Общая характеристика листа. Лист – вегетативный, уплощенный, боковой (латеральный) орган побега, характеризующийся ограниченным ростом и двусторонней симметрией. У большинства растений лист живет, как правило, в течение одного вегетационного периода, а у вечнозеленых – 1-5 лет (иногда 10-15 лет, как у ели, араукарии). Лист растет только ограниченный период времени, размеры обычно в пределах 10 см, но листья некоторых пальм могут достигать до 15 м в длину. Листья амазонской кувшинки виктории королевской достигают 2 м в диаметре. Верхняя (брюшная, так расположена в почке в листовом зачатке) и нижняя (спинная) стороны листьев построены различно.
Впервые листья появляются у псилофитов и образуются двумя различными путями. Одни развиваются как боковой вырост стебля и имеют одну центральную жилку, такие листья называются микрофиллами. Такие листья характерны для плауновидных. Другие листья возникают из боковых побегов, которые уплощаются и сливаются в листовую пластинку. Это макрофиллы, они характерны для большинства растений.
Главные функции листа: фотосинтез, газообмен, транспирация. Дополнительные функции – запасающая, защитная, вегетативное размножение.
Морфология листа. Лист большинства растений состоит из листовой пластинки, черешка, у многих листьев есть прилистники. Листовая пластинка – расширенная, обычно плоская часть листа, выполняющая функции фотосинтеза, транспирации и газообмена.По форме листовые пластики бывают округлые, овальные, элиптические, яйцевидные, линейные, ланцетные, стреловидные, копьевидные и другие. Форма края листовой пластинки (рис. 23) бывает: цельнокрайной, зубчатой, пильчатой, городчатой, выемчатой и т.д.Пластинка листа может быть цельной и рассеченной. Рассечение может быть пальчатым и перистым. Если рассеченность края не превышает одной четверти ширины полупластинки, то листья называют цельными, если же надрезанность пластинки больше, то такие листья называются расчлененными.
По степени расчленения листовой пластинки различают (рис. 24) лопастные листья – выемки не доходят до половины полупластинки (дуб), раздельные – выемки заходят глубже половины полупластинки (герань), рассеченные листья – выемки достигают главной жилки листа (картофель, гусиная лапка).
Черешок – суженная часть листа, соединяющая листовую пластинку с основанием и регулирующая положение листа по отношению к свету. Листья с черешками называют черешковыми, без черешков – сидячими. Если основание листа в виде трубки охватывающее часть стебля (пшеница), то такие листья называют влагалищными.
Прилистники – листовидные образования у основания листа, которые служат для защиты молодого листа и пазушной почки. Встречаются не у всех растений. У большинства растений у взрослых листьев прилистники отсутствуют (дуб). Иногда прилистники достигают значительного развития, их размеры превышают размеры листовых пластинок (горох). В этом случае прилистники выполняют роль фотосинтезирующих органов.
Листорасположение. Может быть очередное, когда на каждом узле (место прикрепления основания листа к стеблю) располагается по одному листу, причем основания листьев можно соединить условной спиральной линией, растянутой вдоль оси побега (береза, липа); супротивное – от узла отходят два сидящих друг против друга листа (клен, сирень); мутовчатое – от узла отходит более двух листьев (олеандр, вороний глаз).
Сложные листья. Различают листья простые и сложные. Листья, имеющие одну пластинку, называются простыми. Простые листья при листопаде опадают целиком или вообще не опадают (у большинства травянистых растений). Такие листья свойственны подавляющему большинству растений (береза, клен, одуванчик). Сложные листья – листья, состоящие из нескольких четко обособленных листовых пластинок (листочков), каждый из которых своим черешком прикреплен к общему черешку (рахису). Часто сложный лист опадает по частям: сначала листочки, а потом черешок.
В зависимости от расположения листочков различают (рис. 27) перистосложные листья – листья, у которых листочки располагаются по бокам рахиса. Когда верхушка рахиса заканчивается одним непарным листочком, такие листья называются непарноперистыми (шиповник). У парноперистого листа все листочки имеют себе пару (акация желтая). Пальчатосложные листья – листья, у которых листочки располагаются не по длине рахиса, а лишь на его верхушке в одной плоскости, классический пример лист конского каштана. Частным случаем сложного листа является тройчатый лист – лист, имеющий только три листочка (клевер, кислица).
Жилкование листьев. В зависимости от расположения сосудисто-волокнистых пучков (жилок) в листовой пластинке, различают несколько типов жилкования.
Рис. 28. Жилкование листьев: 1 — параллельное; 2 — дуговое; 3 — сетчатое с перистым расположением основных жилок; 4 — сетчатое с пальчатым расположением основных жилок; 5 — дихотомическое.
Наиболее древнее – простое жилкование – листовую пластинку от основания до верхушки пронизывает только одна жилка (мхи, плауны), такие листья называются микрофиллами.
Если листовую пластинку пронизывают вильчато разветвленные жилки (гинкго), то такое жилкование называется дихотомическим.
Для двудольных растений характерно сетчатое жилкование – обычно из черешка в листовую пластинку входит одна жилка, которая затем дает ответвления – боковые жилки, образующие густую сеть. Сетчатое жилкование может быть перистым и пальчатым.
У однодольных растений дуговое или параллельное жилкование. Дуговое – листовую пластинку от основания до верхушки пронизывает несколько одинаковых жилок, располагающихся дугообразно (ландыш, чемерица), параллельное – листовую пластинку от основания до верхушки пронизывает несколько одинаковых жилок, располагающихся параллельно (рожь, осока);
Анатомия листа. На поперечном срезе листовой пластинки видно, что сверху и снизу лист покрыт эпидермой (кожицей). Поверх эпидермы располагается слой кутина. Как правило, на верхней эпидерме почти полностью отсутствуют устьица. Нижняя поверхность листа покрыта эпидермой с множеством устьиц. На 1 мм 2 листа приходится от 50 до 500 устьиц. У плавающих на поверхности воды листьев устьица располагаются на верхней эпидерме, а у погруженных листьях обычно отсутствуют.
Между верхней и нижней эпидермой располагается мезофилл, образованный столбчатой и губчатой хлоренхимой. Столбчатая (палисадная) хлоренхима располагается под верхней кожицей листа.
В основном в ней осуществляются процессы фотосинтеза. У растений средних широт столбчатая паренхима обычно образована одним рядом клеток, у светолюбивых растений чаще образуется 2-3 ряда. Ближе к нижней эпидерме располагается губчатая хлоренхима, осуществляющая преимущественно функции газообмена и транспирации. Клетки губчатой паренхимы (иногда неправильной формы), расположены рыхло, между ними хорошо развита система межклетников, с помощью которых осуществляется газообмен и транспирация. Клетки губчатой паренхимы принимают участие и в фотосинтезе, но в меньшей степени, чем клетки столбчатой паренхимы, так как число хлоропластов в них в 2-6 раз меньше.
Жилки, сосудисто-волокнистые пучки, образуют проводящую систему листа. В проводящих пучках ксилема обращена к верхней стороне листа, а флоэма – к нижней. В центральном цилиндре древесина расположена с внутренней стороны от камбия, а флоэма с наружной, поэтому при образовании листового следа ксилема в жилке оказывается сверху.
Крупные проводящие пучки образованы сосудами и ситовидными трубками. В мелких пучках сосуды сменяются трахеидами, а ситовидные трубки – паренхимными клетками. Проводящие пучки окружены склеренхимой, выполняющей механическую функцию и обкладочной паренхимой. Обкладка увеличивает площадь контакта мезофилла с проводящими элементами ксилемы и флоэмы. Механическую функцию выполняет и колленхима, находящаяся сверху и снизу крупных жилок.
Функции листа. Одна из основных функций листа – фотосинтез. Сущность фотосинтеза заключается в том, что зеленые растения за счет солнечной энергии из воды и углекислого газа при участии минеральных веществ создают сложные органические соединения, этот процесс идет с выделением кислорода.
Фотосинтез представляет собой последовательную цепь реакций, часть которых идет с непосредственным использованием света, другая же света не требует. Таким образом, весь процесс фотосинтеза условно можно разделить на две фазы: световую и темновую. В световой фазе в тилакоидах хлоропластов за счет энергии света происходит фотолиз (расщепление) воды, сопровождающийся выделением кислорода, образованием АТФ и НАДФ·Н2.
Темновая фаза фотосинтеза включает реакции, идущие за счет энергии, накопленной в световую фазу или при дыхании. В темновой фазе фотосинтеза происходит фиксация СО2 и образование глюкозы в реакция цикла Кальвина. Углекислый газ поступает в листья через устьица, и меньшая часть его образуется при дыхании. Подробнее о процессе фотосинтеза см. раздел «Общая биология».
Рис. 30. Дыхание листа.
Дыхание.Как и любой орган, лист интенсивно дышит, то есть поглощает кислород и выделяет углекислый газ. Причем процесс дыхания осуществляется постоянно, как на свету, так и в темноте. Если поместить в сосуд побег с большим количеством листьев, плотно закрыть его и поставить в темное теплое место, то на следующий день можно обнаружить, что состав воздуха в сосуде изменился. Если поместить в него свечу, то она погаснет, а известковая вода мутнеет. Этот простой опыт доказывает, что в сосуде уменьшилось количество кислорода и увеличилось количество углекислого газа, то есть листья дышат (рис. 30).
Дыхание осуществляется с помощью митохондрий, во время дыхания происходит окисление органических веществ до воды и углекислого газа и освобождение энергии. Углекислый газ или используется для фотосинтеза, или выводится из растения с помощью устьиц. Механизм клеточного дыхания рассмотрен в разделе «Общая биология».
Рис.30.1. Опыт, демонстрирующий теорию транспирационной тяги и адгезии воды к стенкам капилляра. А. Трубку, заполненную водой с растением наверху, погружают в сосуд с ртутью. По мере испарения воды в трубку втягивается ртуть. Справа вместо растения используется глиняный пористый цилиндр. Б. В тонком стеклянном капилляре вода за счет адгезии (притяжения к стенкам) поднимается на значительную высоту, а в широком сосуде – только образует по краю сосуда мениск.
Различают два вида транспирации – кутикулярную и устьичную. Кутикулярная транспирация представляет собой процесс испарения воды с поверхности кутикулы, покрывающей лист. Кутикулярная транспирация составляет порядка 10-20% общего испарения воды взрослыми листьями.
Устьичная транспирация является основным механизмом водообмена между растением и атмосферой. Сначала происходит испарение воды с поверхности клеток в межклетники; затем осуществляется выход паров воды из межклетников через устьичную щель на поверхность листа и диффузия паров воды от поверхности листа в более далекие слои атмосферы.
Открытие устьиц связано с закачиванием ионов калия из сопутствующих клеток эпидермы в замыкающие клетки устьиц, что повышает осмотическое давление в замыкающих клетках и в них поступает вода. Замыкающие клетки растягиваются неравномерно, между утолщенными брюшными клетками открывается устьичная щель. В создании осмотического давления в замыкающих клетках играют ионы калия, которые закачиваются в них, и образующаяся на свету глюкоза. Определенную роль играет и концентрация СО2. Избыток СО2 ночью, когда растения дышат, а фотосинтез отсутствует, вызывает подкисление цитоплазмы, изменение рН приводит к закрыванию устьиц.
В отсутствие света фотосинтез в замыкающих клетках прекращается (как и во всех других), тургорное давление снижается и устьица закрываются. При недостатке поступления воды в растение устьица тоже закрываются, сберегая таким образом то небольшое количество влаги, которое доступно растению.
Потери воды были менее значительными, если бы растение для поглощения углекислого газа не вынуждено было открывать часть устьиц. При повышении влажности почвы и воздуха устьица открываются, при понижении концентрации углекислого газа в воздухе – устьица открываются, а вот при температуре выше 35ºС – закрываются. Скорость испарения зависит также от ветра, который сдувает с поверхности листа пленку влажного воздуха, поэтому растения засушливых мест часто густо опушены. Интересно, что у многих суккулентов устьица днем закрыты, ночью – открыты. Углекислый газ ночью связывается и запасается в форме органических кислот, а днем используется для фотосинтеза, а устьица днем закрыты и потери воды минимальны.
Видоизменения листа. В процессе приспособления к условиям среды обитания у всего листа или его части могут возникнуть изменения во внешнем облике и внутреннем строении, то есть возникают видоизменения или метаморфозы листа (рис. 32).
Колючки характерны для растений, обитающих в сухом и жарком климате, хотя нередко они возникают и у растений других климатических зон. Колючки уменьшают транспирацию и защищают растения от поедания животными. У многих астрагалов, эспарцетов в колючку превращается рахис сложного листа, у белой акации – прилистники.
Усики. Это нитевидные образования, чувствительные к прикосновению и приспособленные для лазания. У вики, чечевицы, гороха в усик преобразуются верхняя часть рахиса и несколько верхних листочков.
Ловчие аппараты встречаются у растений, произрастающих на болотистых, торфяных, бедных минеральными веществами почвах. При помощи ловчих аппаратов росянка, венерина мухоловка, непентес используют богатую азотом и фосфором органическую пищу, переваривая животных.
Сочные чешуи лука и зубчики чеснока – это тоже видоизмененные листья, выполняющие функцию запасания питательных веществ. У алоэ, агавы листья сочные и выполняют функцию запасания воды.
Листья могут видоизменяться в чешуйки, например, на корневищах, на почках, листья хвощей.
Листья могут выполнять и функцию размножения, например, на листьях папоротников (спорофиллах) образуются спорангии со спорами. Все элементы цветка, в частности тычинки и пестики – тоже спорофиллы, спороносные листья.
Листопад. Для уменьшения транспирации в зимний период времени растения освобождаются от листьев, происходит листопад. Сигналом к листопаду служит уменьшение продолжительности светового дня. Это явление получило название фотопериодизма. Органические вещества оттекают из старых тканей листа. Одновременно с этим в листьях накапливаются некоторые соли, например кристаллы оксалата кальция.
Листья теряют зеленую окраску в результате разрушения хлорофилла в хлоропластах. Становятся заметны вспомогательные пигменты – каротиноиды желтого или оранжевого цвета, накапливаются особые растительные пигменты – флавоноиды.
У однодольных и травянистых двудольных листья постепенно отмирают и разрушаются, оставаясь на стеблях. У деревьев и кустарников листья опадают. У основания черешка в поперечном направлении образуется специальный отделительный слой, состоящий из легко расслаивающейся паренхимы (рис. 33).
Со стороны стебля ближайшие к основанию черешка клетки пробковеют и образуют защитный слой, сохраняющийся после опадания листа в виде листового рубца. Некоторое время лист держится за счет жилок. Но под действием силы тяжести листа и порывов ветра они разрываются, и листья опадают.
Лист — чрезвычайно важный орган растения. Лист — часть побега. Основными функциями его являются фотосинтез и транспирация. Лист характеризуется высокой морфологической пластичностью, разнообразием форм и большими приспособительными возможностями. Основание листа может расширяться в виде косых листовидных образований — прилистников с каждой стороны листа. В некоторых случаях они настолько велики, что играют определённую роль в фотосинтезе. Прилистники бываю свободными или приросшими к черешку, они могут смещаться на внутреннюю сторону листа и тогда их называют пазушными. Основания листьев могут быть превращены во влагалище, окружающее стебель и препятствующие его сгибанию.
Внешнее строение листа
Листовые пластинки различаются по размерам: от нескольких миллиметров до 10-15 метров и даже 20 (у пальм). Продолжительность жизни листьев не превышает нескольких месяцев, у некоторых — от 1,5 до 15 лет. Размер и форма листьев являются наследственными признаками.
Части листа
Лист — боковой вегетативный орган, растущий от стебля, имеющий двустороннюю симметрию и зону роста при основании. Лист обычно состоит из листовой пластинки, черешка (исключением являются сидячие листья); для ряда семейств характерны прилистники. Листья бываю простые, имеющие одну листовую пластинку, и сложные — с несколькими листовыми пластинками (листочками).
Листовая пластинка — расширенная, обычно плоская часть листа, выполняющая функции фотосинтеза, газообмена, транспирации и у некоторых видов — вегетативного размножения.
Основание листа (листовая подушка) — часть листа, соединяющая его со стеблем. Здесь находится образовательная ткань, дающая рост листовой пластинке и черешку.
Прилистники — парные листовидные образования в основании листа. Они могут опадать при развёртывании листа или сохраняться. Защищают пазушные боковые почки и вставочную образовательную ткань листа.
Черешок — суженная часть листа, соединяющая своим основанием листовую пластинку со стеблем. Он выполняет важнейшие функции: ориентирует лист по отношению к свету, является местом расположения вставочной образовательной ткани, за счёт которой растёт лист. Кроме этого, он имеет механическое значение для ослабления ударов по листовой пластинке от дождя, града, ветра и пр.
Простые и сложные листья
Лист может иметь одну (простой), несколько или множество листовых пластинок. Если последние снабжены сочленениями, то такой лист называется сложным. Благодаря сочленениям на общем черешке листа листочки сложных листьев опадают поодиночке. Однако у некоторых растений сложные листья могут опадать и целиком.
По форме цельные листья, различают как лопастные, раздельные и рассечённые.
Лопастным называю лист, у которого вырезы по краям пластинки доходят до одной четверти его ширины, а при большем углублении, если вырезы достигают более четверти ширины пластинки, лист называется раздельным. Лопасти раздельного листа называют долями.
Рассечённым называют лист, у которого вырезы по краям пластинки доходят почти до средней жилки, образуя сегменты пластинки. Раздельные и рассечённые листья могут быть пальчатые и перистые, дважды пальчатые и дважды перистые и т.д. соответственно этому различают пальчато-раздельный лист, перисторассечённый лист; непарно-перисторассечённый лист у картофеля. Он состоит из конечной доли, нескольких пар боковых долек, между которыми располагаются ещё меньшие дольки.
Если пластинка удлинённая, а доли или сегменты её треугольные, лист называют струговидным (одуванчик); если боковые доли неравновеликие, к основанию уменьшаются, а конечная доля крупная и округлая, получается лировидный лист (редька).
Что касается сложных листьев, то среди них различают тройчатосложные, пальчатосложные и перистосложные листья. Если сложный лист состоит из трёх листочков, он называется тройчатосложным, или тройчатым (клён). Если черешочки листочков прикрепляются к главному черешку как бы в одной точке, а самые листочки расходятся радиально, лист называется пальчатосложным (люпин). Если на главном черешке боковые листочки расположены с обеих сторон по длине черешка, лист называется перистосложным.
Если такой лист заканчивается наверху непарным одиночным листочком, получается, непарноперистый лист. Если же конечного нет, лист называется парноперистым.
Если каждый листочек перистосложного листа, в свою очередь, является сложным, то получается дважды перистосложный лист.
Формы цельных листовых пластинок
Сложным листом называют такой, на черешке которого имеется несколько листовых пластинок. Они крепятся к главному черешку своими собственными черешками, нередко самостоятельно, поодиночке, опадают, и называются листочками.
Формы листовых пластинок различных растений отличаются по очертанию, степени расчленённости, форме основания и верхушки. Очертания могут быть овальными, круглыми, эллиптическими, треугольными и другими. Листовая пластинка бывает удлиненной. Свободный конец её может быть острым, тупым, заострённым, остроконечным. Основание её сужено и оттянуто к стеблю, может быть округлым, сердцевидным.
Прикрепление листьев к стеблю
Листья прикрепляются к побегу длинными, короткими черешками или бывают сидячими.
У некоторых растений основание сидячего листа на большом протяжении срастается с побегом (низбегающий лист) или побег пронизывает листовую пластинку насквозь (пронзённый лист).
Форма края листовой пластинки
Листовые пластинки различают по степени рассечённости: неглубокие надрезы — зубчатые или пальчатые края листа, глубокие вырезы — лопастные, раздельные и рассечённые края.
Если края листовой пластинки не имеют никаких выемок, лист называется цельнокрайним. Если выемки по краю листа неглубокие, лист называется цельным.
Лопастной лист — лист, пластинка которого расчленена на лопасти до 1/3 ширины полулиста.
Раздельный лист — лист с пластинкой, расчленённой до ½ ширину полулиста.
Рассечённый лист — лист, пластинка которого расчленена до главной жилки или до основания листа.
Край листовой пластинки — пильчатый (острые углы).
Край листовой пластинки — городчатый (округлые выступы).
Край листовой пластинки — выемчатый (округлые выемки).
Жилкование
На каждом листе легко заметить многочисленные жилки, особенно отчётливые и рельефные на нижней стороне листа.
Жилки — это проводящие пучки, соединяющие лист со стеблем. Функции их — проводящая (снабжение листьев водой и минеральными солями и выведение из них продуктов ассимиляции) и механическая (жилки являются опорой для листовой паренхимы и защищают листья от разрывов). Среди разнообразия жилкования различают листовую пластинку с одной главной жилкой, от которой расходятся боковые ответвления по перистому или пальчатоперистому типу; с несколькими главными жилками, различающимися толщиной и направлением распределения по пластинке (дугонервный, параллельный типы). Между описанными типами жилкования существует много промежуточных или иных форм.
Исходная часть всех жилок листовой пластинки находится в черешке листа, откуда выходит у многих растений основная, главная жилка, разветвляясь потом в толще пластинки. По мере удаления от главной, боковые жилки всё утончаются. Самые тонкие большей частью находятся на периферии, а также вдали от периферии — посредине участков, окружённых мелкими жилками.
Существует несколько типов жилкования. У однодольных растений жилкование бывает дугонервным, при котором от стебля или влагалища вступает в пластинку ряд жилок, дугообразно направленных к вершине пластинки. У большинства злаков имеет место параллельнонервное жилкование. Дугонервное жилкование существует также у некоторых двудольных растений, например, подорожника. Однако и у них имеется связь между жилками.
У двудольных растений жилки образуют сильно разветвлённую сеть и соответственно этому различают жилкование сетчатонервоное, что говорит о лучшем обеспечении проводящими пучками.
Форма основания, верхушки, черешка листа
По форме верхушки пластинки листья бывают тупые, острые, заострённые и остроконечные.
По форме основания пластинки различают листья клиновидные, сердцевидные, копьевидные, стреловидные и др.
Внутреннее строение листа
Строение кожицы листа
Верхняя кожица (эпидерма) — покровная ткань на обращённой стороне листа, часто покрытая волосками, кутикулой, воском. Снаружи лист имеет кожицу (покровную ткань), которая защищает его от неблагоприятных воздействий внешней среды: от высыхания, от механических повреждений, от проникновения к внутренним тканям болезнетворных микроорганизмов. Клетки кожицы живые, по размерам и форме они разные. Одни из них более крупные, бесцветные, прозрачные и плотно прилегают друг к другу, что повышает защитные качества покровной ткани. Прозрачность клеток позволяет проникать солнечному свету внутрь листа.
Другие клетки более мелкие, в них имеются хлоропласты, придающие им зелёный цвет. Эти клетки располагаются парами и обладают способностью изменять свою форму. При этом клетки или отдаляются друг от друга, и между ними появляется щель, или приближаются друг к другу и щель исчезает. Эти клетки назвали замыкающими, а возникающую между ними щель — устьичной. Устьице открывается, когда замыкающие клетки насыщены водой. При оттоке воды из замыкающих клеток устьице закрывается.
Строение устьица
Через устьичные щели воздух поступает к внутренним клеткам листа; через них же газообразные вещества, в том числе и пары воды, выходят из листа наружу. При недостаточном обеспечение растения водой (что может случиться в сухую и жаркую погоду), устьица закрываются. Этим растения защищают себя от иссушения, так как водяные пары при закрытых устьичных щелях не выходят наружу и сохраняются в межклетниках листа. Таким образом, растения сохраняют воду в засушливый период.
Основная ткань листа
Столбчатая ткань — основная ткань, клетки которой имеют цилиндрическую форму, плотно прилегают друг к другу и расположены с верхней стороны листа (обращённой к свету). Служит для фотосинтеза. Каждая клетка этой ткани имеет тонкую оболочку, цитоплазму, ядро, хлоропласты, вакуоль. Наличие хлоропластов придаёт зелёный цвет ткани и всему листу. Клетки, которые прилегают к верхней кожице листа, вытянуты и расположены вертикально, называют — столбчатой тканью.
Губчатая ткань — основная ткань, клетки которой имеют округлую форму, расположены рыхло и между ними образуются крупные межклетники, также заполненные воздухом. В межклетниках основной ткани накапливаются пары воды, поступающие сюда из клеток. Служит для фотосинтеза, газообмена и транспирации (испарения).
Количество слоёв клеток столбчатой и губчатой тканей зависит от освещения. В листьях выросших на свету, столбчатая ткань развита сильнее, чем у листьев, выросших в условиях затемнения.
Проводящая ткань — основная ткань листа, пронизанная жилками. Жилки — это проводящие пучки, так как они образованы проводящими тканями — лубом и древесиной. По лубу осуществляется передача растворов сахара из листьев ко всем органам растения. Движение сахара идёт по ситовидным трубкам луба, которые образованы живыми клетками. Эти клетки вытянуты в длину, и в том месте, где они соприкасаются друг с другом короткими сторонами в оболочках, имеются небольшие отверстия. Через отверстия в оболочках раствор сахара переходит из одной клетки в другую. Ситовидные трубки приспособлены к передаче органического вещества на большое расстояние. Плотно по всей длине к боковой стенке ситовидной трубки прилегают живые клетки меньших размеров. Они сопутствуют клеткам трубки, и их называют клетками спутницами.
Строение жилок листа
Кроме луба в состав проводящего пучка входит и древесина. По сосудам листа, так же как и в корне, движется вода с растворёнными в ней минеральными веществами. Воду и минеральные вещества растение поглощает из почвы корнями. Затем из корней по сосудам древесины эти вещества поступают в надземные органы, в том числе и к клеткам листа.
В состав многочисленных жилок входят волокна. Это длинные клетки с заострёнными концами и утолщёнными одревесневшими оболочками. Крупные жилки листа нередко окружены механической тканью, которая целиком состоит из толстостенных клеток — волокон.
Таким образом, по жилкам идёт передача раствора сахара (органического вещества) из листа к другим органам растений, а от корня — воды и минеральных веществ к листьям. Из листа растворы движутся по ситовидным трубкам, а к листу — по сосудам древесины.
Нижняя кожица покровная ткань с нижней стороны листа, обычно несёт устьица.
Жизнедеятельность листа
Зелёные листья — органы воздушного питания. Зелёный лист выполняет важную функцию в жизни растений — здесь образуются органические вещества. Строение листа хорошо соответствует этой функции: он имеет плоскую листовую пластинку, а в мякоти листа содержится огромное количество хлоропластов с зелёным хлорофиллом.
Вещества необходимые для образования крахмала в хлоропластах
Цель: выясним, какие вещества необходимы для образования крахмала?
Что делаем: поместим два небольших комнатных растения в тёмное место. Через два три дня первое растение поставим на кусок стекла, а рядом поместим стакан с раствором едкой щёлочи (она поглотит из воздуха весь углекислый газ), и всё это накроем стеклянным колпаком. Для того чтобы воздух не поступал к растению из окружающей среды, смажем края колпака вазелином.
Второе растение также поставим под колпак, но только рядом с растением поместим стакан с содой (или кусочком мрамора), смоченными раствором соляной кислоты. В результате взаимодействия соды (или мрамора) с кислотой выделяется углекислый газ. В воздухе под колпаком второго растения образуется много углекислого газа.
Оба растения поместим в одинаковые условия (на свет).
На следующий день возьмём по листу с каждого растения и обработаем вначале горячим спиртом, промываем и действуем раствором йода.
Что наблюдаем: в первом случае окраска листа не изменилась. Темно-синим стал лист того растения, которое находилось под колпаком, где был углекислый газ.
Вывод: это доказывает, что углекислый газ необходим растению для образования органического вещества (крахмал). Этот газ входит в состав атмосферного воздуха. Воздух поступает в лист через устьичные щели и заполняет пространства между клетками. Из межклетников углекислый газ проникает во все клетки.
Образование в листьях органических веществ
Цель: выяснить, в каких клетках зеленого листа образуются органические вещества (крахмал, сахар).
Что делаем: комнатное растение герань окаймлённая поместим на трое суток в тёмный шкаф (чтобы произошёл отток питательных веществ из листьев). Через трое суток вынем растение из шкафа. Прикрепим на один из листьев конверт из чёрной бумаги с вырезанным словом «свет» и поставим растение на свет или под электрическую лампочку. Через 8-10 часов срежем лист. Снимем бумагу. Опустим лист в кипящую воду, а затем на несколько минут в горячий спирт (в нём хлорофилл хорошо растворяется). Когда спирт окрасится в зелёный цвет, а лист обесцветится, промоем его водой и поместим в слабый раствор йода.
Что наблюдаем: на обесцвеченном листе появятся синие буквы (крахмал синеет от йода). Буквы появляются на той части листа, на которую падал свет. Значит, в освещённой части листа образовался крахмал. Необходимо обратить внимание на то, что белая полоска по краю листа не окрасилась. Это объясняет то, что в пластидах клеток белой полоски листа герани окаймлённой нет хлорофилла. Поэтому крахмал не обнаруживается.
Вывод: таким образом, органические вещества (крахмал, сахар) образуются только в клетках с хлоропластами, и для их образования необходим свет.
Специальные исследования учёных показали, что на свету в хлоропластах образуется сахар. Затем в результате превращений из сахара в хлоропластах образуется крахмал. Крахмал — это органическое вещество, которое в воде не растворяется.
Выделяют световую и темновую фазы фотосинтеза.
Во время световой фазы фотосинтеза происходит поглощение света пигментами, образование возбуждённых (активных) молекул, обладающих избытком энергии, идут фотохимические реакции, в которых принимают участие возбуждённые молекулы пигментов. Световые реакции протекают на мембранах хлоропласта, где находится хлорофилл. Хлорофилл является высокоактивным веществом, осуществляющим поглощение света, первичное запасание энергии и дальнейшее преобразование её в химическую энергию. В фотосинтезе принимают участие и жёлтые пигменты каротиноиды.
Процесс фотосинтеза можно представить в виде суммарного уравнения:
Таким образом, суть световых реакций заключается в том, что световая энергия превращается в химическую.
Темновые реакции фотосинтеза идут в матриксе (строме) хлоропласта при участии ферментов и продуктов световых реакций и приводят к синтезу органических веществ из углекислоты и воды. Для темновых реакций не нужно непосредственное участие света.
Итогом темновых реакций является образование органических соединений.
Процесс фотосинтеза осуществляется в хлоропластах, в два этапа. В гранах (тилакоидах) протекают реакции, вызываемые светом, — световые, а в строме — реакции, не связанные со светом, — темновые, или реакции фиксации углерода.
Световые реакции
1. Свет, попадая на молекулы хлорофилла, которые находятся в мембранах тилакоидов гран, приводит их в возбуждённое состояние. В результате этого электроны ē сходят со своих орбит и переносятся с помощью переносчиков за пределы мембраны тилакоида, где и накапливаются, создавая отрицательно заряженное электрическое поле.
2. Место вышедших электронов в молекулах хлорофилла занимают электроны воды ē, так как вода под действием света подвергается фоторазложению (фотолизу):
3. Протоны Н + не проникают через мембрану тилакоида и накапливаются внутри, используя положительно заряженное электрическое поле, что приводит к увеличению разности потенциалов по обе стороны мембраны.
Такими образом, активированный световой энергией электрон хлорофилла используется для присоединения водорода к переносчику. НАДФ∙Н2 переходит в строму хлоропласта, где участвует в реакциях фиксации углерода.
Реакции фиксации углерода (темновые реакции)
Осуществляется в строме хлоропласта, куда поступают АТФ, НАДФ∙Н2 от тилакоидов гран и СО2 из воздуха. Кроме того, там постоянно находятся пятиуглеродные соединения — пентозы С5, которые образуются в цикле Кальвина (цикл фиксации СО2), Упрощённо этот цикл можно представить следующим образом:
1. К пентозе С5 присоединяется СО2, в результате чего появляется нестойкое шестиугольное соединение С6, которое расщепляется на две трёхуглеродные группы 2С3 — триозы.
2. Каждая из триоз 2С3 принимает по одной фосфатной группе от двух АТФ, что обогащает молекулы энергией.
3. Каждая из триоз 2С3 присоединяет по одному атому водорода от двух НАДФ∙Н2.
4. После чего одни триозы объединяются, образуя углеводы (глюкоза).
5. Другие триозы объединяются, образуя пентозы 5С3→3С5, и вновь включаются в цикл фиксации СО2.
Суммарная реакция фотосинтеза:
Кроме углекислого газа в образовании крахмала принимает участие вода. Её растение получает из почвы. Корни поглощают воду, которая по сосудам проводящих пучков поднимается в стебель и далее в листья. А уже в клетках зелёного листа, в хлоропластах, из углекислого газа и воды при наличии света образуется органическое вещество.
Что происходит с органическими веществами, образованными в хлоропластах?
Образовавшийся в хлоропластах крахмал под воздействием особых веществ превращается в растворимый сахар, который поступает к тканям всех органов растения. В клетках некоторых тканей сахар может вновь превратиться в крахмал. Запасной крахмал накапливается в бесцветных пластидах.
Из сахаров, образовавшихся при фотосинтезе, а также минеральных солей, поглощённых корнями из почвы, растение создаёт вещества, которые ему необходимы: белки, жиры и многие другие белки, жиры и многие другие.
Часть органических веществ, синтезированных в листьях, расходуется на рост и питание растения. Другая часть откладывается в запас. У однолетних растений запасные вещества откладываются в семенах, плодах. У двулетних на первом году жизни они накапливаются в вегетативных органах. У многолетних трав вещества запасаются в подземных органах, а у деревьев и кустарников — в сердцевине, основной ткани коры и древесины. Кроме того, у них на определённом году жизни органические вещества начинают запасаться также в плодах и семенах.
Типы питания растения (минеральное, воздушное)
В живых клетках растения постоянно происходит обмен веществ и энергии. Одни вещества поглощаются и используются растением, другие выделяются в окружающую среду. Из простых веществ образуются сложные. Сложные органические вещества расщепляются на простые. Растения накапливает энергию, а в процессе фотосинтеза и освобождает её при дыхании, используя эту энергию для осуществления различных процессов жизнедеятельности.
Газообмен
Листья благодаря работе устьиц осуществляют и такую важную функцию, как газообмен между растением и атмосферой. Через устьица лист с атмосферным воздухом поступают углекислый газ и кислород. Кислород используется при дыхании, углекислый газ необходим растению для образования органических веществ. Через устьица в воздух выделяется кислород, который образовался в процессе фотосинтеза. Удаляется и углекислый газ, появившийся у растения в процессе дыхания. Фотосинтез осуществляется только на свету, а дыхание на свету и в темноте, т.е. постоянно. Дыхание во всех живых клетках органов растения происходит непрерывно. Как и животные, растения погибают с прекращением дыхания.
В природе происходит обмен веществ между живым организмом и окружающей средой. Поглощение растением одних веществ из внешней среды сопровождается выделением других. Элодея, будучи водным растением, использует для питания углекислый газ, растворённый в воде.
Цель: выясним, какое же вещество выделяет элодея во внешнюю среду при фотосинтезе?
Что делаем: стебли веточек подрежем под водой (вода кипяченная) у основания и прикроем стеклянной воронкой. Пробирку, до краёв заполненную водой помещаем на трубку воронки. Это сделать в двух вариантах. Одну ёмкость поставить в тёмное место, а другую — выставить на яркий солнечный или искусственный свет.
В третью и четвёртую ёмкости добавить углекислый газ (добавить небольшое количество питьевой соды или можно подышать в трубочку) и так же один поставить в темноту другой на солнечный свет.
Что наблюдаем: через некоторое время в четвёртом варианте (сосуд, стоящий на ярком солнечном свете) начинают выделяться пузырьки. Этот газ вытесняет из пробирки воду, её уровень в пробирке вытесняется.
Что делаем: когда вода будет вытеснена газом полностью, необходимо осторожно снять пробирку с воронки. Плотно закрыть отверстие большим пальцем левой руки, а правой быстро внести в пробирку тлеющую лучинку.
Что наблюдаем: лучинка загорается ярким пламенем. Посмотрев на растения, которые поместили в темноту, увидим, что пузырьки газа из элодеи не выделяются, и пробирка осталась заполненная водой. То же самое с пробирками в первом и втором варианте.
Вывод: отсюда следует, что газ, который выделила элодея — кислород. Таким образом, растение выделяет кислород только тогда, когда есть все условия для фотосинтеза — вода, углекислый газ, свет.
Испарение воды листьями (транспирация)
Процесс испарения воды листьями у растений регулируется открыванием и закрыванием устьиц. Закрывая устьица, растение защищает себя от потери воды. Открывание и закрывание устьиц находится под влиянием факторов внешней и внутренней среды, в первую очередь температуры и интенсивности солнечного света.
Листья растений содержат много воды. Она поступает по проводящей системе от корней. Внутри листа вода продвигается по стенкам клеток и по межклетникам к устьицам, через которые уходит в виде пара (испаряется). Этот процесс легко проверить, если выполнить несложное приспособление, как показано на рисунке.
Испарение воды растением называется транспирацией. Воду испаряет поверхность листа растения, особенно интенсивно — поверхность листа. Различают транспирацию кутикулярную (испарение всей поверхностью растения) и устьичную (испарение через устьица). Биологическое значение транспирации состоит в том, что она является средством передвижения воды и различных веществ по растению (присасывающее действие), способствует поступлению углекислого газа внутрь листа, углеродному питанию растений, защищает листья от перегрева.
Интенсивность испарения воды листьями зависит от:
Наибольшее количество воды испаряется у некоторых видов древесных пород через листовые рубцы (рубец, оставляемый опавшими листьями на стебле), которые оказываются наиболее уязвимыми местами на дереве.
Взаимосвязь процессов дыхания и фотосинтеза
Весь процесс дыхания протекает в клетках растительного организма. Он состоит из двух этапов, в ходе которых органические вещества расщепляются на углекислый газ и воду. На первом этапе при участии специальных белков (ферментов) происходит распад молекул глюкозы на более простые органические соединения и выделяется немного энергии. Этот этап дыхательного процесса происходит в цитоплазме клеток.
На втором этапе простые органические вещества, образовавшиеся на первом этапе, под действием кислорода распадаются на углекислый газ и воду. При этом высвобождается много энергии. Второй этап дыхательного процесса протекает только с участием кислорода и в специальных тельцах клетки.
Поглощённые вещества в процессе преобразований в клетках и тканях становятся веществами, из которых растение строит своё тело. Все преобразования веществ, происходящее в организме, всегда сопровождаются потреблением энергии. Зелёное растение, как автотрофный организм, поглощая световую энергию Солнца, накапливает её в органических соединениях. В процессе дыхания при расщеплении органических веществ эта энергия высвобождается и используется растением для процессов жизнедеятельности, которые происходят в клетках.
Оба процесса — фотосинтез и дыхание — идут путём последовательных многочисленных химических реакций, в которых одни вещества преобразуются в другие.
Так, в процессе фотосинтеза из углекислого газа и воды, полученных растением из окружающей среды, образуются сахара, которые затем превращаются в крахмал, клетчатку или белки, жиры и витамины — вещества, необходимые растению для питания и запасания энергии. В процессе дыхания, наоборот, происходит расщепление созданных в процессе фотосинтеза органических веществ на неорганические соединения — углекислый газ и воду. При этом растение получает высвобождающуюся энергию. Эти превращения веществ в организме называют обменом веществ. Обмен веществ — один из важнейших признаков жизни: с прекращением обмена веществ прекращается жизнь растения.
Влияние факторов среды на строение листа
Листья растений влажных мест, как правило, крупные с большим количеством устьиц. С поверхности этих листьев испаряется много влаги.
Листья растений засушливых мест невелики по размеру и имеют приспособления, уменьшающие испарение. Это густое опушение, восковой налёт, относительно небольшое число устьиц и др. У некоторых растений листья мягкие и сочные. В них запасается вода.
Листья теневыносливых растений имеют всего два-три слоя округлых, неплотно прилегающих друг к другу клеток. Крупные хлоропласты расположены в них так, что не затеняют друг друга. Теневые листья, как правило, более тонкие и имеют более тёмную зелёную окраску, так как содержат больше хлорофилла.
У растений открытых мест мякоть листа насчитывает несколько слоев, плотно прилегающих друг к другу столбчатых клеток. В них содержится меньше хлорофилла, поэтому световые листья имеют более светлую окраску. Те и другие листья иногда можно встретить и в кроне одного и того же дерева.
Защита от обезвоживания
Наружная стенка каждой клетки кожицы листа не только утолщена, но и защищена кутикулой, которая плохо пропускает воду. Защитные свойства кожицы значительно повышаются при образовании волосков, которые отражают солнечные лучи. Благодаря этому нагревание листа понижается. Всё это ограничивает возможность испарения воды с поверхности листа. При недостатке воды закрывается устьичная щель и пар не выходит наружу, накапливаясь в межклетниках, что приводит к прекращению испарения с поверхности листа. Растения жарких и сухих мест обитания имеют небольшую пластинку. Чем меньше поверхность листа, тем меньше опасность излишней потери воды.
Видоизменения листьев
В процессе приспособления к условиям окружающей среды листья у некоторых растений видоизменились потому, что стали играть роль не свойственную типичным листьям. У барбариса часть листьев видоизменились в колючки.
Старение листьев и листопад
Листопаду предшествует старение листьев. Это значит, что во всех клетках снижается интенсивность жизненных процессов — фотосинтеза, дыхания. Уменьшается содержание уже имеющихся в клетках важных для растения веществ и сокращается поступление новых, в том числе и воды. Распад веществ преобладает над их образованием. В клетках накапливаются ненужные, и даже вредные продукты, их называют конечными продуктами обмена веществ. Эти вещества удаляются из растения при сбрасывании листьев. Наиболее же ценные соединения по проводящим тканям оттекают из листьев в другие органы растения, где откладываются в клетках запасающих тканей или сразу используется организмом для питания.
У большинства деревьев и кустарников в период старения листья меняют окраску и становятся жёлтыми или багряными. Это происходит потому, что хлорофилл разрушается. Но помимо него в пластидах (хлоропластах) имеются вещества желтого и оранжевого цвета. Летом они были, как бы замаскированы хлорофиллом и пластиды имели зелёный цвет. Кроме того, в вакуолях накапливаются другие красящие вещества жёлтого или красно-малинового цвета. Вместе с пигментами пластид они определяют окраску осенних листьев. У некоторых растений листья сохраняют зелёный цвет до отмирания.
Ещё до того как с побега упадёт лист, в его основании на границе со стеблем формируется слой пробки. Наружу от него образуется отделительный слой. Со временем клетки этого слоя оделяются друг от друга, так как ослизняется и разрушается межклеточное вещество, которое их соединяло, а иногда и оболочки клеток. Лист отделяется от стебля. Однако некоторое время он ещё сохраняется на побеге благодаря проводящим пучкам между листом и стеблем. Но наступает момент нарушения и этой связи. Рубец на месте отделившегося листа покрыт защитной тканью, пробкой.
Как только листья достигают предельных размеров, начинаются процессы старения, ведущие, в конце концов, к отмиранию листа — его пожелтение или покраснение, связанное с разрушением хлорофилла, накоплением каротиноидов и антоцианов. По мере старения листа снижается также интенсивность фотосинтеза и дыхания, деградируют хлоропласты, накапливаются некоторые соли (кристаллы оксалаты кальция), из листа оттекают пластические вещества (углеводы, аминокислоты).
В процессе старения листа близ его основания у двудольных древесных растений формируется так называемый отделительный слой, который состоит из легко расслаивающейся паренхимы. По этому слою лист и отделяется от стебля, причём на поверхности будущего листового рубца заранее образуется защитный слой пробковой ткани.
На листовом рубце заметны в виде точек поперечные сечения листового следа. Скульптура листового рубца различна и является характерным признаком для систематики лепидофитов.
У однодольных и травянистых двудольных отделительный слой, как правило, не образуется, лист отмирает и разрушается постепенно, оставаясь на стебле.
У листопадных растений опадение листьев на зиму имеет приспособительное значение: сбрасывая листья, растения резко уменьшают испаряющую поверхность, защищаются от возможных поломок под тяжестью снега. У вечнозелёных растений массовый листопад приурочен обычно к началу роста новых побегов из почек и поэтому происходит не осенью, а весной.
Осенний листопад в лесу имеет важное биологическое значение. Опавшие листья — хорошее органическое и минеральное удобрение. Ежегодно в на их лиственных лесах опавшие листья служат материалом для минерализации, производимой почвенными бактериями и грибами. Кроме того, опавшая листва стратифицирует семена, опавшие до листопада, предохраняет корни от вымерзания, препятствует развитию мохового покрова и т.д. некоторые виды деревьев сбрасывают не только листву, но и годовалые побеги.