата 3 × 3 точки).
Содержание
Примеры
Последовательность квадратов начинается так:
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, … (последовательность A000290 в OEIS)
_0 | _1 | _2 | _3 | _4 | _5 | _6 | _7 | _8 | _9 | |
---|---|---|---|---|---|---|---|---|---|---|
0_ | 0 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 |
1_ | 100 | 121 | 144 | 169 | 196 | 225 | 256 | 289 | 324 | 361 |
2_ | 400 | 441 | 484 | 529 | 576 | 625 | 676 | 729 | 784 | 841 |
3_ | 900 | 961 | 1024 | 1089 | 1156 | 1225 | 1296 | 1369 | 1444 | 1521 |
4_ | 1600 | 1681 | 1764 | 1849 | 1936 | 2025 | 2116 | 2209 | 2304 | 2401 |
5_ | 2500 | 2601 | 2704 | 2809 | 2916 | 3025 | 3136 | 3249 | 3364 | 3481 |
6_ | 3600 | 3721 | 3844 | 3969 | 4096 | 4225 | 4356 | 4489 | 4624 | 4761 |
7_ | 4900 | 5041 | 5184 | 5329 | 5476 | 5625 | 5776 | 5929 | 6084 | 6241 |
8_ | 6400 | 6561 | 6724 | 6889 | 7056 | 7225 | 7396 | 7569 | 7744 | 7921 |
9_ | 8100 | 8281 | 8464 | 8649 | 8836 | 9025 | 9216 | 9409 | 9604 | 9801 |
Свойства
Геометрическое представление
Обобщения
Понятие квадрата обобщается на произвольные мультипликативные группы. В частности, в кольцах вычетов квадратам соответствуют квадратичные вычеты.
См. также
Примечания
Ссылки
Полезное
Смотреть что такое «Квадратное число» в других словарях:
КВАДРАТНОЕ ЧИСЛО — (от лат. quadratum. квадрат). Произведете какого нибудь числа, помноженного само на себя. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КВАДРАТНОЕ ЧИСЛО от лат. quadratum, квадрат. Произведение какого нибудь… … Словарь иностранных слов русского языка
Центрированное квадратное число — – это центрированное полигональное число, которое представляет квадрат с точкой в центре и все остальные окружающие точки находятся на квадратных слоях. Таким образом, каждое центрированное квадратное число равно числу точек внутри данного… … Википедия
Квадратное пирамидальное число — Геометическое представление квадратного пирамидального числа: 1 + 4 + 9 + 16 = 30. В математике пирамидальное чис … Википедия
100 (число) — 100 сто 97 · 98 · 99 · 100 · 101 · 102 · 103 70 · 80 · 90 · 100 · 110 · 120 · 130 200 · 100 · 0 · 100 · 200 · 300 · 400 Факторизация: 2×2×5×5 … Википедия
200 (число) — 200 двести 197 · 198 · 199 · 200 · 201 · 202 · 203 170 · 180 · 190 · 200 · 210 · 220 · 230 100 · 0 · 100 · 200 · 300 · 400 · 500 … Википедия
Треугольное число — Треугольное число это число кружков, которые могут быть расставлены в форме равностороннего треугольника, см. рисунок. Очевидно, с чисто арифметической точки зрения, n е треугольное число это сумма n первых натуральных чисел.… … Википедия
30 (число) — 30 тридцать 27 · 28 · 29 · 30 · 31 · 32 · 33 0 · 10 · 20 · 30 · 40 · 50 · 60 Факторизация: 2×3×5 Римская запись: XXX Двоичное: 1 1110 … Википедия
Квадрат (число) — Квадрат или квадратное число целое число, которое может быть записано в виде квадрата некоторого другого целого числа (иными словами, число, квадратный корень которого целый). Геометрически такое число может быть представлено в виде площади … Википедия
10 (число) — У этого термина существуют и другие значения, см. 10 (значения). 10 десять 7 · 8 · 9 · 10 · 11 · 12 · 13 20 · 10 · 0 · 10 · 20 · 30 · 40 Факторизация: 2×5 Римская запись: X Двоичное … Википедия
Однако не все его знают. В результате этого объем вычислений увеличивается, а также допускаются ошибки. Он также применяется для нахождения корней уравнений и построения графиков.
Общая информация
Выделить полный квадрат из многочлена второй степени означает, что его следует привести к более читабельной формуле. Эта операция применяется в следующих случаях: интегрирование, дифференцирование, построение графиков и решение уравнений (чаще — в последних двух).
За основу взяты три формулы сокращенного умножения (разложение квадратного многочлена на множители), которые специалисты рекомендуют запомнить или выписать отдельно.
К ним относятся следующие соотношения:
Существует правило, позволяющее выполнить операцию упрощения многочлена ay 2 + by + c второй степени путем разложения его на множители. Это означает, что его следует свести (преобразовать) к виду a * (y — y0)^2 + y0.
Универсальный алгоритм
Алгоритмом называется комплексное решение, состоящее из последовательного набора правил. Преобразование ay 2 + by + c осуществляется следующим образом:
Для квадрата разности алгоритм похожий. Формула выделения полного квадрата имеет такой вид: [(a)^(½) * y]^2 — [(2 * (a)^(½) * y)] * (b / [2 * (a)^(½)] + [(b / (2 * (a)^(½))]^2 — [(b / (2 * (a)^(½))]^2 + c. Соотношение также применяется математиками в алгебре, а также в различных дисциплинах с физико-математическим уклоном. Для этого нужно воспользоваться таким подробным объяснением правил решения:
Число «а» может быть положительным или отрицательным. Если его прибавить к «с», то должно получиться значение «с1».
При извлечении квадратного корня результат должен быть целым. Чтобы равенство не нарушалось, следует прибавить и отнять «а».
Алгоритм записан в общем виде. В теории он является сложным для понимания.
Однако при практическом применении некоторые неясности исчезают. Для начала нужно разобрать, где его нужно применять.
Сферы использования
Математики рекомендуют разобрать основные примеры выделения полного квадрата. Следует их систематизировать, поскольку это позволит оптимизировать процесс решения. Основной смысл заключается в применении соответствующих алгоритмов для экономии времени.
Некоторые считают, что шаблонами пользоваться нежелательно. Однако в этом есть и свои положительные стороны. Например, при поступлении в какое-либо высшее учебное заведение следует придерживаться общепринятых вариантов решения. При успешном зачислении в университет можно применить нестандартные подходы выполнения задания.
Шаблоны широко применяются не только в дисциплинах с физико-математическим уклоном, но и в программировании.
Распространенными заданиями с упрощением квадратного трехчлена являются:
Для нахождения решений следует подробно разобрать алгоритмы. Нет необходимости заучивать основные определения, формулы и правила. Их следует понимать, поскольку в философии есть такой закон: «переход количества в качество». Кроме того, программистами были созданы специальные онлайн-калькуляторы, позволяющие получить полный квадрат, разложить многочлен на множители и так далее.
Построение графиков
Графиком квадратичной функции z = a[y — c]^2 + d является кривая, которая называется параболой. Далее следует ввести следующие пояснения:
Следует отметить, что расположение графика функции зависит от вышеописанных коэффициентов. Для построения параболы математики рекомендуют разобрать частные случаи:
При использовании первого метода нужно воспользоваться таким алгоритмом:
Когда коэффициент с = 0 (az 2 + bz = 0), то решить уравнение очень просто.
Для этого нужно произвести такие действия:
Третий способ — выделение квадрата или использование формул сокращенного умножения. В этом случае нет необходимости использовать стандартный первый метод. Если построить график функции, то корнями будут являться его точки пересечения с осью абсцисс. Можно получить решения при помощи математических преобразований. Последний считается менее точным способом, поскольку корнями могут быть иррациональные числа, а не действительные.
Упрощение выражений
Бывают случаи, когда следует решить уравнение, упростив его. Например, чтобы решить равенство (2z 2 — 5z + 7) + (z + 5)(z + 3) = 0, нужно раскрыть скобки, а затем привести подобные слагаемые. Этот способ называется методом математических преобразований.
В некоторых случаях следует возвести в квадрат, а затем привести подобные слагаемые. После этого необходимо опять воспользоваться формулами, сгруппировав элементы.
Этот шаг позволяет оптимизировать процесс вычислений. Например, нет необходимости подставлять численные значения в выражение z 2 + 4z + 16 + z 2 — 16. Его можно просто упростить: z 2 + 8z + 16 + z 2 — 16 = (z + 4)^2 + (z — 4)(z + 4) = (z + 4)(z + 4 + z — 4) = 2z (z + 4).
Пример решения
Необходимо решить квадратное уравнение z^2 + 20z + 50 = 6z + 5 несколькими способами, используя следующие методы: нахождение дискриминанта, формул разложения, теоремы Виета и построить график. Вычисление корней первым методом (через дискриминант) выглядит таким образом:
Два корня подходят, поскольку равенство 0 = 0 соблюдается. Специалисты рекомендуют опускать проверку, поскольку задача решается несколькими способами.
Третий метод заключается в использовании формул разложения. Их разрешается применять несколько раз и в любом порядке. Алгоритм решения выглядит таким образом: