Что значит частота дискретизации звука
Частота дискретизации
Чем выше частота дискретизации, тем более качественной будет оцифровка. Как следует из теоремы Котельникова для того чтобы однозначно восстановить исходный сигнал, частота дискретизации должна превышать наибольшую необходимую частоту сигнала в два раза.
8 000 Гц | телефон, достаточно для речи, кодек Nellymoser; |
11 025 Гц | — |
22 050 Гц | радио; |
44 100 Гц | используется в Audio CD; |
48 000 Гц | DVD, DAT; |
96 000 Гц | DVD-Audio (MLP 5.1); |
192 000 Гц | DVD-Audio (MLP 2.0); |
2 822 400 Гц | SACD Super audio CD 5.1 — максимальная на 2008 год. |
Взаимосвязь качества звука и частоты дискретизации [ править ]
Преобразование аналогового сигнала в цифровой состоит из двух этапов: дискретизации по времени и квантования по амплитуде. Дискретизация по времени означает, что сигнал представляется рядом отсчетов (сэмплов), взятых через равные промежутки времени. Например, когда мы говорим, что частота дискретизации 44,1 кГц, то это значит, что сигнал измеряется 44 100 раз в течение одной секунды.
Основной вопрос на первом этапе преобразования аналогового сигнала в цифровой (оцифровки) состоит в выборе частоты дискретизации аналогового сигнала. Чем больше частота, тем точнее соответствует цифровой сигнал аналоговому. Однако пропорционально увеличению частоты возрастают:
Очевидно, что необходим компромисс. От выбора частоты дискретизации зависит частотный диапазон полученного цифрового звука и максимальная частота аналогового сигнала, правильно представленная в цифровом. Считается, что человек слышит частоты в диапазоне от 20 до 20 000 Гц. Согласно известной теореме Котельникова, для того, чтобы аналоговый (непрерывный по времени) сигнал можно было точно восстановить по его отсчетам, частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты.
Звуковая частота, равная половине частоты дискретизации, называется частотой Найквиста и является максимальной частотой, которую данная цифровая система может правильно сохранить и воспроизвести. Таким образом, если реальный аналоговый сигнал, который мы собираемся преобразовать в цифровую форму, содержит частотные компоненты от 0 до 20 кГц, то частота дискретизации такого сигнала должна быть не менее 40 кГц. Сегодня самыми распространенными частотами дискретизации являютcя 44,1 кГц (CD) и 48 кГц (DAT).
Цифровое представление аналогового аудиосигнала. Краткий ликбез
Дорогие читатели, меня зовут Феликс Арутюнян. Я студент, профессиональный скрипач. В этой статье хочу поделиться с Вами отрывком из моей презентации, которую я представил в университете музыки и театра Граца по предмету прикладная акустика.
Рассмотрим теоретические аспекты преобразования аналогового (аудио) сигнала в цифровой.
Статья не будет всеохватывающей, но в тексте будут гиперссылки для дальнейшего изучения темы.
Чем отличается цифровой аудиосигнал от аналогового?
Аналоговый (или континуальный) сигнал описывается непрерывной функцией времени, т.е. имеет непрерывную линию с непрерывным множеством возможных значений (рис. 1).
Цифровой сигнал — это сигнал, который можно представить как последовательность определенных цифровых значений. В любой момент времени он может принимать только одно определенное конечное значение (рис. 2).
Аналоговый сигнал в динамическом диапазоне может принимать любые значения. Аналоговый сигнал преобразуется в цифровой с помощью двух процессов — дискретизация и квантование. Очередь процессов не важна.
Дискретизацией называется процесс регистрации (измерения) значения сигнала через определенные промежутки (обычно равные) времени (рис. 3).
Квантование — это процесс разбиения диапазона амплитуды сигнала на определенное количество уровней и округление значений, измеренных во время дискретизации, до ближайшего уровня (рис. 4).
Дискретизация разбивает сигнал по временной составляющей (по вертикали, рис. 5, слева).
Квантование приводит сигнал к заданным значениям, то есть округляет сигнал до ближайших к нему уровней (по горизонтали, рис. 5, справа).
Эти два процесса создают как бы координатную систему, которая позволяет описывать аудиосигнал определенным значением в любой момент времени.
Цифровым называется сигнал, к которому применены дискретизация и квантование. Оцифровка происходит в аналого-цифровом преобразователе (АЦП). Чем больше число уровней квантования и чем выше частота дискретизации, тем точнее цифровой сигнал соответствует аналоговому (рис. 6).
Уровни квантования нумеруются и каждому уровню присваивается двоичный код. (рис. 7)
Количество битов, которые присваиваются каждому уровню квантования называют разрядностью или глубиной квантования (eng. bit depth). Чем выше разрядность, тем больше уровней можно представить двоичным кодом (рис. 8).
Данная формула позволяет вычислить количество уровней квантования:
Если N — количество уровней квантования,
n — разрядность, то
Обычно используют разрядности в 8, 12, 16 и 24 бит. Несложно вычислить, что при n=24 количество уровней N = 16,777,216.
При n = 1 аудиосигнал превратится в азбуку Морзе: либо есть «стук», либо нету. Существует также разрядность 32 бит с плавающей запятой. Обычный компактный Аудио-CD имеет разрядность 16 бит. Чем ниже разрядность, тем больше округляются значения и тем больше ошибка квантования.
Ошибкой квантований называют отклонение квантованного сигнала от аналогового, т.е. разница между входным значением и квантованным значением ()
Большие ошибки квантования приводят к сильным искажениям аудиосигнала (шум квантования).
Чем выше разрядность, тем незначительнее ошибки квантования и тем лучше отношение сигнал/шум (Signal-to-noise ratio, SNR), и наоборот: при низкой разрядности вырастает шум (рис. 9).
Разрядность также определяет динамический диапазон сигнала, то есть соотношение максимального и минимального значений. С каждым битом динамический диапазон вырастает примерно на 6dB (Децибел) (6dB это в 2 раза; то есть координатная сетка становиться плотнее, возрастает градация).
Ошибки квантования (округления) из-за недостаточного количество уровней не могут быть исправлены.
50dB SNR
примечание: если аудиофайлы не воспроизводятся онлайн, пожалуйста, скачивайте их.
Теперь о дискретизации.
Как уже говорили ранее, это разбиение сигнала по вертикали и измерение величины значения через определенный промежуток времени. Этот промежуток называется периодом дискретизации или интервалом выборок. Частотой выборок, или частотой дискретизации (всеми известный sample rate) называется величина, обратная периоду дискретизации и измеряется в герцах. Если
T — период дискретизации,
F — частота дискретизации, то
Чтобы аналоговый сигнал можно было преобразовать обратно из цифрового сигнала (точно реконструировать непрерывную и плавную функцию из дискретных, «точечных» значении), нужно следовать теореме Котельникова (теорема Найквиста — Шеннона).
Теорема Котельникова гласит:
Если аналоговый сигнал имеет финитный (ограниченной по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчетам, взятым с частотой, строго большей удвоенной верхней частоты.
Вам знакомо число 44.1kHz? Это один из стандартов частоты дискретизации, и это число выбрали именно потому, что человеческое ухо слышит только сигналы до 20kHz. Число 44.1 более чем в два раза больше чем 20, поэтому все частоты в цифровом сигнале, доступные человеческому уху, могут быть преобразованы в аналоговом виде без искажении.
Но ведь 20*2=40, почему 44.1? Все дело в совместимости с стандартами PAL и NTSC. Но сегодня не будем рассматривать этот момент. Что будет, если не следовать теореме Котельникова?
Когда в аудиосигнале встречается частота, которая выше чем 1/2 частоты дискретизации, тогда возникает алиасинг — эффект, приводящий к наложению, неразличимости различных непрерывных сигналов при их дискретизации.
Как видно из предыдущей картинки, точки дискретизации расположены так далеко друг от друга, что при интерполировании (т.е. преобразовании дискретных точек обратно в аналоговый сигнал) по ошибке восстанавливается совершенно другая частота.
Аудиопример 4: Линейно возрастающая частота от
100 до 8000Hz. Частота дискретизации — 16000Hz. Нет алиасинга.
Аудиопример 5: Тот же файл. Частота дискретизации — 8000Hz. Присутствует алиасинг
Пример:
Имеется аудиоматериал, где пиковая частота — 2500Hz. Значит, частоту дискретизации нужно выбрать как минимум 5000Hz.
Следующая характеристика цифрового аудио это битрейт. Битрейт (bitrate) — это объем данных, передаваемых в единицу времени. Битрейт обычно измеряют в битах в секунду (Bit/s или bps). Битрейт может быть переменным, постоянным или усреднённым.
Следующая формула позволяет вычислить битрейт (действительна только для несжатых потоков данных):
Битрейт = Частота дискретизации * Разрядность * Количество каналов
Например, битрейт Audio-CD можно рассчитать так:
44100 (частота дискретизации) * 16 (разрядность) * 2 (количество каналов, stereo)= 1411200 bps = 1411.2 kbit/s
При постоянном битрейте (constant bitrate, CBR) передача объема потока данных в единицу времени не изменяется на протяжении всей передачи. Главное преимущество — возможность довольно точно предсказать размер конечного файла. Из минусов — не оптимальное соотношение размер/качество, так как «плотность» аудиоматериала в течении музыкального произведения динамично изменяется.
При кодировании переменным битрейтом (VBR), кодек выбирает битрейт исходя из задаваемого желаемого качества. Как видно из названия, битрейт варьируется в течение кодируемого аудиофайла. Данный метод даёт наилучшее соотношение качество/размер выходного файла. Из минусов: точный размер конечного файла очень плохо предсказуем.
Усреднённый битрейт (ABR) является частным случаем VBR и занимает промежуточное место между постоянным и переменным битрейтом. Конкретный битрейт задаётся пользователем. Программа все же варьирует его в определенном диапазоне, но не выходит за заданную среднюю величину.
При заданном битрейте качество VBR обычно выше чем ABR. Качество ABR в свою очередь выше чем CBR: VBR > ABR > CBR.
ABR подходит для пользователей, которым нужны преимущества кодирования VBR, но с относительно предсказуемым размером файла. Для ABR обычно требуется кодирование в 2 прохода, так как на первом проходе кодек не знает какие части аудиоматериала должны кодироваться с максимальным битрейтом.
Существуют 3 метода хранения цифрового аудиоматериала:
Несжатый (RAW) формат данных
Другой формат хранения несжатого аудиопотока это WAV. В отличие от RAW, WAV содержит заголовок файла.
Аудиоформаты с сжатием без потерь
Принцип сжатия схож с архиваторами (Winrar, Winzip и т.д.). Данные могут быть сжаты и снова распакованы любое количество раз без потери информации.
Как доказать, что при сжатии без потерь, информация действительно остаётся не тронутой? Это можно доказать методом деструктивной интерференции. Берем две аудиодорожки. В первой дорожке импортируем оригинальный, несжатый wav файл. Во второй дорожке импортируем тот же аудиофайл, сжатый без потерь. Инвертируем фазу одного из дорожек (зеркальное отображение). При проигрывании одновременно обеих дорожек выходной сигнал будет тишиной.
Это доказывает, что оба файла содержат абсолютно идентичные информации (рис. 11).
Кодеки сжатия без потерь: flac, WavPack, Monkey’s Audio…
При сжатии с потерями
акцент делается не на избежание потерь информации, а на спекуляцию с субъективными восприятиями (Психоакустика). Например, ухо взрослого человек обычно не воспринимает частоты выше 16kHz. Используя этот факт, кодек сжатия с потерями может просто жестко срезать все частоты выше 16kHz, так как «все равно никто не услышит разницу».
Другой пример — эффект маскировки. Слабые амплитуды, которые перекрываются сильными амплитудами, могут быть воспроизведены с меньшим качеством. При громких низких частотах тихие средние частоты не улавливаются ухом. Например, если присутствует звук в 1kHz с уровнем громкости в 80dB, то 2kHz-звук с громкостью 40dB больше не слышим.
Этим и пользуется кодек: 2kHz-звук можно убрать.
Кодеки сжатия с потерям: mp3, aac, ogg, wma, Musepack…
Так ли хорош цифровой звук — частота дискретизации и теорема Котельникова
Часто производители аудио аппаратуры, особенно наушников, в процессе пиара своей продукции активно продвигают “кристальную чистоту” звука и широчайший частотный диапазон, который не только за 20 кГц переваливает, но и в некоторых случаях доходит даже до 100 кГц. Конечно это имеет свои плюсы, даже не смотря на то, что выше 20к Гц мы не слышим, а то и еще меньше. Но есть определенные проблемы, которые связанны с понятием частота дискретизации и вытекающие из теоремы Котельникова. Они в одночасье поставили жирный крест на применении слова “качественно” для большинства аудио-форматов и аудио устройств в моих глазах.
Любой процесс в природе является непрерывным. Например звуковой сигнал принятый микрофоном и преобразованный в электрический (аналоговый) сигнал — непрерывен.
Термин “Аналоговый сигнал” подчеркивает, что такой сигнал “аналогичен”, т.е. полностью подобен порождающему его процессу, или в данном случае звуку.
И непрерывный он не потому что будет длиться вечно, а потому, что его значение можно измерять в любые моменты времени. А между этими моментами сигнал будет продолжать непрерывно меняться.
Для лучшего понимания того, как устроен цифровой звук, советую посмотреть мой видос:
Что такое частота дискретизации?
Как только встает вопрос о переводе аналогового сигнала в цифровой, сразу возникает понятие дискретизации, т.е. разбиение непрерывного сигнала на кусочки по времени. Делается это непосредственно в процессе преобразования.
Через равные промежутки времени, называемые шагом дискретизации Δ, Аналогово-Цифровой-Преобразователь (АЦП) измеряет значение сигнала, поступающего на его вход и преобразует это значение в цифровой вид. То, как часто осуществляется измерение величины аналогово сигнала и называется частотой дискретизации.
Какая частота дискретизации считается достаточной?
Товарищ Котельников, еще в 1933 в работе «О пропускной способности эфира и проволоки в электросвязи» создал фундаментальную, для цифровой техники теорию, которая обычно формулируется следующим образом:
Лю бой непрерывный сигнал u(t) с конечным спектром (имеющим максимальное значение частоты F ) можно представить в виде дискретных отсчетов u(kΔt) , частота дискретизации которых должна быть выбрана не менее чем в два раза выше максимального значения спектра сигнала: f ≥ 2F , передать его по линии связи, а затем восстановить исходный аналоговый сигнал .
Говоря проще, для того чтобы можно было правильно воспроизвести (восстановить) аналоговый сигнал из цифрового вида, достаточно, чтобы частота дискретизации была вдвое выше максимальной частоты в сигнале.
Верхний порог слышимости человека принято ограничивать частотой в 20кГц. Из теоремы Котельникова следует, что для правильного воспроизведения сигнала частотой 20 кГц достаточно частоты дискретизации в 40кГц. Если заглянуть в свойства подавляющего большинства аудио файлов, то можно увидеть строчку:
Почему именно 44.1 кГц? Википедия отвечает так: “Эта цифра выбрана компанией Sony из соображений совместимости со стандартом телевещания PAL, за счёт записи 3 значений на линию картинки кадра x588 линий на кадр x25 кадров в секунду, и достаточности (по теореме Котельникова) для качественного покрытия всего диапазона частот, различаемых человеком на слух (20 Гц — 20 кГц).”
Вроде все нормально, так чего же тут не так?
Начнем с частот, кратных частоте дискретизации. На частоте 441 Герц при нашей частоте дискретизации (44.1 кГц), на один период приходится 100 точек. Чтож, тут нет никаких претензий, синусоида идеальная. Если же повысить частоту на порядок, т.е. в 10 раз, то эти же 100 точек будут формировать уже не 1, а 10 периодов. И даже в этом случае Будет формироваться сигнал очень похожий на синусоиду.
А вот на частоте 22050, т.е. наивысшей частоте, удовлетворяющей теореме Котельникова (при частоте дискретизации 44.1кГц) на 100 точек приходится 50 периодов колебаний.
Эти сигналы генерировались в программе Audacity. И по началу создалось впечатление, что точек там достаточно, просто масштаб не позволяет разглядеть и поэтому так все угловато…
Чтож… приблизим и рассмотрим каждый период по отдельности:
Частота в 4410 Гц вполне себе достойная синусоида, чего никак не скажешь о частоте 22050Гц, с ее двумя точками на период. По факту это уже и не синусоида, а сигнал треугольной формы.
Конечно в любом реальном ЦАПе на выходе применяется НЧ-фильт, который срезает высокочастотную составляющую и скругляет этот треугольник. Однако чем выше класс вашего аудио устройства, тем заметнее будет угловатость звука
Ради эксперимента можете попробовать сгенерировать в Audcity сигналы одной и той же частоты но разных форм. У треугольной и прямоугольной форм из-за их “угловатости” и резких фронтов возникают дополнительные гармоники, а вот синусоидальный сигнал звучит гораздо более мягко и естественно.
Но даже и это не самое страшное. До этого момента рассматривались сигналы с частотами кратными частоте дискретизации.
— А что же будет, если взять другие частоты.
Знакомьтесь, цифровая синусоида равной амплитуды и частотой 15 кГц. Красивый узорчик, не правда ли? Как видите амплитуда меняется с частотой. Это уже интермодуляционные искажения. Наш истинный сигнал в 15 кГц промодулирован частотой кратной 44.1 кГц.
Вы можете возразить, мол узорчик то красивый, но может звучит он как ему и положено. Для того чтобы убедиться в этом своими ушами — сгенерируйте сигнал частота которого меняется от 20 герц до 20 кГц. И вы отчетливо услышите, что с какого-то момента частота перестанет равномерно расти, а начнет плавать туда-сюда.
Оно и понятно, вот так выглядят синусоиды на разных частотах выше 10’000Гц
В защиту теоремы Котельникова стоит отметить, что да, его теорема верна, иначе бы мы не смогли различать в музыке высокие звуки, и что тарелка что маракас звучали бы одинаково неправдоподобно, но она абсолютно не гарантирует высокого качества записи.
В жизни Вы врядли станете наслаждаться звучанием синусоиды, но это был очень наглядный пример проблем качества цифровых аудио записей.
Частота дискретизации и Hi-Res звук
Конечно сегодняшние технологии уже побороли данную проблему. Вероятно вам встречалось сокращение Hi-Res (High Resolution — высокое разрешение), которым обычно обзывают качество звука в 24 бита и частотой дискретизации в 192 кГц.
А это уже 10 точек на частоте 22’050 кГц, такую синусоиду уже явно можно считать идеальной. И вот там «кристально чистые верха» ваших наушников себя точно оправдают.
Возникает только 3 проблемы:
В заключение
Конечно от плохого звучания высоких частот еще никто не умирал и, возможно я излишне драматизирую, говоря, что частота дискретизации в 44.1 кГц так уж плоха, однако, как видите особым качеством на высоких частотах она не блещет.
На мой взгляд в домашних условиях гораздо интереснее слушать винил. Но с виниловой вертушкой в метро не поездишь… Так что меломанские запросы придется удовлетворять цифровым плеером.
Всем качественного звука!
(P.S. — комментируем, не стесняемся 🙂
Мдя, против логики не попрёшь: на 20000 Гц при дискретизации 40000 будет тупо треугольный сигнал…
Так просто о звуковых сложностях не доводилось читать, спасибо!
Рад, что вам понравилось. Значит не просто так все это) Я сам не сильно задумывался о частоте дискретизации, обычно больше на битность обращал внимание, а когда случайно обнаружил что синус совсем не синус, понял какая это оказывается какашка(((
Спасибо,немножко взгруснулось что надо покупать дорогую аппаратуру))
Спасибо за доступное объяснение!
спасибо за тему, на дискретность не обращал внимания к звуку, всегда выбирал по битности, так досконально в картинках в наше время не видел, лет 20 назад попадались такие темы, но как то не принимал всерьез, для выбора осциллографа было нормой, а со звуком не связывал, уважуха!
Спасибо за комментарий!
Интерес к этому вопросу возник после того, как решил посмотреть осцилографом на выходной сигнал плеера на высоких частотах…
Сгенерировал трек, у которого частота плавно менялась от 10 до 20кГц в течении минуты, подал сигнал с выхода плеера на осцилографф, и наблюдал, как там все красиво плавает…
Добрый вечер Андрей.
Случайно наткнулся на вашу статью, давно интересовался данным вопросом, могу пояснить некоторые ваши интересные наблюдения:
1) Мало кто про это знает и понимает, но для восстановления сигнала в теореме Котельникова необходимо указывать строгое неравенство, по обозначениям в Вашей статье должны быть f > 2F. Поэтому при частоте дискретизации 44.1кГц вы синусойду с частотой 22,05 Гц корректно не восстановите.
2) При дискретизации частотой некратной, никаких интермодуляционных искажений не будет. В соответствии с теоремой Котельникова сигнал восстановится теоретически точно, без погрешности. Однако это будет только в том случае, если мы будем использовать фильтры с идеальными характеристиками. Поскольку все реальные фильтры имеют АЧХ неидеальную, сигнал восстанавливается с искажениями. Чем больше будет браться частота дискретизации, тем меньше будет этих искажений. Поэтому при частоте дискретизации в 192 кГц качество звука для сигналов с высокими частотами на порядок выше.
Здравствуйте, Дмитрий!
Спасибо за Ваш развернутый комментарий.
1. Да, я согласен, что там должно стоять строгое неравенство и начиная с частоты в 22,05 кГц — это условие и не выполняется.
На той же википедии при этом приводится такая выдержка из работы Котельникова:
Любую функцию f(t), состоящую из частот от 0 до fc, можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через 1/2fc секунд
Т.е. частоту fc можно передавать с любой точностью при частоте дискретизации вдвое больше самой fc.
Так или иначе те же 20 кГц тоже очень далеки от правдоподобности.
2. И тут я с Вами согласен!) В идеале на выходе цифро аналогового преобразователя должны стоят фильтры 6-8 порядка, которые не только трудно реализуемы но еще и вносят существенный вклад в искажение как частотной так и фазовой характеристики. Поэтому в качестве альтернативы обычно обходятся фильтром 2-го порядка. А он все-таки не может полноценно срезать все лишнее.
По крайней мере, глядя осциллографом на выходе моего HiFiMan HM-601 я наблюдал немного сглаженные, но в целом такие же картинки, как и приводятся в статье.
Однако сегодня существуют не только аналоговые, но и цифровые фильтры, способные обеспечить очень крутой срез всех частот выше слышимых. Однако это уже несколько сложнее и дороже.
__________
Почему же не будет интермодуляционных искажений? Если посмотреть на картинки частот не кратных частоте дискретизации, то отчетливо видно что точки идут волнами. А частота этих волн и есть частота дискретизации. Соответственно полезный сигнал промодулирован частотой дискретизации.
Я вам даже больше скажу, если сгенерировать сигнал плавно меняющийся от 20 Гц до 20кГц, то это становится даже слышно, примерное после 10кГц частота, по ощущениям, начинает плавать туда сюда вместо плавного роста.
Добрый вечер, вы также не учли то что звуковой сигнал при оцифровке не будет синхронный с дискретизацией, например при рассинхроне в пол периода частоты дискретизации вместо треугольников у вас получится ровная линия.
Кому-то Бог дал уши, а кому-то — теорему Котельникова.
С Вашего позволения расскажу давнишнюю историю. Сейчас кажется, что это было сто лет назад, но на самом деле немного меньше. Был пик расцвета аналогового аудио. Я случайно в неурочное время оказался возле одного стенда на выставке достижений народного хозяйства. Японского народа… Сама выставка еще не открылась, а только монтировались стенды. Был конец дня. На стенде была представлена акустическая система с усилителем. Верхняя частота передачи колонок — 70кГц, усилителя — 100кГц. Через эту систему играла музыка от стоящего в углу катушечного магнитофона. Рядом сидел пожилой японец, слушал музыку и пил, что-то, принесенное в термосе. Звук был, надо отдать должное, впечатляющий. Такая вот обстановка. Ну и я тут, весь такой умный, все знающий — второй Котельников. Спрашиваю — а чтой-то за неувязочка у Вас тут, гражданин уважаемый — усилитель до 100кГц, колонки — до 70-ти, а слышим мы и подавно до 20-ти? Японец оказался не просто представителем производителя, а инженером-разработчиком. Он подозвал переводчика, тот ему перевел мой вопрос и, как это не поразительно, японец мне ответил. Первая часть ответа состояла из того, что интерференция колебаний вызывает образование суммарных и разностных частот. Если сделать тракт с полосой пропускания в пределах слышимости, например, до 20 кГц, то мы потеряем частоту 5кГц, если на вход будет подано 2 частоты — 20кГц и 25кГц. В этот момент переводчика у нас отняли, но японцу, почему-то, захотелось, что бы я понял его концепцию. Уже на плохом английском, жестикулируя и рисуя в блокноте, он говорил про передачу фазовой информации в звуке, о влиянии фазовых искажений на звуковую картину, про альтернативное видение окружающего пространства при помощи слуха…
Теорема Котельникова должна применяться после понимания того, какую информацию из колебаний мы хотим восстановить. И если у Вас есть уши — им необходим объем звуковой информации бОльший на порядок. Звуковая сцена, окружающее пространство — это фазовая информация, которая только начинает появляться при разрешении 18бит 96кГц. Удачи всем!
Спасибо за ваш полезный и глубокий комментарий!
Вы несомненно правы! Я както даже не задумывался с этой точки зрения. Так что еще раз спасибо!)
треугольный сигнал на 20 кГц, появляются гармоники которые портят звук… Оч интересно..а гармоники имеют частоту выше чем 20 кГц или ниже?….а? Каким ухом вы собираетесь их слышать?
Конечно же, на выходе любого ЦАПа стоит ФНЧ, который скругляет этот треугольник, приближая его к синусу.
Вот только для полноценного избавления от лишнего цифрового мусора, порождаемого ЦАПом, нужен ФНЧ с частотой среза 20кГц, обеспечивающий затухание сигнала в 30-40 дБ, к часте дискретизации в 44кГц. Построение подобного аналогово фильтра технически очень сложная и муторная задача, поэтому все чаще прибегают к цифровым фильтрам и псевдо учетверению частоты дескретизации.
А все это нужно, чтобы какраз таки убрать гармоники, лежащие на частотах, кратных частоте дескритизации 44к, 88к… Которые хоть и лежат за пределами слышимого диапазона, но оказывают влияние на него.
Наверное все это не просто так делается, мм?
«а гармоники имеют частоту выше чем 20 кГц или ниже?….а? Каким ухом вы собираетесь их слышать?» — Дмитрий, это называется «я не читатель, я- писатель». Простите.
Если речь идет о гармониках, связанных с АЦП, то они в Вашем примере займут весь спектр от 0 Гц до нескольких МГц, по причине их нечетности и способности складываться, вычитаться (в том числе и с исходным сигналом) и много еще чего делать в нелинейном тракте. Спектральное распределение шума Вы можете посмотреть, подключив анализатор. Неплохо от него избавляются специальными алгоритмами, вычитающими в несколько итераций спектр, который должен быть образован гармониками, из исходного сигнала. Недостаток метода — дороговизна и привязка к конкретному аппаратному тракту. Так же существуют менее точные, но более универсальные аппаратные аналоги этого решения (Burr-Brown, Tripath…), использующие введение обратной связи, но которые, тем не менее, являются общепризнанными стандартами высокого качества, прежде всего в передаче звука.