Что означают буквы в системе счисления

Системы счисления

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Системы счисления бывают:

Непозиционные системы счисления

Примеры: унарная, римская, древнерусская и др.

Позиционные системы счисления

Основание системы счисления —

количество различных цифр, используемых в этой системе.

отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде

где i — номер разряда, а s — основание системы счисления.

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

По определению веса разряда

где i — номер разряда, а s — основание системы счисления.

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =

= 64 + 48 + 2 + 0,5 = 114,5

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

Источник

Системы счисления. Основные понятия.

Запись числа в некоторой системе счисления называется кодом числа.

Количество разрядов в записи числа называют разрядностью и совпадает с его длиной.

Системы счисления делятся на позиционные и непозиционные. Позиционные системы счисления делятся

на однородные и смешанные.

Непозиционная система счисления — древнейшая, здесь все цифры числа имеют величину, которая не

зависит от позиции (разряда).

Т.е., если есть 5 палочек, значит число соответственно равно 5, так как каждой палочке, вне зависимости

от её места в строке, соответствует только 1 предмет.

Позиционная система счисления — значение каждой цифры зависит от позиции (разряда) этой цифры в числе.

Например, стандартная 10-я система счисления является позиционной. Допустим дано число 453.

Цифра 4 означает число сотен и соответствует числу 400, 5 — кол-во десятков и соответствует значению

50, а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.

Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Однородная система — для каждого разряда (позиции) числа набор допустимых символов (цифр)

одинаковый. Как пример снова используем 10-ю систему. Если записывать число в однородной 10-й системе,

(1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, так как символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может

отличаться от наборов в других разрядах. Хороший пример — система измерения времени. В разряде

В непозиционных системах счисления вес цифры не зависим от позиции, которую она занимает в

числе. К примеру, в римской системе счисления в числе XXXII (32) вес цифры X в каждой позиции

Цифрами в римской системе служат: I(1), V(5), X(10), L(50), C(100), D(500), M(1000).

Размер числа в римской системе счисления определяют как сумму либо разность цифр в числе. Когда

меньшая цифра стоит слева от большей – она вычитается, когда справа – прибавляется.

Самая первая система счисления — единичная (непозиционная).

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в

последовательности цифр, которые изображают число.

Каждая позиционная система характеризуется своим основанием.

Основание позиционной системы счисления – это количество разных знаков либо символов, которые

используются для изображения цифр в этой системе.

множество позиционных систем.

Перевод систем счисления. Числа можно перевести из одной системы счисления в другую.

Таблица соответствия цифр в различных системах счисления.

Источник

Информатика

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Развиваясь, древний человек стал испытывать потребность в способах выражения количества. Подсчет убитых животных, количество врагов или соседей – причин становилось все больше. Сначала люди использовали только понятия «один», «много». После стали использовать понятие «пара», чтобы обозначить два предмета, это намного облегчило жизнь.

Постепенно перешли к использованию подручных средств – пальцев на руках и ногах, зарубок на коре дерева, кости животного или узелков на канате. Именно такие примитивные «счетные машины» позволили через тысячи лет узнать, что предки умели не просто считать, но даже умудрялись фиксировать результаты подсчета.

Кроме зарубок и узелков появилась потребность в символах, выражающих большее количество чего-либо, чем «один». Тогда были придуманы первые знаки для выражения больших значений. Так, египтяне, использовали знаки для цифр 1, 5, 10. Число 324 в их системе выглядело так:

А описание чисел при помощи специальных знаков и является системой счисления.

Системы счисления – виды, особенности

Система счисления (СС) – способ выражения чисел при помощи специальных правил и знаков, которые называются цифрами.

Все существующие системы делят на 2 группы:

Чтобы выразить число 475, достаточно по порядку написать 3 символа, 475, выражая 5 единиц, 7 десятков и 4 сотни.

К этой группе также относятся СС с различными основаниями (2,8,16).

Еще одна особенность – чтобы выразить число и не использовать сотни символов, применяется прибавление и вычитание. Написать 475 римскими знаками можно так CCCCXXXXXXXIIIII, но это нерационально. Если отнимать или прибавлять цифры, получится меньшее количество символов – CDLXXV. Цифра слева означает, что ее нужно отнять от большего числа, а справа – прибавить.

Правильным считается тот вариант, при котором получается меньше символов.

Интересно. Первой позиционной СС была вавилонская и была она шестнадцатиричная! А в 19 веке использовали двенадцатеричную СС.

Алфавит СС – знаки, которые используются для обозначения цифр.

Основание – количество знаков, которыми кодируются числа. Еще оно показывает отличие между цифрами на разных позициях. Основание – целое число, начиная с 2.

Важно. Если в тексте идет речь о различных системах, то чтобы уточнить, какая используется основа, ставится подстрочный знак: 12548, 011001112. Примеры? Если же обозначения нет, по умолчанию это десятичная (12549).

Разряд – положение, позиция обозначения цифры в числе. Пример?

Непозиционные СС, их особенности

Первоначально древние люди ставили отметки (черточки-зарубки, точки), чтобы обозначить количество того или иного предмета. Отклики этого подхода все еще встречаются (полоски у военных, счетные палочки).

Постепенно от единиц они переходили к группам предметов по 3, 5, 10 единиц. Постепенно такие группы стали обозначаться определенными символами, что позволило сократить размер записи.

Римская СС

В ней определенным цифрам отвечают латинские буквы. Их сумма и будет числом.

Основные рекомендации при пользовании римскими цифрами:

Таблица римских цифр

Недостаток этой СС в том, что для больших чисел недоступны операции сложения или другие, ещё она сложная и громоздкая. Зато римские цифры отлично вписались там, где нужна нумерация и эстетика: циферблаты, номера глав, списки, серии документов.

Основные позиционные СС, правила перевода

Двоичная система счисления

Систему, на которой основывается работа компьютеров, придумал гениальный немецкий ученый Г.В. Лейбниц (еще до 19 века!). Он придумал и описал СС, в которой все вычисления проводятся при помощи двух простейших символов – 0 и 1.

Компьютер, как механическое устройство, получает команды в виде двоичной кодировки. Он не в силах понять сложные задания, человеческую речь, музыку или тысячи оттенков, а переводя/кодируя всю необходимую информацию при помощи 0 и 1 (сеть, отсутствие сети), можно передать ему любые команды или информацию. Естественно, такие задания выглядят как огромные массивы двух знаков.

Алгоритм перевода чисел из десятичной в двоичную систему:

Этот порядок действия позволят переводить в любую позиционную СС. В данном случае, основа – 2, остаток 2 +7*10 1 +9*10 0 = 57910.

Обычно мы пользуемся свернутой формой записи чисел, то есть без разбивки на разряды и умножения на основу.

А чтобы было легче, пользуются готовой таблицей степеней 2.

Альтернативный способ преобразования для гуманитариев

Для начала нужно написать степени двойки, начиная с самой большой:

Далее нужно отнимать от числа максимальную степень двойки и напротив нее ставить 1, если есть в исходном варианте или 0, если его нет.
Перевод числа 579

Если же оно на 1 больше, то число будет начинаться и заканчиваться на 1, а внутри – сплошные 0.

Основой такой системы является 8, а числа восьмеричной системы 0-7. Данная система счисления является позиционной и целочисленной. Применяется в сферах, связанных с цифровыми технологиями, особенно в Linux-программном обеспечении (права доступа, исполнения).

Пример: Перевести 5798 из десятичной в восьмеричную систему счисления:

Обратный перевод из восьмеричной СС в десятичную:

11038 = 1∙8 3 +1∙8 2 +0∙8 1 +3∙8 0 = 512+64+0+3 = 57910

Альтернативный вариант таблицы степеней

Шестнадцатеричная СС

Это целочисленная система с основанием 16 (символы шестнадцатеричной системы счисления 0-9 и буквы A – F). Используется в реализации компьютерного программирования и документации на низком уровне, так как 8-битный байт, для записи которого удобно использовать 2 цифры из шестнадцатеричной системы.

Стандарт Юникод использует 4 и более символов 16-ой СС.

Для записи цвета из красного, зеленого и синего (R, G и B) также используют эту систему.

Алгоритм преобразования чисел в 16СС

Способ преобразования аналогичный предыдущим – расписывание числа как многочлена с учетом степеней 16. Для этого число делится на 16, в итоге – перечень остатков от деления, записанных наоборот.

В сети есть калькуляторы, способные выполнять преобразование чисел в различные СС и обратно (некоторые даже с детальным описанием процесса).

Арифметика для 2СС

Принципы выполнения простейших арифметических операций одинаковы для любых позиционных систем, независимо от основы:

Особенности арифметики СС с разными основами:

Примеры арифметических операций:

Для удобства разработаны готовые таблицы сложения в различных системах:

Сложение в 8-ой СС в 16СС

С их помощью можно быстро суммировать в различных СС.

Сложение для разных СС на примере 15 и 6:

Если необходимо сложить числа из разных систем, их приводят к одной основе. Самым простым вариантом будет перевод в десятичную систему, решение простого примера и перевод результата в любую из систем.

Рассмотрим сумму 438 и 5616. Результат можно выразить в любой СС, но проще привести к 8- или 16-ричной:

Переводим число 56 в восьмеричную через двоичную:

Умножение в 8-ой СС

Сравнение систем

СС могут быть с произвольной основой, но популярны 2,8,10,16-ые.

Сравнительная таблица разных систем счисления:

Перевод числа 75 в разные системы:

Правила перевода из двоичной, восьмеричной и шестнадцатеричной в 10СС:

Исходный вариант следует разделить на тройки цифр, с крайней справа. Если не хватает, старший разряд дополнить 0. Далее под каждой триадой ставится подходящий символ из 8‑ой системы.

Рассмотрим перевод на примере числа 579, которое соответствует 10010000112

Правила перевода из двоичной в шестнадцатеричную систему счисления:

Число разбивается по 4 знака, начиная справа (с меньшего разряда). Если не будет хватать символов у старшего разряда, тетраду дополняют нулями.

Сравнительный перевод дробей в СС

Чтобы перевести правильные дроби из 10-ой СС в другие позиционные, следует придерживаться правила, которое хорошо видно на примере перевода числа 0,35:

Удобно писать над каждой цифрой порядок, а дальше ее умножить на основу СС в степени разряда.

Перевод целых и дробей в 2СС, 8СС, 16СС:

Таблицы истинности

При помощи тех же нулей и единиц создаются таблицы истинности логических выражений, в которых описаны всевозможные варианты.

Основные логические операции

Например, конъюнкция является одной из логических операций. Она является истиной только в том случае, если два высказывания имеют истинные значения.

Логические переменные таблицы истинности обозначают p и q, а их значения выражают при помощи 0 и 1, где 0 – ложь, 1 – истина:

Фрагмент таблицы истинности для конъюнкции.

Так выражаются условия для всех логических операций.

Применяются таблицы истинности еще с начала 20 века в алгебре, логике, программировании.

Источник

Шестнадцатиричная система исчисления

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15.

Содержание

Применение

Широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, БЭСМ-6) использовали восьмеричную систему.

В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).

Способы записи

В математике

В математике систему счисления принято писать в подстрочном знаке. Например, десятичное число 1443 можно записать как 144310 или как 5A316.

В языках программирования

В разных языках программирования для записи шестнадцатеричных чисел используют различный синтаксис:

Перевод чисел из одной системы счисления в другую

Перевод чисел из шестнадцатеричной системы в десятичную

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

Перевод чисел из двоичной системы в шестнадцатеричную

Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой.

Источник

Системы счисления. Позиционная система счисления шестнадцатеричная.

Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел позаимствовала арабская нация, у них, в свою очередь, взяли европейцы. В Европе эту систему стали называть арабской.

Позиционная система счисления — значение всех цифр зависит от позиции (разряда) данной цифры в числе.

Шестнадцатеричная система счисления.

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления. Основанием шестнадцатеричной системы счисления является число 16.

Записывая числа в восьмеричной системе счисления мы получаем довольно компактные выражения, однако в шестнадцатеричной системе мы получаем выражения более компактными.

Применение шестнадцатеричной системы счисления.

Шестнадцатеричную систему счисления довольно хорошо используют в современных компьютерах, например с ее помощью указывают цвет: #FFFFFF — белый цвет.

Перевод чисел из одной системы счисления в другую.

Перевод чисел из шестнадцатеричной системы в десятичную.

Что бы перевести шестнадцатеричное число в десятичное, нужно заданное число привести к виду суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, переведем шестнадцатеричное число 5A3 в десятичное. Здесь 3 цифры. Исходя их выше сказанного правила, приведем его к виду суммы степеней с основанием 16:

5A316 = 3·16 0 +10·16 1 +5·16 2 = 3·1+10·16+5·256 = 3+160+1280 = 144310

Перевод чисел из двоичной системы в шестнадцатеричную и наоборот.

Для перевода многозначного двоичного числа в шестнадцатеричную систему необходимо разделить его на тетрады справа налево и поменять все тетрады соответствующей шестнадцатеричной цифрой. Для перевода числа из шестнадцатеричной системы в двоичную необходимо поменять каждую все цифры на соответствующие тетрады из таблицы перевода, которую вы найдете ниже.

0101101000112 = 0101 1010 0011 = 5A316

Таблица перевода чисел.

Что означают буквы в системе счисления

Алгоритм перевода чисел из одной системы счисления в другую.

1. Из десятичной системы счисления:

2. Из двоичной системы счисления:

Например, 1000110 = 1 000 110 = 1068

Например, 1000110 = 100 0110 = 4616.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *