Скобки в математике играют очень важную роль: с помощью них задаётся порядок действий с выражением, обозначаются границы промежутков и необходимость выполнения какого-либо действия над выражением. Также с помощью скобок обозначаются вектора и матрицы и действия с множествами.
Использование круглых скобок в математике
Круглые скобки в математике встречаются наиболее часто, и они используются для множества целей.
Первое применение.
С помощью круглых скобок устанавливается порядок действий для вычисления алгебраического выражения. Выражение, которое стоит в скобках, вычисляется первым, за ним следует вычисление всех остальных.
В случае же если в выражении скобок много и одна находится внутри другой — первыми вычисляются скобки с максимальной глубиной вложенности.
Второе применение.
Третье применение.
Круглые скобки также используются для обозначения действий, которые необходимо совершить над всем выражением, стоящим в скобках. Под действием здесь имеются в виду возведение в степень, взятие производной или вычисление подинтегрального выражения.
Что же означают квадратные скобки в математике и для чего они используются?
Квадратные скобки в математике встречаются реже чем круглые, но всё же их можно встретить довольно часто.
Первое применение.
Квадратные скобки иногда используются при записи выражений наряду с круглыми для того, чтобы было проще различить скобки и, соответственно, задаваемый ими порядок действий. Часто с такой целью квадратные скобки используются для записи формул физики и других технических наук.
Второе применение.
Третье применение.
С помощью квадратной скобки записывают совокупности. Совокупности — это системы уравнений, для которых справедливы все множества решений для каждого уравнения, входящего в совокупность.
Ско́бки — па́рные знаки, используемые в различных областях.
Обычно первая в паре скобка называется открывающей, а вторая — закрывающей. Почти всегда (за исключением некоторых математических обозначений) открывающая и закрывающая скобки соответствуют друг другу (квадратная — квадратной и т. д.).
Используются также скобки, в которых открывающий и закрывающий знак не различаются, например, косые скобки /…/, прямые скобки |…|, двойные прямые скобки ||…||.
В математике, физике, химии и др. используются при написании формул.
Различные скобки (как и другие, непарные символы ASCII) применяются в смайликах ( эмотиконах ), например, 🙂.
В системе вёрстки TEΧ есть возможность автоматически подстраивать размер скобок под вложенный в него текст: это делается с помощью команд \left и \right. Следует заметить, что во избежание синтаксических ошибок эти две команды всегда должны соответствовать друг другу, однако виды скобок в них — не обязательно. Это делает возможным конструкцию вида «\left\< a \\ a \right.» для записи систем уравнений.
Содержание
Круглые скобки
Используются в математике для задания приоритета математических и логических операций. Например, (2+3)·4 означает, что надо сначала сложить 2 и 3, а затем сумму умножить на 4; аналогично выражение означает, что сначала выполняется логическое сложение а затем — логическое умножение Наряду с квадратными скобками используются также для записи компонент векторов :
для записи биномиальных коэффициентов :
Круглые скобки в математике используются также для выделения аргументов функции: для обозначения открытого сегмента и в некоторых других контекстах. Иногда круглыми скобками обозначается скалярное произведение векторов:
(здесь приведены три различных варианта написания, встречающиеся в литературе) и смешанное (тройное скалярное) произведение:
Скобки (обычно круглые, как в этом предложении) употребляются в качестве знаков препинания в естественных языках.
Квадратные скобки
В лингвистике употребительны для обозначения транскрипции в фонетике или границ составляющих в синтаксисе.
Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. Например, «Их [заложников] было около 100 человек».
Квадратными скобками в математике могут обозначаться:
Часто квадратные скобки используются для обозначения необязательности, например, параметров командной строки (см. подробнее в статье Форма Бэкуса — Наура ).
Фигурные скобки
В программировании фигурные скобки являются или операторными (Си, Java, Perl и PHP ), или комментарием (Паскаль), могут также служить для образования списка (в Mathematica ).ь
Угловые скобки
В квантовой механике угловые скобки используются в качестве так называемых бра и кет (от англ. bracket — скобка), введённых П. А. М. Дираком для обозначения квантовых состояний (векторов) и матричных элементов. При этом квантовые состояния обозначаются как (кет-вектор) и (бра-вектор), их скалярное произведение как матричный элемент оператора А в определённом базисе как
Кроме того, в физике угловыми скобками обозначают усреднение (по времени или другому непрерывному аргументу), например, — среднее значение по времени от величины f.
В текстологии и издании литературных памятников угловыми скобками обозначают лакуны в тексте — .
Типографика
В типографике же угловые скобки являются самостоятельными символами. От « » их можно отличить по бо́льшему углу между сторонами — >" />.
В ТеХе для записи угловых скобок используются команды «\langle» и «\rangle».
ASCII-тексты
В вики-разметке также можно использовать HTML-разметку, например комментарии — « », которые видны только при редактировании статьи.
В программировании угловые скобки используются редко, чтобы не создавать путаницы между ними и знаками отношений (« »). Например в Си угловые скобки используются в директиве препроцессора #include вместо кавычек, чтобы показать что включаемый заголовочный файл необходимо искать в одном из стандартных каталогов для заголовочных файлов, например в следующем примере:
файл stdio.h находится в стандартном каталоге, а myheader.h — в текущем каталоге (каталоге исходника программы).
Косые скобки
Появились на пишущих машинках для экономии клавиш.
В программировании на языке Си косые скобки вместе с дополнительным знаком «*» обозначают начало и конец комментария:
Прямые скобки
Используются в математике для обозначения модуля числа или вектора, определителя матрицы:
Двойные прямые скобки
Используются в математике для обозначения нормы элемента линейного пространства: ||x||; иногда — для матриц:
Прямые скобки означают, что так находится только величина силы, но не ее направление. [1]
Прямые скобки означают, что это выражение дает только величину скорости, но не указывает ее направление. [2]
Прямые скобки как символ были предложены математиком К. [3]
Прямые скобки указывают на геометрическую а не алгебраическую разность скоростей. [4]
Прямые скобки с индексом Г внизу обозначают приращение заключенного в скобки выражения при обходе контура по часовой стрелке. Из формулы (10.2.1) следует, что если область многосвязна и главный вектор сил, приложенных к одному из граничных контуров, отличен от нуля, то функции ф или яр, или и та и другая должны быть неоднозначными. Тело, сечение которого представляет собой односвязную область, должно быть в равновесии под действием внешних сил, поэтому, если во внутренних точках не приложены сосредоточенные силы, Л4 Ш2 О и функции ф, я) однозначны. [5]
Прямые скобки означают, что учитывается лишь численное значение ( модуль) векторной величины, стоящей в скобках. [6]
Прямые скобки показывают, что берется арифметическое значение выражения, стоящего в этих скобках. [7]
Прямые скобки в знаменателе ( 41) означают, как обычно, абсолютную величину. [8]
Прямые скобки в уравнении ( 4а) показывают, что берется арифметическое значение величины; двойной знак перед скобками является указанием на одинаковую вероятность как положительных, так и отрицательных средних ошибок. [9]
Прямые скобки показывают, чдо берется арифметическое значение выражения, стоящего в этих скобках. [10]
Двойные прямые скобки обозначают возможность выбора нескольких конструкций. Необходимо использовать по крайней мере одну из конструкций, размещенных одна над другой, и можно использовать более одной констт кции. [11]
Остальные прямые скобки равны нулю. [12]
Здесь двойные прямые скобки означают норму величины, стоящей внутри них. [13]
Прямыми скобками отмечены параметры, которые должны быть приведены на рабочих чертежах червяков и червячных колес. [15]
Сюда перенаправляются запросы🙂и некоторые другие, начинающиеся с двоеточия. О них см. статью смайлик.
( )
Название символа
Ско́бки — па́рные знаки, используемые в различных областях.
Обычно первая в паре скобка называется открывающей, а вторая — закрывающей. Почти всегда (за исключением некоторых математических обозначений) открывающая и закрывающая скобки соответствуют друг другу (квадратная — квадратной и т. д.).
Используются также скобки, в которых открывающий и закрывающий знак не различаются, например, косые скобки /…/, прямые скобки |…|, двойные прямые скобки ||…||.
В математике, физике, химии и др. используются при написании формул.
Различные скобки (как и другие, непарные символы ASCII) применяются в смайликах (эмотиконах), например, 🙂.
В системе вёрстки TEΧ есть возможность автоматически подстраивать размер скобок под вложенный в него текст: это делается с помощью команд \left и \right. Следует заметить, что во избежание синтаксических ошибок эти две команды всегда должны соответствовать друг другу, однако виды скобок в них — не обязательно. Это делает возможным конструкцию вида «\left\< a \\ a \right.» для записи систем уравнений.
Содержание
Круглые (операторные) скобки
Используются в математике для задания приоритета математических и логических операций. Например, (2+3)·4 означает, что надо сначала сложить 2 и 3, а затем сумму умножить на 4; аналогично выражение означает, что сначала выполняется логическое сложение а затем — логическое умножение Наряду с квадратными скобками используются также для записи компонент векторов:
Круглые скобки в математике используются также для выделения аргументов функции: для обозначения открытого сегмента и в некоторых других контекстах. Иногда круглыми скобками обозначается скалярное произведение векторов:
(здесь приведены три различных варианта написания, встречающиеся в литературе) и смешанное (тройное скалярное) произведение:
Круглые скобки в математике используются также для указания бесконечно повторяющегося периода позиционного представления рационального числа, например
При обозначении диапазона чисел круглые скобки обозначают, что числа, которые находятся по краям множества не включаются в это множество. То есть запись А = (1;3) означает, что в множество включены числа, которые 1(открытый) интервал.
В химических формулах круглые скобки применяются для выделения повторяющихся функциональных групп, например, (NH4)2CO4, Fe2(SO4)3, (C2H5)2O. Также скобки используются в названиях неорганических соединений для обозначения степени окисления элемента, например, хлорид железа(II), гексацианоферрат(III) калия.
Скобки (обычно круглые, как в этом предложении) употребляются в качестве знаков препинания в естественных языках. В русском языке употребляются для выделения пояснительного слова или вставного предложения. Например: Орловская деревня (мы говорим о восточной части Орловской губернии) обыкновенно расположена среди распаханных полей, близ оврага, кое-как превращённого в грязный пруд (И.Тургенев).
Во многих языках программирования используются круглые скобки для выделения конструкций. Например, в языках Паскаль и Си в скобках указываются параметры вызова процедур и функций, а в Лиспе — для описания списка.
Квадратные скобки
В лингвистике употребительны для обозначения транскрипции в фонетике или границ составляющих в синтаксисе.
Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. Например, «Их [заложников] было около 100 человек».
Квадратными скобками в математике могут обозначаться:
В математике помимо обычных квадратных скобок используются также их модификации «пол» и «потолок» для обозначения ближайшего целого, не превосходящего , и ближайшего целого, не меньшего , соответственно.
В вики-разметке двойные квадратные скобки используются для внутренних ссылок, перенаправлений, категорий и интервики, одинарные — для внешних.
В программировании чаще всего применяются для указания индекса элемента массива, в языке Perl также формируют ссылку на безымянный массив; в BASIC и некоторых других достаточно старых языках не используются.
Часто квадратные скобки используются для обозначения необязательности, например, параметров командной строки (см. подробнее в статье Форма Бэкуса — Наура).
Фигурные скобки
Фигурными скобками в одних математических текстах обозначается операция взятия дробной части, в других — они применяются для обозначения приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок). Фигурные скобки применяют для обозначения множеств. Одинарная фигурная скобка объединяет системы уравнений или неравенств. В математике и классической механике фигурными скобками обозначается оператор специального вида, называемый скобками Пуассона: Как уже было сказано выше, иногда фигурными скобками обозначают антикоммутатор.
В вики-разметке двойные фигурные скобки <<…>> применяются для шаблонов и встроенных функций и переменных, одинарные в определённых случаях формируют таблицы.
В программировании фигурные скобки являются или операторными (Си, C++, Java, Perl и PHP), или комментарием (Паскаль), могут также служить для образования списка (в Mathematica), анонимного хеш-массива (в Perl, в иных позициях для доступа к элементу хеша) или множества (Сетл).
Угловые скобки
В математике угловыми скобками обозначают кортеж, реже — скалярное произведение в предгильбертовом пространстве, например:
В квантовой механике угловые скобки используются в качестве так называемых бра и кет (от англ. bracket — скобка), введённых П. А. М. Дираком для обозначения квантовых состояний (векторов) и матричных элементов. При этом квантовые состояния обозначаются как (кет-вектор) и (бра-вектор), их скалярное произведение как матричный элемент оператора А в определённом базисе как
Кроме того, в физике угловыми скобками обозначают усреднение (по времени или другому непрерывному аргументу), например, — среднее значение по времени от величины f.
В текстологии и издании литературных памятников угловыми скобками обозначают лакуны в тексте — .
Типографика
В типографике же угловые скобки являются самостоятельными символами. От « » их можно отличить по бо́льшему углу между сторонами — и " border="0" />.
В TEX для записи угловых скобок используются команды «\langle» и «\rangle».
ASCII-тексты
В некоторых языках разметки, напр., HTML, XML угловыми скобками выделяют теги.
В вики-разметке также можно использовать HTML-разметку, например комментарии — « », которые видны только при редактировании статьи.
В программировании угловые скобки используются редко, чтобы не создавать путаницы между ними и знаками отношений (« »). Например в Си угловые скобки используются в директиве препроцессора #include вместо кавычек, чтобы показать, что включаемый заголовочный файл необходимо искать в одном из стандартных каталогов для заголовочных файлов, например в следующем примере:
файл stdio.h находится в стандартном каталоге, а myheader.h — в текущем каталоге (каталоге хранения исходного текста программы).
Кроме того, угловые скобки применяются в языках программирования C++, Java и C# при использовании средств обобщённого программирования: шаблонов и дженериков.
В некоторых текстах, сдвоенные парные « » используются для записи кавычек-ёлочек, например — >.
Косые скобки
Появились на пишущих машинках для экономии клавиш.
В программировании на языке Си косые скобки вместе с дополнительным знаком «*» обозначают начало и конец комментария:
Прямые скобки
Используются в математике для обозначения модуля числа или вектора, определителя матрицы:
Двойные прямые скобки
Используются в математике для обозначения нормы элемента линейного пространства: ||x||; иногда — для матриц:
История
Круглые скобки появились в 1556 году у Тартальи (для подкоренного выражения) и позднее у Жирара. Одновременно Бомбелли использовал в качестве начальной скобки уголок в виде буквы L, а в качестве конечной — его же в перевёрнутом виде (1550); такая запись стала прародителем квадратных скобок. Фигурные скобки предложил Виет (1593). Всё же большинство математиков тогда предпочитали вместо скобок надчёркивать выделяемое выражение. В общее употребление скобки ввёл Лейбниц.
См. также
Литература
Полезное
Смотреть что такое "Скобки" в других словарях:
СКОБКИ — парный знак препинания для выделения отдельных слов или частей предложения, содержащих пояснения к основному тексту. В математике употребляются для обозначения порядка выполнения математических действий. Бывают круглые ( ), квадратные СКОБЛИКОВА… … Большой Энциклопедический словарь
скобки — (Square brackets, Parantheses, Angle brackets, Braces) Парные знаки препинания. Бывают квадратные, круглые, угловые (ломаные), фигурные (парантезы). Применяются в формульном наборе и для выделений в тексте … Шрифтовая терминология
скобки — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN parentheses … Справочник технического переводчика
скобки — парный знак препинания для выделения отдельных слов или частей предложения, содержащих пояснения к основному тексту. В математике употребляются для обозначения порядка выполнения математических действий. Различают скобки круглые ( ),… … Энциклопедический словарь
«СКОБКИ» — En.: Parentheses 1. Гипноз позволяет изолировать отдельные психологические функции, «их как бы удается взять в скобки». Другими словами, можно добиться временного «зависания» определенной психической активности в пользу другого ее вида. Пациенту… … Новый гипноз: глоссарий, принципы и метод. Введение в эриксоновскую гипнотерапию
Скобки — 1) парный знак препинания, состоящий из двух вертикальных черт: круглых О, квадратных, или прямых, [ ], фигурных, или парантезов, < >. Употребляется для выделения слов, частей предложения или предложений, содержащих дополнительные… … Большая советская энциклопедия
скобки — знак препинания. Взятие фрагмента предложения в скобки означает выделение его в качестве дополнительной информации (вставной конструкции): «И каждый вечер, в час назначенный / (Иль это только снится мне?) / Девичий стан, шелками схваченный, / В… … Литературная энциклопедия
Скобки — мн. Письменные или печатные знаки (обычно парные), служащие для обособления какой либо части текста, а в математике для обозначения порядка выполнения действий. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой
скобки — скобки, скобок, скобкам, скобки, скобками, скобках (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов