Что означают скобки в множествах

Множества

Множество — это совокупность любых объектов. Множества обозначают большими буквами латинского алфавита — от A до Z.

Основные числовые множества: множество натуральных чисел и множество целых чисел, всегда обозначаются одними и теми же буквами:

N — множество натуральных чисел,

Z — множество целых чисел.

Множества делятся на конечные и бесконечные. Конечное множество — множество, содержащее определённое (конечное) количество элементов. Бесконечное множество — множество, содержащее бесконечно много элементов. К бесконечным множествам можно отнести множества натуральных и целых чисел.

Для определения множества используются фигурные скобки, в которых через запятую перечисляются элементы. Например, запись

означает, что множество L состоит из четырёх чётных чисел.

Термин множество употребляется независимо от того, сколько элементов оно содержит. Множества не содержащие ни одного элемента называются пустыми.

Подмножество

Подмножество — это множество, все элементы которого, являются частью другого множества.

Визуально продемонстрировать отношение множества и входящего в него подмножества можно с помощью кругов Эйлера. Круги Эйлера — это геометрические схемы, помогающие визуализировать отношения различных объектов, в нашем случае, множеств.

Рассмотрим два множества:

Что означают скобки в множествах

Каждый элемент множества L принадлежит и множеству M, значит, множество L является подмножеством множества M. Такое соотношение множеств обозначают знаком ⊂ :

Рассмотрим два множества:

Так как оба множества состоят из одних и тех же элементов, то L = M.

Пересечение и объединение множеств

Что означают скобки в множествах

Из данного примера следует, что пересечением множеств называется множество, которое содержит только те элементы, которые встречаются во всех пересекающихся множествах.

Что означают скобки в множествах

При объединении равных множеств объединение будет равно любому из данных множеств:

Источник

Скобки в математике

Вы будете перенаправлены на Автор24

Скобки в математике играют очень важную роль: с помощью них задаётся порядок действий с выражением, обозначаются границы промежутков и необходимость выполнения какого-либо действия над выражением. Также с помощью скобок обозначаются вектора и матрицы и действия с множествами.

Использование круглых скобок в математике

Круглые скобки в математике встречаются наиболее часто, и они используются для множества целей.

Первое применение.

С помощью круглых скобок устанавливается порядок действий для вычисления алгебраического выражения. Выражение, которое стоит в скобках, вычисляется первым, за ним следует вычисление всех остальных.

В случае же если в выражении скобок много и одна находится внутри другой — первыми вычисляются скобки с максимальной глубиной вложенности.

Второе применение.

Третье применение.

Круглые скобки также используются для обозначения действий, которые необходимо совершить над всем выражением, стоящим в скобках. Под действием здесь имеются в виду возведение в степень, взятие производной или вычисление подинтегрального выражения.

$(x+2)^2; \int_1^5 (x^2+5x)dx; f’(x)= (5x^2 + 1)’$

Четвёртое применение.

Пятое применение.

Готовые работы на аналогичную тему

Пятое применение.

Квадратные скобки в математике

Что же означают квадратные скобки в математике и для чего они используются?

Квадратные скобки в математике встречаются реже чем круглые, но всё же их можно встретить довольно часто.

Первое применение.

Квадратные скобки иногда используются при записи выражений наряду с круглыми для того, чтобы было проще различить скобки и, соответственно, задаваемый ими порядок действий. Часто с такой целью квадратные скобки используются для записи формул физики и других технических наук.

Второе применение.

Третье применение.

С помощью квадратной скобки записывают совокупности. Совокупности — это системы уравнений, для которых справедливы все множества решений для каждого уравнения, входящего в совокупность.

$\left [ \begin x +32=2y \\ y^2-12=0 \\ \end\right.$

Фигурная скобка в математике

Первое применение.

С помощью символа фигурной скобки обозначают систему уравнений, решением которой являются корни, подходящие для всех уравнений, включённых в систему.

Второе применение.

Третье применение.

Треугольные скобки

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 06 03 2021

Источник

Операции над множествами

Что означают скобки в множествах Что означают скобки в множествах Что означают скобки в множествах Что означают скобки в множествах

Что означают скобки в множествах

Что означают скобки в множествах

Существуют несколько основных операций над множествами, с помощью которых можно строить новые множества.

Объединениемдвух множеств А и Вназывается новое множество, содержащее все элементы из А и все элементы из В.

Что означают скобки в множествах

Пересечениемдвух множеств А и Вназывается новое множество, состоящее из тех элементов, которые принадлежат обоим множествам.

Что означают скобки в множествах

Разностьюдвух множеств А и В называется новое множество,содержащее те элементы из А, которые не принадлежат множеству В.

Что означают скобки в множествах

Если класс объектов, на которых определяются различные множества обозначитьU(универсум), то дополнением множестваАназывают разность Что означают скобки в множествах.

Симметрической разностью множеств А и В называется множество, содержащее все элементы А, не принадлежащие В, и все элементы В, не принадлежащие А.

Что означают скобки в множествах.

Что означают скобки в множествах

Рисунок 1 – Объединение множеств Рисунок 2 – Пересечение множеств

Что означают скобки в множествах

Рисунок 3 – Разность множеств Рисунок 4 – Дополнение множества

Что означают скобки в множествах

Рисунок 5 – Симметрическая разность множеств

Указанные операции обладают нижеследующими свойствами(законы алгебры множеств).

1. Идемпотентность (удаление одинаковых операндов):

1) Что означают скобки в множествах; 2) Что означают скобки в множествах.

2. Коммутативность (перестановка операндов):

1) Что означают скобки в множествах;2) Что означают скобки в множествах.

3.Ассоциативность (возможность бесскобочной записи).

1) Что означают скобки в множествах; 2) Что означают скобки в множествах.

4. Дистрибутивность (раскрытие скобок):

1) Что означают скобки в множествах; 2) Что означают скобки в множествах.

5. Законы (правила) де Моргана:

1) Что означают скобки в множествах; 2) Что означают скобки в множествах

1) Что означают скобки в множествах; 2) Что означают скобки в множествах;

3) Что означают скобки в множествах; 4) Что означают скобки в множествах;

5) Что означают скобки в множествах; 6) Что означают скобки в множествах;

7) Что означают скобки в множествах; 8) Что означают скобки в множествах;

9) Что означают скобки в множествах; 10) Что означают скобки в множествах.

7. Закондвойного отрицания: Что означают скобки в множествах.

11. Что означают скобки в множествах.

12. Что означают скобки в множествах.

13. Что означают скобки в множествах.

Одним из способов конструирования новых объектов из уже имеющихся множеств является декартово произведение множеств.

Декартовым (прямым) произведением множеств Что означают скобки в множествахназывается множество упорядоченных n-ок (наборов, кортежей) вида Что означают скобки в множествах.

Степенью декартового произведения Что означают скобки в множествахназывается число множеств n, входящих в это декартово произведение.

Если все множества Что означают скобки в множестваходинаковы, то используют обозначение Что означают скобки в множествах.

Источник

Угловые скобки

Ско́бки — па́рные знаки, используемые в различных областях.

Используются также скобки, в которых открывающий и закрывающий знак не различаются, например, косые скобки /…/, прямые скобки |…|, двойные прямые скобки ||…||.

В математике, физике, химии и др. используются при написании формул.

Различные скобки (как и другие, непарные символы ASCII) применяются в смайликах (эмотиконах), например, 🙂.

Содержание

Круглые скобки

Используются в математике для задания приоритета математических и логических операций. Например, (2+3)·4 означает, что надо сначала сложить 2 и 3, а затем сумму умножить на 4; аналогично выражение Что означают скобки в множествахозначает, что сначала выполняется логическое сложение Что означают скобки в множестваха затем — логическое умножение Что означают скобки в множествахНаряду с квадратными скобками используются также для записи компонент векторов:

Что означают скобки в множествах

Что означают скобки в множествах

Что означают скобки в множествах

Круглые скобки в математике используются также для выделения аргументов функции: Что означают скобки в множествахдля обозначения открытого сегмента и в некоторых других контекстах. Иногда круглыми скобками обозначается скалярное произведение векторов:

Что означают скобки в множествах

(здесь приведены три различных варианта написания, встречающиеся в литературе) и смешанное (тройное скалярное) произведение:

Что означают скобки в множествах

При обозначении диапазона чисел круглые скобки обозначают, что числа, которые находятся по краям множества не включаются в это множество. То есть запись А = (1;3) означает, что в множество включены числа, которые 1(открытый) интервал.

В химических формулах круглые скобки применяются для выделения повторяющихся функциональных групп, например, (NH4)2CO4, Fe2(SO4)3, (C2H5)2O. Также скобки используются в названиях неорганических соединений для обозначения степени окисления элемента, например, хлорид железа(II), гексацианоферрат(III) калия.

Скобки (обычно круглые, как в этом предложении) употребляются в качестве знаков препинания в естественных языках.

Во многих языках программирования используются круглые скобки для выделения конструкций. Например, в языках Паскаль и Си в скобках указываются параметры вызова процедур и функций, а в Лиспе — для описания списка.

Квадратные скобки

В лингвистике употребительны для обозначения транскрипции в фонетике или границ составляющих в синтаксисе.

Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. Например, «Их [заложников] было около 100 человек».

Квадратными скобками в математике могут обозначаться:

В вики-разметке двойные квадратные скобки используются для внутренних ссылок, перенаправлений, категорий и интервики, одинарные — для внешних.

В программировании чаще всего применяются для указания индекса элемента массива.

Часто квадратные скобки используются для обозначения необязательности, например, параметров командной строки (см. подробнее в статье Форма Бэкуса — Наура).

Фигурные скобки

Фигурными скобками в одних математических текстах обозначается операция взятия дробной части, в других — они применяются для обозначения приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок). Фигурные скобки применяют для обозначения множеств. Одинарная фигурная скобка объединяет системы уравнений или неравенств. В математике и классической механике фигурными скобками обозначается оператор специального вида, называемый скобками Пуассона: Что означают скобки в множествахКак уже было сказано выше, иногда фигурными скобками обозначают антикоммутатор.

В вики-разметке двойные фигурные скобки применяются для шаблонов.

В программировании фигурные скобки являются или операторными (Си, C++, Perl и комментарием (Паскаль), могут также служить для образования списка (в Сетл).

Угловые скобки

Что означают скобки в множествах

В математике угловыми скобками обозначают кортеж, реже — скалярное произведение в предгильбертовом пространстве, например:

Что означают скобки в множествах

В квантовой механике угловые скобки используются в качестве так называемых бра и кет (от англ. bracketскобка), введённых П. А. М. Дираком для обозначения квантовых состояний (векторов) и матричных элементов. При этом квантовые состояния обозначаются как Что означают скобки в множествах(кет-вектор) и Что означают скобки в множествах(бра-вектор), их скалярное произведение как Что означают скобки в множествахматричный элемент оператора А в определённом базисе как Что означают скобки в множествах

Кроме того, в физике угловыми скобками обозначают усреднение (по времени или другому непрерывному аргументу), например, Что означают скобки в множествах— среднее значение по времени от величины f.

В текстологии и издании литературных памятников угловыми скобками обозначают лакуны в тексте — Что означают скобки в множествах.

Типографика

В типографике же угловые скобки Что означают скобки в множествахявляются самостоятельными символами. От « » их можно отличить по бо́льшему углу между сторонами — Что означают скобки в множествах.

В ТеХе для записи угловых скобок используются команды «\langle» и «\rangle».

ASCII-тексты

В некоторых языках разметки, напр., HTML, XML угловыми скобками выделяют теги.

В вики-разметке также можно использовать HTML-разметку, например комментарии — « », которые видны только при редактировании статьи.

В программировании угловые скобки используются редко, чтобы не создавать путаницы между ними и знаками отношений (« »). Например в Си угловые скобки используются в директиве препроцессора #include вместо кавычек, чтобы показать что включаемый заголовочный файл необходимо искать в одном из стандартных каталогов для заголовочных файлов, например в следующем примере:

файл stdio.h находится в стандартном каталоге, а myheader.h — в текущем каталоге (каталоге исходника программы).

В некоторых текстах, сдвоенные парные « » используются для записи кавычек-ёлочек, например — >.

Косые скобки

Появились на пишущих машинках для экономии клавиш.

В программировании на языке Си косые скобки вместе с дополнительным знаком «*» обозначают начало и конец комментария:

Прямые скобки

Используются в математике для обозначения модуля числа или вектора, определителя матрицы:

Что означают скобки в множествах

Двойные прямые скобки

Используются в математике для обозначения нормы элемента линейного пространства: ||x||; иногда — для матриц:

Источник

Что означают скобки в множествах

Общая характеристика

Главная задача знаков — описание этапов осуществляемых действий. Математическое уравнение или выражение имеет одиночную пару квадратных, фигурных и других скобок, а также может использовать их некоторое количество.

Значение и разновидности

Скобки — это парные знаки, используемые во всевозможных областях. Чтобы правильно выстроить фразу в русском языке, для понимания смысла текста в предложении они употребляются как знаки препинания. С начальных классов школы изучают основы этих знаков.

Что означают скобки в множествах

В расчетах первая из скобок считается открывающей, а вторая — замыкающей. Оба знака соответствуют друг другу, но также используются те, в которых открытие или закрытие не различается (косые /…/, прямые скобки |…|, двойные прямые ||…||. Раскрывать значение можно чаще всего в математике, физике, химии и остальных науках для указания важности выполнения операции в формулах. На компьютерной клавиатуре представлены все виды знаков препинания.

Разновидности:

Открытие круглых () произошло в 1556 году для подкоренного выражения. По правилу первым выполняется действие внутри знака, затем произведение или определение частного (деление), а в конце — суммирование и разница.

В Microsoft word, Excel включена электронная конфигурация этих знаков. Часто используемые виды скобок, следующие: (), [ ], < >(), [ ], < >. Также встречаются двойные, называемые обратными (]] и [ [) или > в виде уголка. Их использование является двойственным — с открывающейся и замыкающей скобочкой.

Основные цели квадратной скобки в математике:

Что означают скобки в множествах

Другие варианты расчета:

Квадратные скобки в математике обозначают, что действие выполняется последовательно. Эти знаки позволяют разграничить операции.

Треугольные актуальны в теории групп. Правило записи ⟨ a ⟩ n характеризует циклическую группу порядка n, сформированную элементом a.

Что означают скобки в множествах

Круглые (операторные) () используются в математике для описания первостепенности действий. Например, (1 +5)*3 означает, что нужно сначала сложить 1 и 5, а затем полученную величину перемножить на 3. Наряду с квадратными, используются для записи разных компонент векторов, матриц и коэффициентов.

На уроке математики преподаватель объясняет, как раскрыть скобки в уравнении для последующего решения. Фигурная одинарная < встречается при решении систем уравнений, обозначает пересечение данных, а [[ используется при их слиянии.

Одинарные или двойные выражения

Употребление [] происходит реже. Одно уравнение со скобками объединяет несколько значений или неравенств различных размеров. Для решения совокупности нужно выполнить любое условие. Конец, завершение действия замыкает закрывающий знак.

В персональных компьютерах, ноутбуках, нетбуках встроена кодировка Юникод, закрепленная не за левыми или правыми объединяющими знаками, а за открывающими и замыкающими, поэтому при воспроизведении печатного текста со скобочками в режиме «справа налево» каждый знак меняет внешнее направление на обратное.

Что означают скобки в множествах

Квадратные скобки в уравнении означают, что установлен порядок действий, задаются границы промежутков и необходимость выполнения действия над выражением. Двойные квадратные скобки необходимы для записи выражений наряду с круглыми для рационального порядка действий.

По правилам интервал [−a;+a] записывается в виде нестрогого неравенства −a≤x≤a, означающего, что x находится на промежутке от −a до a включительно.

В середине парного знака с отделяющей точкой или запятой указываются два числа — наименьшее, затем большее, ограничивающие интервал. Круглая скобочка, прилегающая к цифре, означает невключение числа в промежуток, а квадратная — добавление.

В некоторых учебных пособиях для вузов встречаются расшифровки числовых интервалов, в которых вместо круглой скобочки (применяется обратная квадратная скобка ], и наоборот. В обозначениях запись ]0, 1[ равносильна (0, 1).

Что означают скобки в множествах

Открытая квадратная скобка (символ [) значит, что совокупность представляет систему уравнений разных размеров, для которых справедливы все множества решений для каждого уравнения, входящего в общее задание. Например, [x+11=2yy2−12=0

Прежде чем решать задачу или выполнять задание, нужно правильно определить принципы действий. В некоторых случаях скобочки могут быть не нужны, а иногда их обязательно нужно поставить.

Прочие знаки

Для математических, алгебраических и прочих расчетов важно знать различие обобщающих знаков. От правильности вычислений зависит итоговый результат.

Удобство записи системы уравнений

Применение фигурных знаков относится к представлению совмещения множеств. При решении системы с фигурной скобкой уравнения пересекаются, а [] объединяет их.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *