Что означает уровень 1 в днс
Давайте уже разберемся в DNS
Внимательный читатель найдет на этой картинке IPv6
Люди часто озадачены доменами. Почему мой сайт не работает? Почему эта хрень поломана, ничего не помогает, я просто хочу, чтобы это работало! Обычно, вопрошающий или не знает про DNS, или не понимает фундаментальных идей. Для многих DNS — страшная и непонятная штука. Эта статья — попытка развеять такой страх. DNS — это просто, если понять несколько базовых концепций.
Что такое DNS
DNS расшифровывается как Domain Name System. Это глобальное распределенное хранилище ключей и значений. Сервера по всему миру могут предоставить вам значение по ключу, а если им неизвестен ключ, то они попросят помощи у другого сервера.
Базовые штуки
Давайте взглянем на маппинг между именем и адресом:
Здесь есть только одна интересная деталь: информация о самом запросе. Говорится, что мы запросили запись и получили ровно один ответ. Вот:
Оставшаяся часть ответа описывает сам ответ:
Как видите, при обычном DNS-запросе происходит куча всего. Каждый раз, когда вы открываете веб-страницу, браузер делает десятки таких запросов, в том числе для загрузки всех внешних ресурсов вроде картинок и скриптов. Каждый ресурс отвечает за минимум один новый DNS-запрос, и если бы DNS не был рассчитан на сильное кэширование, то трафика генерировалось бы очень много.
Корневые DNS-сервера обслуживаются различными компаниями и государствами по всему миру. Изначально их было мало, но интернет рос, и сейчас их 13 штук. Но у каждого из серверов есть десятки или сотни физических машин, которые прячутся за одним IP.
Другие типы
Что не так с CNAME
Запросы к другим серверам
Давайте представим, что конфигурация DNS испорчена. Вам кажется, что вы исправили проблему, но не хотите ждать когда обновится кэш чтобы удостовериться. С помощью dig можно сделать запрос к публичному DNS-серверу вместо своего дефолтного, вот так:
Типичные ситуации
Давайте рассмотрим типичные ситуации, знакомые многим веб-разработчикам.
Редирект домена на www
Этот IP принадлежит Namecheap’у, и там крутится маленький веб-сервер, который просто делает перенаправление на уровне HTTP на адрес http://www.iskettlemanstillopen.com :
CNAME для Heroku или Github
Wildcards
Заключение
Надеюсь, теперь у вас есть базовое понимание DNS. Все стандарты описаны в документах:
Есть еще пара интересных RFC, в том числе 4034, который описывает стандарт DNSSEC и 5321, который описывает взаимосвязь DNS и email. Их интересно почитать для общего развития.
Что означают 1 % и 0,1 % при тестировании видеокарт и процессоров в играх
Содержание
Содержание
Все чаще при измерении производительности ПК в играх можно заметить показатели «0.1 % Low» и «1 % Low». Большинство неопытных пользователей не придают этому значения и по старинке смотрят только на средний FPS. На самом деле эти показатели очень важны и на них стоит обращать внимание. И вот почему.
Что такое средний FPS и Frame Time
Время, требуемое для отрисовки одного кадра называется Frame time или же «время кадра». Измеряется оно в миллисекундах, но обычно используют частоту кадров (Frame rate), которая обозначает количество кадров, отрисованных за единицу времени. Частота кадров же измеряется в количестве кадров в секунду — Frames per second или же FPS.
Главная единица, используемая при измерении производительности — средний FPS (AVG FPS) за весь промежуток времени. Средний FPS находится по формуле FPS = n/t, где n — количество кадров, отрисованное за все время, а t — время проведения теста. У среднего FPS есть недостаток, который не позволяют ему быть единственной единицей измерения в бенчмарках.
0.1 % минимальный и 1 % низкий FPS
При измерении FPS его среднее значение не является точной величиной, поэтому внимание стоит уделить другим — 1 % низкий и 0.1 % минимальный FPS. В нашем случае важно понимать, что время отрисовки кадра зависит от его сложности. Во время игры могут встречаться карты с большим количеством предметов и NPC в поле видимости игрока, на отрисовку которых будет уходить больше времени. Такие кадры могут задерживаться на экране, в результате чего картинка может фризить и испортить впечатление от игры. Проблема среднего FPS заключается в том, что при замерах время «длинных» кадров усредняется с «быстрыми», поэтому информация о первых теряется.
К примеру, за секунду было отрисовано 30 кадров с таким временем отрисовки в мс:
33, 57, 23, 13, 34, 68, 34, 40, 44, 16, 90, 27, 66, 87, 23, 37, 17, 23, 31, 21, 23, 20, 37, 12, 32, 36, 22, 14, 20, 10
В данном случае средний FPS равен 30 кадрам в секунду, а среднее время отрисовки кадра — 33,3 мс. Общая картина достаточно неплоха, но если взглянуть пристальнее, то можно заметить четыре кадра, время отрисовки которых в два, а то и в три раза больше среднего. Как и было сказано ранее, при высчитывании среднего времени отрисовки кадра и среднего FPS «долгие» кадры теряются на фоне «быстрых», в результате чего значения получаются неточными.
Было принято решение как-нибудь дополнить значения среднего FPS, чтобы лучше описать все кадры.
Существует такое понятие как процентиль, с английского — percentile (в русском языке чаще встречаются персентиль или перцентиль). В нашем случае это можно трактовать как значение, ниже которого находится определенный процент данных из общего набора. У нас 99-процентиль — это значение, ниже которого находятся 99 % данных из общего числа. И, если он равен 90 мс, то 99 % значений времени кадра из примера меньше 90 мс, а 1 % больше или равен этому числу.
В бенчмарках по договоренности используются 99.9- и 99-процентили. Поскольку обычно в качестве единицы измерения применяются FPS, то в данном случае используются обратные 0.1- и 1-процентили FPS. В народе их принято называть 0.1 % минимальный и 1 % низкий FPS. Обычно эти значения оказываются ниже среднего FPS, так как это часть данных, которая описывает редкие игровые события с многочисленным количеством объектов. Это говорит о том, что сложность кадров в сцене непостоянна. Плохо это только тогда, когда 0.1 % минимальный и 1 % низкий FPS «просаживаются» до неиграбельного уровня в результате чего картинка начинает подлагивать. Правда, оценить этот неиграбельный уровень статистически невозможно — для каждого он свой в связи с особенностями человеческого глаза и привычками геймера.
Математические объяснения недостатков среднего FPS (для любознательных)
Между временем кадра и частотой кадров есть математическая связь: значение FPS после отрисовки кадра — мгновенный FPS — обратно времени отрисовки этого кадра:
Поскольку время кадра обычно измеряется в миллисекундах, а частота кадров в единицах в секунду, вышеуказанная формула будет выглядеть вот так:
Например, кадр был отрисован за 25 мс, тогда получается, что мгновенный FPS по окончании его отрисовки был равен 1000/25 = 40 FPS.
Как уже было сказано ранее, средний FPS находится по формуле FPS = n/t. Кроме нее средний FPS можно найти так:
Где t — среднее время кадра, равное t = (t1 + t2 + t3 + … + t-нное)/n
n — общее количество кадров, t1, t2, t3 и т. д. — время отрисовки каждого кадра
То есть, средний FPS — величина, обратная среднему времени кадра. Подтверждается это тем, что время бенчмарка равняется сумме времени отрисовки всех кадров:
t1 + t2 + t3 + … + t-нное = t
Но почему же средний FPS — недостаточно точный показатель измерений? Так происходит, потому что средний FPS не является средним арифметическим значений мгновенного FPS:
FPS ≠ (FPS1 + FPS2 + FPS3 + … + FPS-нное)/n
FPS ≠ (1000/t1 + 1000/t2 + 1000/t3 + … + 1000/t-нное)/n
Для подтверждения этому приведем одну из вышеперечисленных формул:
FPS = 1000n/(t1 + t2 + t3 + … + t-нное)
Значения среднего FPS и среднего значения мгновенного FPS будут равны только в том случае, когда все кадры были отрисованы за одинаковые промежутки времени – t1 = t2 = t3 = t-нное = t, что на практике практически невозможно. В этом и заключается главный недостаток среднего FPS.
Средний FPS далеко не идеален, и при измерении производительности системы в играх ориентироваться только на него не стоит. 0.1% минимальный и 1% низкий FPS наоборот являются очень важными единицами измерения. Если говорить простым языком, то они показывают самые большие просадки FPS за время теста, портящие общее впечатление от игры.
Как это работает: Пара слов о DNS
Являясь провайдером виртуальной инфраструктуры, компания 1cloud интересуется сетевыми технологиями, о которых мы регулярно рассказываем в своем блоге. Сегодня мы подготовили материал, затрагивающий тему доменных имен. В нем мы рассмотрим базовые аспекты функционирования DNS и вопросы безопасности DNS-серверов.
/ фото James Cridland CC
Изначально, до распространения интернета, адреса преобразовывались согласно содержимому файла hosts, рассылаемого на каждую из машин в сети. Однако по мере её роста такой метод перестал оправдывать себя – появилась потребность в новом механизме, которым и стала DNS, разработанная в 1983 году Полом Мокапетрисом (Paul Mockapetris).
Что такое DNS?
Система доменных имен (DNS) является одной из фундаментальных технологий современной интернет-среды и представляет собой распределенную систему хранения и обработки информации о доменных зонах. Она необходима, в первую очередь, для соотнесения IP-адресов устройств в сети и более удобных для человеческого восприятия символьных имен.
DNS состоит из распределенной базы имен, чья структура напоминает логическое дерево, называемое пространством имен домена. Каждый узел в этом пространстве имеет свое уникальное имя. Это логическое дерево «растет» из корневого домена, который является самым верхним уровнем иерархии DNS и обозначается символом – точкой. А уже от корневого элемента ответвляются поддоменые зоны или узлы (компьютеры).
Пространство имен, которое сопоставляет адреса и уникальные имена, может быть организовано двумя путями: плоско и иерархически. В первом случае имя назначается каждому адресу и является последовательностью символов без структуры, закрепленной какими-либо правилами. Главный недостаток плоского пространства имен – оно не может быть использовано в больших системах, таких как интернет, из-за своей хаотичности, поскольку в этом случае достаточно сложно провести проверку неоднозначности и дублирования.
Сопоставление имен
Давайте взглянем, как происходит сопоставление имен и IP-адресов. Предположим, пользователь набирает в строке браузера www.1cloud.ru и нажимает Enter. Браузер посылает запрос DNS-серверу сети, а сервер, в свою очередь, либо отвечает сам (если ответ ему известен), либо пересылает запрос одному из высокоуровневых доменных серверов (или корневому).
Также стоит пару слов сказать про процедуру обратного сопоставления – получение имени по предоставленному IP-адресу. Это происходит, например, при проверках сервера электронной почты. Существует специальный домен in-addr.arpa, записи в котором используются для преобразования IP-адресов в символьные имена. Например, для получения DNS-имени для адреса 11.22.33.44 можно запросить у DNS-сервера запись 44.33.22.11.in-addr.arpa, и тот вернёт соответствующее символьное имя.
Кто управляет и поддерживает DNS-сервера?
Когда вы вводите адрес интернет-ресурса в строку браузера, он отправляет запрос на DNS-сервер отвечающий за корневую зону. Таких серверов 13 и они управляются различными операторами и организациями. Например, сервер a.root-servers.net имеет IP-адрес 198.41.0.4 и находится в ведении компании Verisign, а e.root-servers.net (192.203.230.10) обслуживает НАСА.
Каждый из этих операторов предоставляет данную услугу бесплатно, а также обеспечивает бесперебойную работу, поскольку при отказе любого из этих серверов станут недоступны целые зоны интернета. Ранее корневые DNS-серверы, являющиеся основой для обработки всех запросов о доменных именах в интернете, располагались в Северной Америке. Однако с внедрением технологии альтернативной адресации они «распространились» по всему миру, и фактически их число увеличилось с 13 до 123, что позволило повысить надёжность фундамента DNS.
Например, в Северной Америке находятся 40 серверов (32,5%), в Европе – 35 (28,5%), еще 6 серверов располагаются в Южной Америке (4,9%) и 3 – в Африке (2,4%). Если взглянуть на карту, то DNS-серверы расположены согласно интенсивности использования интернет-инфраструктуры.
Защита от атак
Атаки на DNS – далеко не новая стратегия хакеров, однако только недавно борьба с этим видом угроз стала принимать глобальный характер.
«В прошлом уже происходили атаки на DNS-сервера, приводящие к массовым сбоям. Как-то из-за подмены DNS-записи в течение часа для пользователей был недоступен известный всем сервис Twitter, – рассказывает Алексей Шевченко, руководитель направления инфраструктурных решений российского представительства ESET. – Но куда опаснее атаки на корневые DNS-сервера. В частности, широкую огласку получили атаки в октябре 2002 года, когда неизвестные пытались провести DDoS-атаку на 10 из 13 DNS-серверов верхнего уровня».
Протокол DNS использует для работы TCP- или UDP-порт для ответов на запросы. Традиционно они отправляются в виде одной UDP-датаграммы. Однако UDP является протоколом без установления соединения и поэтому обладает уязвимостями, связанными с подделкой адресов – многие из атак, проводимых на DNS-сервера, полагаются на подмену. Чтобы этому препятствовать, используют ряд методик, направленных на повышение безопасности.
Одним из вариантов может служить технология uRPF (Unicast Reverse Path Forwarding), идея которой заключается в определении того, может ли пакет с определенным адресом отправителя быть принят на конкретном сетевом интерфейсе. Если пакет получен с сетевого интерфейса, который используется для передачи данных, адресованных отправителю этого пакета, то пакет считается прошедшим проверку. В противном случае он отбрасывается.
Несмотря на то что, данная функция может помочь обнаружить и отфильтровать некоторую часть поддельного трафика, uRPF не обеспечивает полную защиту от подмены. uRPF предполагает, что прием и передача данных для конкретного адреса производится через один и тот же интерфейс, а это усложняет положение вещей в случае нескольких провайдеров. Более подробную информацию о uRPF можно найти здесь.
Еще один вариант – использование функции IP Source Guard. Она основывается на технологии uRPF и отслеживании DHCP-пакетов для фильтрации поддельного трафика на отдельных портах коммутатора. IP Source Guard проверяет DHCP-трафик в сети и определяет, какие IP-адреса были назначены сетевым устройствам.
После того как эта информация была собрана и сохранена в таблице объединения отслеживания DHCP-пакетов, IP Source Guard может использовать ее для фильтрации IP-пакетов, полученных сетевым устройством. Если пакет получен с IP-адресом источника, который не соответствует таблице объединения отслеживания DHCP-пакетов, то пакет отбрасывается.
Также стоит отметить утилиту dns-validator, которая наблюдает за передачей всех пакетов DNS, сопоставляет каждый запрос с ответом и в случае несовпадения заголовков уведомляет об этом пользователя. Подробная информация доступна в репозитории на GitHub.
Заключение
Система доменных имён разработана в еще 80-х годах прошлого века и продолжает обеспечивать удобство работы с адресным пространством интернета до сих пор. Более того, технологии DNS постоянно развиваются, например, одним из значимых нововведений недавнего времени стало внедрение доменных имен на национальных алфавитах (в том числе кириллический домен первого уровня.рф).
Постоянно ведутся работы по повышению надежности, чтобы сделать систему менее чувствительной к сбоям (стихийные бедствия, отключения электросети и т. д.), и это очень важно, поскольку интернет стал неотъемлемой частью нашей жизни, и «терять» его, даже на пару минут, совершенно не хочется.
Кстати, компания 1cloud предлагает своим пользователям VPS бесплатную услугу «DNS-хостинг» – инструмент, упрощающий администрирование ваших проектов за счет работы с общим интерфейсом для управления хостами и ссылающимися на них доменами.
Введение в терминологию, элементы и понятия DNS
Введение
DNS, или система доменных имен, зачастую очень трудная часть изучения настройки веб-сайтов и серверов. Понимание того, как работает DNS, поможет вам диагностировать проблемы с настройкой доступа к вашим веб-сайтам и позволит расширить понимание того, что происходит за кадром.
В этом руководстве мы обсудим некоторые фундаментальные понятия системы доменных имен, которые помогут вам разобраться с настройкой вашей DNS. После знакомства с этим руководством вы научитесь настраивать собственное доменное имя или свой собственный DNS-сервер.
Прежде чем мы приступим к настройке серверов для преобразования вашего домена или настройке наших доменов в панели управления, давайте познакомимся с некоторыми основными понятиями о работе DNS.
Терминология доменов
Мы должны начать с определения терминов. Хотя некоторые из этих тем могут быть вам знакомы из других сфер, есть много других терминов, используемых в разговоре о доменных именах и DNS, которые не слишком часто используются в других компьютерных областях. Давайте начнем с простого:
Система доменных имен
Система доменных имен, более известная как «DNS», является сетевой системой, которая позволяет нам преобразовать удобные для человека имена (обычно буквенные) в уникальные адреса.
Доменное имя
Доменное имя это удобная для человека форма имени, которую мы привыкли ассоциировать с интернет-ресурсом. Например, «google.com» является доменным именем. Некоторые скажут, что часть «Google» является доменом, но в целом мы можем считать эту комбинированную форму доменным именем.
URL-адрес «google.com» соединен с сервером, находящимся в собственности Google Inc. Система доменных имен позволяет нам соединиться с сервером Google при вводе «google.com» в браузере.
IP-адрес
IP-адресом мы называем сетевой адрес узла. Каждый IP-адрес должен быть уникальным в пределах своей сети. Когда мы говорим о веб-сайтах, этой сетью является весь интернет.
IPv4, наиболее распространенная форма адресов, записывается в виде четырех наборов цифр, каждый набор содержит до трех цифр, разделенных точкой. Например, «111.222.111.222» может считаться правильным IPv4 IP-адресом. С помощью DNS мы соединяем имя с этим адресом и избавляем себя от необходимости запоминать сложный набор цифр для каждого места посещения в сети.
Домен верхнего уровня
Домен верхнего уровня, или TLD, это самая общая часть домена. Является последней частью доменного имени справа (отделен точкой). Распространенными доменами верхнего уровня считаются «com», «net», «org», «gov», «edu» и «io».
Домены верхнего уровня находятся на вершине иерархии доменных имен. Некоторым компаниям предоставлен контроль над управлением доменами верхнего уровня структурой ICANN (Корпорация по управлению доменными именами и IP-адресами). Эти компании также могут распространять доменные имена под TLD, как правило, через доменного регистратора, который занимается регистрацией домена.
Узел
В пределах домена его владелец может определять собственные узлы, которые ссылаются на отдельные компьютеры или услуги, доступные через домен. Например, большинство владельцев доменов делают свой веб-сервер доступным через корневой домен (example.com), а также через «узел», определенный как «www» (www.example.com).
У вас могут быть другие определения узлов под общим доменом. Вы можете иметь API доступ через «api» узел (api.example.com) или FTP доступ, обозначив узел «FTP» или «files» (ftp.example.com или files.example.com). Имена узлов могут быть произвольными, при условии, что они являются уникальными для данного домена.
Поддомен
Объект, связанный с узлами, называется поддомен.
DNS работает в иерархии. Домены верхнего уровня могут иметь множество доменов под ними. Например, домен верхнего уровня «com» включает в себя «google.com» и «ubuntu.com». Поддомен это домен, который является частью домена более высокого уровня. В этом случае можно сказать, что «ubuntu.com» явлется поддоменом «com». Как правило, он называется просто доменом или часть «Ubuntu» называется SLD, что означает домен второго уровня.
Точно так же каждый домен может контролировать «поддомены», которые находятся под ним. Например, у вас мог бы быть поддомен для отдела истории в вашей школе по адресу «www.history.school.edu». В этом случае часть «history» считается поддоменом.
Разница между именем узла и поддомена в том, что узел указывает на компьютер или ресурс, в то время как поддомен расширяет родительский домен.
Читая о поддоменах или узлах, вы можете заметить, что самый левые части доменов наиболее конкретные. Это объясняет работу DNS: от наиболее конкретного к наименее конкретному, так как вы читаете слева направо.
Полностью определенное имя домена
Полностью определенное имя домена часто называют FQDN, или полное имя домена. Домены в системе DNS могут быть определены по отношению друг к другу и, по существу, неоднозначны. FQDN является полным именем, которое указывает его место в отношении к абсолютному корню системы доменных имен.
Это означает, что он указывает на каждый родительский домен, включая TLD. Правильный FQDN заканчивается точкой, указывая на корень иерархии DNS. Примером FQDN является «mail.google.com.». Иногда программное обеспечение, которое запрашивает FQDN, не нуждается в точке на конце, но завершающая точка требуется для соответствия стандартам ICANN.
DNS-сервер
DNS-сервер это компьютер, предназначенный для перевода доменных имен в IP-адреса. Эти серверы проделывают основную часть работы в системе доменных имен. Так как общее число доменных переводов слишком велико для любого сервера, каждый сервер может перенаправить запрос на другие DNS-сервера или делегировать ответственность за подмножество поддоменов, которое находится под их ответственностью.
DNS-сервера могут быть «авторитетными», что означает, что они предоставляют ответы на запросы о доменах под своим контролем. В противном случае они могут указать на другие серверы или предоставить кэшированные копии данных других DNS-cерверов.
Файл зоны
Файл зоны представляет собой простой текстовый файл, который содержит соединение между доменными именами и IP-адресами. С помощью него DNS выясняет, с каким IP-адресом необходимо связаться, когда пользователь запрашивает определенное доменное имя.
Файлы зоны находятся на DNS-серверах и в общем определяют ресурсы, доступные под конкретным доменом, или место, в котором можно запросить данную информацию.
Ресурсные записи
Записи хранятся в пределах файла зоны. В своей простейшей форме запись это простое соединение между ресурсом и именем. Эти записи могут соединять имя домена с IP-адресом, определять DNS-серверы и почтовые серверы для домена и т.д.
Как работает DNS
Теперь, когда вы знакомы с некоторой терминологией, связанной с DNS, возникает вопрос, как действительно работает система?
Система очень проста, если смотреть в общем, но очень сложна, если вы углубитесь в детали. В целом, это очень надежная инфраструктура, которая была необходима для адаптации интернета таким, каким мы знаем его сегодня.
Корневые серверы DNS
Как уже говорилось выше, DNS, по сути, является иерархической системой. В верхней части этой системы находится то, что мы называем корневым сервером DNS. Эти серверы находятся под контролем различных организаций, действующих по согласию с ICANN (Корпорация по управлению доменными именами и IP-адресами).
В настоящее время 13 корневых серверов находятся в эксплуатации. Тем не менее, так как каждую минуту появляется немыслимое количество имен для преобразования, каждый из этих серверов имеет зеркало. Интересно, что все зеркала для одного корневого сервера делят один IP-адрес. Когда выполняется запрос к определенному серверу, он будет перенаправлен к ближайшему зеркалу этого корневого сервера.
Что делают эти корневые серверы? Они обрабатывают запросы на информацию о доменах верхнего уровня. Поэтому если приходит запрос о чем-то, что DNS-сервер не может преобразовать, то запрос перенаправляется в корневой DNS-сервер.
Корневые серверы на самом деле не обладают информацией о том, где размещен домен. Они, однако, в состоянии направить запрашивающего к DNS-серверу, который обрабатывает нужный домен верхнего уровня.
Таким образом, если запрос «www.wikipedia.org» производится в корневой сервер, то он ответит, что не может найти результат в своих записях. Он проверит свои файлы зоны на наличие соответствий «www.wikipedia.org». И также не найдет их.
Вместо этого он найдет запись для домена верхнего уровня «org» и предоставит запрашивающему адрес DNS-сервера, отвечающего за адреса «org».
TLD Серверы
После этого запрашивающий отправит новый запрос на IP-адрес (предоставленный ему корневым сервером), который отвечает за необходимый домен верхнего уровня.
Продолжая наш пример, запрос был бы отправлен на DNS-сервер, отвечающий за информацию о домене «org», чтобы проверить, есть ли у него информация о том, где находится «www.wikipedia.org».
Опять же запрашивающий будет искать «www.wikipedia.org” в своих файлах зоны. И не найдет эту запись в своих файлах
Тем не менее он найдет запись с упоминанием IP-адреса DNS-сервера, ответственного за «wikipedia.org». И это приближает нас гораздо ближе к результату.
DNS-сервер на уровне домена
На этом этапе у запрашивающего есть IP-адрес DNS-сервера, который хранит информацию о фактическом IP-адресе ресурса. Он отправляет новый запрос на DNS-сервер с уточнением, может ли он предоставить «www.wikipedia.org».
DNS-сервер проверяет свои файлы зоны и обнаруживает, что у него есть файл зоны, соотносящийся с «wikipedia.org». Внутри этого файла находится запись для «WWW» узла. Эта запись указывает IP-адресу, где находится этот узел. DNS-сервер возвращает окончательный ответ на запрос.
Что такое публичный DNS-сервер?
В приведенном выше сценарии мы ссылались на «запрашивающего”. Что же это может значить?
Почти во всех случаях запрашивающим будет являться то, что мы называем «публичный DNS-сервер». Этот сервер настроен на отправку запросов другим серверам. По сути, это посредник для пользователя, который кэширует предыдущие результаты запроса для повышения скорости и знает адреса корневых серверов, способных преобразовать запросы, сделанные для данных, информацией о которых он уже не владеет.
Как правило, пользователь будет иметь несколько публичных DNS-серверов, настроенных на их компьютерной системе. Публичные DNS-серверы обычно предоставляются ISP или другими организациями. Например, Google предоставляет публичные DNS-сервера, которые вы можете запросить. Они могут быть настроены на вашем компьютере автоматически или вручную.
При вводе URL в адресной строке браузера ваш компьютер прежде всего проверяет, может ли он найти, где находится ресурс, на локальном уровне. Он проверяет «узлы» файлов на компьютере и других местах. Затем он отправляет запрос на публичный DNS-сервер и ожидает получить обратно IP-адрес ресурса.
Затем публичный DNS-сервер проверяет свой кэш на наличие ответа. Если он не найдет то, что необходимо, он проделает шаги, указанные выше.
Публичные DNS-серверы по сути сжимают процесс отправки запроса для конечного пользователя. Клиенты просто должны не забывать спрашивать публичный DNS-сервер, где находится ресурс, и быть уверенными, что они найдут окончательный ответ.
Файлы зоны
Мы уже упоминали в перечисленных выше процессах «файлы зоны» и «записи».
Файлы зоны это способ, с помощью которого DNS-сервер хранит информацию о доменах, которые он знает. Каждый домен, информация о котором есть у DNS-сервера, хранится в файле зоны. Если DNS-сервер настроен для работы c рекурсивные запросами, как публичный DNS-сервер, он найдет ответ и предоставит его. В противном случае он укажет пользователю, где искать дальше. Чем больше у сервера файлов зоны, тем больше ответов на запросы он сможет предоставить.
Файл зоны описывает DNS «зону», которая, по существу, является подмножеством всей системы DNS. Как правило, она используется для настройки только одного домена. Она может содержать некоторое количество записей, которые указывают, где находятся ресурсы для запрашиваемого домена.
Это настраивается на верхнем уровне файла зоны или может быть указано в настройках файла DNS-сервера, который ссылается на файл зоны. В любом случае этот параметр описывает то, за что зона будет ответственна.
Типы записи
В файле зоны может быть множество различных типов записей. Мы рассмотрим некоторые из наиболее распространенных видов (или обязательных) ниже.
Записи SOA
Начальная запись зоны выглядит примерно так:
Поясним, что означает каждая часть:
А и AAAA записи
Обе эти записи соединяют узел с IP-адресом. «А» запись используется для соединения узла с IPv4 IP-адреса, в то время как запись “AAAA» используется для соединения хоста для адреса IPv6.
Общий формат этих записей выглядит следующим образом:
host IN IPv4_address
host IN AAAA IPv6_address
Таким образом, если SOA запись обращается к основному мастер серверу в «ns1.domain.com», мы должны соединить этот адрес с IP-адресом, так как «ns1.domain.com» находится в зоне domain.com, которую определяет этот файл.
Запись может выглядеть примерно так:
ns1 IN A 111.222.111.222
В большинстве случаев это то место, где вы укажете свой веб-сервер как «WWW»:
WWW IN A 222.222.222.222
Мы должны также сказать, где находится основной домен. Мы можем сделать это следующим образом:
domain.com. IN A 222.222.222.222
Мы также могли бы использовать символ «@», чтобы обратиться к основному домену:
@ IN A 222.222.222.222
У нас также есть возможность преобразования всего, что находится под этим доменом, но не явно относится к этому серверу. Мы можем сделать это с помощью символа «*»:
* IN A 222.222.222.222
Все выше перечисленное также работает с AAAA записями для IPv6-адресов.
Запись CNAME
CNAME записи указывает псевдоним для канонического имени вашего сервера (который определен А или AAAA записью).
Например, у нас может быть A запись, определяющая узел «server1», а затем мы можем использовать «WWW» в качестве псевдонима для данного узла:
server1 IN A 111.111.111.111
www IN CNAME server1
Знайте, что эти псевдонимы сопровождаются некоторыми потерями производительности, потому что они требуют дополнительного запроса к серверу. В большинстве случае те же результаты могут быть достигнуты с помощью дополнительных A или AAAA записей.
CNAME рекомендуется использовать, когда необходимо предоставить псевдоним ресурсу за пределами текущей зоны.
Запись MX
MX записи указывают серверы обмена почты для домена. Это помогает сообщениям электронной почты приходить в ваш почтовый сервер правильно.
В отличие от многих других типов записей, почтовые записи, как правило, не присоединяют узел к чему-либо, потому что они распространяются на всю зону. Они, как правило, выглядит следующим образом:
IN MX 10 mail.domain.com.
Обратите внимание, что в начале нет имени узла.
Также в записи присутствует дополнительный номер. Это предпочтительный номер, который помогает компьютерам определить, какому серверу отправлять почту, если указаны несколько почтовых серверов. Более низкие значения имеют более высокий приоритет.
Запись MX должна, по сути, переправлять на узел, указанный в записи A или AAAA, а не к той, что указана CNAME.
Представим, что у нас есть два почтовых сервера. Там должны быть записи, которые выглядят примерно так:
IN MX 10 mail1.domain.com.
IN MX 50 mail2.domain.com.
mail1 IN A 111.111.111.111
mail2 IN A 222.222.222.222
В этом примере узел «mail1» является предпочтительным сервером обмена почты.
Мы могли бы также написать это следующим образом:
IN MX 10 mail1
IN MX 50 mail2
mail1 IN A 111.111.111.111
mail2 IN A 222.222.222.222
NS записи
Этот тип записи указывает на DNS-сервера, используемые для этой зоны.
Вы можете спросить: “Почему файлу зоны, находящемуся на DNS-сервере, необходимо ссылаться на себя самого?” DNS-сервер настолько удобен, потому что имеет несколько уровней кэширования. Одной из причин для указания DNS-серверов в файле зоны служит то, что файл зоны может быть фактически обслужен с кэшированной копии на другом DNS-сервере. Есть и другие причины, объясняющие необходимость DNS-серверов ссылаться на сами DNS-сервера, но мы не будем вдаваться в эти подробности.
Как MX записи, NS записи являются параметрами всей зоны, так что они также не соединяют узлы. Выглядят они так:
IN NS ns1.domain.com.
IN NS ns2.domain.com.
Вы должны иметь по крайней мере два DNS-сервера, указанные в каждом файле зоны для того, чтобы правильно действовать, если есть проблема с одним из серверов.
Большая часть программного обеспечения DNS-серверов считает файл зоны недействительным, если указан только один DNS-сервер.
Как всегда, учитывайте соединение для узлов с записями A или AAAA:
IN NS ns1.domain.com.
IN NS ns2.domain.com.
ns1 IN A 111.222.111.111
ns2 IN A 123.211.111.233
Есть немало других типов записей, которые можно использовать, но это, вероятно, наиболее распространенные типы, которые вы встретите.
Вывод
Теперь у вас должно сформироваться достаточно хорошее представление о том, как работает DNS. В то время как идея, в общем, довольно проста для понимания, если вы знакомы с основными принципами, некоторые детали все еще могут быть непонятны для неопытных администраторов в процессе практики.