Что означает цифра в скобках

Что на самом деле означает число в скобках?

Я всегда думал, что число в скобках представляет поле длина? Однако, я понимаю, что это не всегда так. Может быть, это проблема mysql? Кто-то сказал мне, что если я установлю поле длиной 9 символов, я могу добавить значение, которое больше 9 символов, но будут сохранены только первые 9.

Если это так, не должен ли я выбрать что-то вроде TINYINT вместо INT для возраста?

2 ответов

MySQL поддерживает расширение для необязательного указания ширины отображения целочисленных типов данных в скобках после базового ключевого слова для типа. Например, INT (4) задает INT с шириной отображения в четыре цифры. Эта необязательная ширина отображения может использоваться приложениями для отображения целочисленных значений, ширина которых меньше ширины, указанной для столбца слева-заполнение пробелами. (То есть, эта ширина присутствует в метаданных, возвращаемых с результирующими наборами. Используется ли он или нет, зависит от приложения.)

это не влияет на диапазон возможных значений, которые могут быть сохранены в поле; ни это количество байтов, используемых для его хранения. Кажется, это только рекомендация для приложений, как показать значение, если ZEROFILL используется (см. соответствующую страницу).

беззнаковый TINYINT (0. 255), вероятно, сделал бы то же самое, если бы криоконсервация делает большой шаг вперед в течение жизни вашего приложения.

Источник

Скобки в математике

Вы будете перенаправлены на Автор24

Скобки в математике играют очень важную роль: с помощью них задаётся порядок действий с выражением, обозначаются границы промежутков и необходимость выполнения какого-либо действия над выражением. Также с помощью скобок обозначаются вектора и матрицы и действия с множествами.

Использование круглых скобок в математике

Круглые скобки в математике встречаются наиболее часто, и они используются для множества целей.

Первое применение.

С помощью круглых скобок устанавливается порядок действий для вычисления алгебраического выражения. Выражение, которое стоит в скобках, вычисляется первым, за ним следует вычисление всех остальных.

В случае же если в выражении скобок много и одна находится внутри другой — первыми вычисляются скобки с максимальной глубиной вложенности.

Второе применение.

Третье применение.

Круглые скобки также используются для обозначения действий, которые необходимо совершить над всем выражением, стоящим в скобках. Под действием здесь имеются в виду возведение в степень, взятие производной или вычисление подинтегрального выражения.

$(x+2)^2; \int_1^5 (x^2+5x)dx; f’(x)= (5x^2 + 1)’$

Четвёртое применение.

Пятое применение.

Готовые работы на аналогичную тему

Пятое применение.

Квадратные скобки в математике

Что же означают квадратные скобки в математике и для чего они используются?

Квадратные скобки в математике встречаются реже чем круглые, но всё же их можно встретить довольно часто.

Первое применение.

Квадратные скобки иногда используются при записи выражений наряду с круглыми для того, чтобы было проще различить скобки и, соответственно, задаваемый ими порядок действий. Часто с такой целью квадратные скобки используются для записи формул физики и других технических наук.

Второе применение.

Третье применение.

С помощью квадратной скобки записывают совокупности. Совокупности — это системы уравнений, для которых справедливы все множества решений для каждого уравнения, входящего в совокупность.

$\left [ \begin x +32=2y \\ y^2-12=0 \\ \end\right.$

Фигурная скобка в математике

Первое применение.

С помощью символа фигурной скобки обозначают систему уравнений, решением которой являются корни, подходящие для всех уравнений, включённых в систему.

Второе применение.

Третье применение.

Треугольные скобки

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 06 03 2021

Источник

Числовые и буквенные выражения

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Числовые выражения: что это

Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.

Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.

Например:

Это простые числовые выражения.

Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:

Это сложные числовые выражения.

Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».

Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.

Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.

11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.

При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:

Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)

Часто бывает нужно сравнить два числовых выражения.

Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.

Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2

14 больше 4
14 > 4
6 + 8 > 2 * 2

Буквенные выражения

Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.

В буквенном выражение есть цифры, знаки арифметических действия и буквы.

Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.

Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.

У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:

Пример 1. Найдите значение выражения: 5 + x.

Пример 2. Найдите значение выражения: (4 + a) * (2 + x).

Выражения с переменными

Переменная — это значение буквы в буквенном выражении.

Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.

Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.

5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a

Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.

Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.

Задание раз.

Задание два.

Составьте буквенное выражение:

Сумма разности b и 345 и суммы 180 и x.

Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.

Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?

150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.

Ответ: Маша и Лена посмотрели всего 313 видео.

Источник

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Общая характеристика

Главная задача знаков — описание этапов осуществляемых действий. Математическое уравнение или выражение имеет одиночную пару квадратных, фигурных и других скобок, а также может использовать их некоторое количество.

Значение и разновидности

Скобки — это парные знаки, используемые во всевозможных областях. Чтобы правильно выстроить фразу в русском языке, для понимания смысла текста в предложении они употребляются как знаки препинания. С начальных классов школы изучают основы этих знаков.

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

В расчетах первая из скобок считается открывающей, а вторая — замыкающей. Оба знака соответствуют друг другу, но также используются те, в которых открытие или закрытие не различается (косые /…/, прямые скобки |…|, двойные прямые ||…||. Раскрывать значение можно чаще всего в математике, физике, химии и остальных науках для указания важности выполнения операции в формулах. На компьютерной клавиатуре представлены все виды знаков препинания.

Разновидности:

Открытие круглых () произошло в 1556 году для подкоренного выражения. По правилу первым выполняется действие внутри знака, затем произведение или определение частного (деление), а в конце — суммирование и разница.

В Microsoft word, Excel включена электронная конфигурация этих знаков. Часто используемые виды скобок, следующие: (), [ ], < >(), [ ], < >. Также встречаются двойные, называемые обратными (]] и [ [) или > в виде уголка. Их использование является двойственным — с открывающейся и замыкающей скобочкой.

Основные цели квадратной скобки в математике:

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Другие варианты расчета:

Квадратные скобки в математике обозначают, что действие выполняется последовательно. Эти знаки позволяют разграничить операции.

Треугольные актуальны в теории групп. Правило записи ⟨ a ⟩ n характеризует циклическую группу порядка n, сформированную элементом a.

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Круглые (операторные) () используются в математике для описания первостепенности действий. Например, (1 +5)*3 означает, что нужно сначала сложить 1 и 5, а затем полученную величину перемножить на 3. Наряду с квадратными, используются для записи разных компонент векторов, матриц и коэффициентов.

На уроке математики преподаватель объясняет, как раскрыть скобки в уравнении для последующего решения. Фигурная одинарная < встречается при решении систем уравнений, обозначает пересечение данных, а [[ используется при их слиянии.

Одинарные или двойные выражения

Употребление [] происходит реже. Одно уравнение со скобками объединяет несколько значений или неравенств различных размеров. Для решения совокупности нужно выполнить любое условие. Конец, завершение действия замыкает закрывающий знак.

В персональных компьютерах, ноутбуках, нетбуках встроена кодировка Юникод, закрепленная не за левыми или правыми объединяющими знаками, а за открывающими и замыкающими, поэтому при воспроизведении печатного текста со скобочками в режиме «справа налево» каждый знак меняет внешнее направление на обратное.

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Квадратные скобки в уравнении означают, что установлен порядок действий, задаются границы промежутков и необходимость выполнения действия над выражением. Двойные квадратные скобки необходимы для записи выражений наряду с круглыми для рационального порядка действий.

По правилам интервал [−a;+a] записывается в виде нестрогого неравенства −a≤x≤a, означающего, что x находится на промежутке от −a до a включительно.

В середине парного знака с отделяющей точкой или запятой указываются два числа — наименьшее, затем большее, ограничивающие интервал. Круглая скобочка, прилегающая к цифре, означает невключение числа в промежуток, а квадратная — добавление.

В некоторых учебных пособиях для вузов встречаются расшифровки числовых интервалов, в которых вместо круглой скобочки (применяется обратная квадратная скобка ], и наоборот. В обозначениях запись ]0, 1[ равносильна (0, 1).

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Открытая квадратная скобка (символ [) значит, что совокупность представляет систему уравнений разных размеров, для которых справедливы все множества решений для каждого уравнения, входящего в общее задание. Например, [x+11=2yy2−12=0

Прежде чем решать задачу или выполнять задание, нужно правильно определить принципы действий. В некоторых случаях скобочки могут быть не нужны, а иногда их обязательно нужно поставить.

Прочие знаки

Для математических, алгебраических и прочих расчетов важно знать различие обобщающих знаков. От правильности вычислений зависит итоговый результат.

Удобство записи системы уравнений

Применение фигурных знаков относится к представлению совмещения множеств. При решении системы с фигурной скобкой уравнения пересекаются, а [] объединяет их.

Источник

Урок 40 Бесплатно Раскрытие скобок

Ученые, открывая все новые математические законы и правила, вместе с тем, придумывали различные обозначения, символы и знаки.

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Система математических знаков и символов представляет собой математический язык, который упрощает и сокращает процесс изложения информации, позволяет точнее выразить мысль и избежать неверной трактовки и ошибок.

Кроме букв алфавитов и цифр математический язык содержит огромное множество различных символов и знаков.

Одним из наиболее часто используемых символов являются скобки.

На этом уроке рассмотрим, какие основные виды скобок существуют в математике, их обозначение и применение.

Выясним, что обозначает понятие «раскрыть скобки», познакомимся с правилами раскрытия скобок и разберем примеры применения данных правил.

Скобки в математике и их предназначение

Скобки являются парными знаками (за исключением некоторых математических обозначений): обычно первая в паре скобка- открывающая, вторая- закрывающая.

Парные скобки ограничивают часть некоторого математического выражения, т.е. заключают в себе некоторую часть целой математической записи.

В математике применяют несколько видов скобок.

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Чаще всего используют три вида скобок: круглые скобки ( ), квадратные скобки [ ] и фигурные скобки <>

Круглые скобки используют:

Круглые скобки используют часто в математических выражениях для указания последовательности и приоритета математических действий и логических операций или изменения принятого порядка этих действий.

Квадратные скобки в математике, например, используют для обозначения целой части числа, для определения приоритета операции (аналогично круглым скобкам), в качестве скобок «второго уровня» и др.

Фигурные скобки применяют, например, для обозначения множеств. Одинарная фигурная скобка обозначает объединение неравенств или уравнений в систему.

Используется двойная фигурная скобка, подобно круглым и квадратным скобкам, для разграничения приоритета действий в математических выражениях, в качестве скобок «третьего уровня» и др.

Вспомним порядок выполнения действий в выражениях со скобками.

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

По правилу, в выражении, содержащем скобки, первыми выполняются действия, стоящие в скобках, далее по порядку умножение и деление, а затем сложение и вычитание.

На примере рассмотрим использование скобок для указания порядка действий или изменении этого порядка.

Пример:

Дано выражение \(\mathbf<8 + 5 \cdot 2>\)

Найдем значение этого выражения, используя правило, которое определяет порядок выполнения действий в математических выражениях.

Ответ: 18

Если выражение будет содержать все те же числа и математические операции, но будет записано в виде: \(\mathbf<(8 + 5)\cdot 2>\), то в первую очередь выполняется действие в скобках, а затем умножение, получим

Ответ: 26

Мы можем заметить, что при изменении порядка действий с помощью скобок изменилось значение выражения.

Существуют выражения, которые содержат несколько пар скобок. В этом случае действия выполняют, начиная с первой скобки, и далее по порядку слева направо в следующих скобках, затем все действия согласно известным правилам, определяющим порядок выполнения математических операций в выражениях.

Пример:

Первым делом выполняются действия в скобках, затем умножение, далее сложение.

Решение будет выглядеть так:

Иногда встречаются выражения, где применяются сложные сочетания скобок (вложенные скобки).

Выполнять действия следует с внутренних скобок, затем математические операции проводят, продвигаясь ко внешним скобкам.

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Пример:

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Решение будет выглядеть так:

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Ответ: 46

Для того, чтобы проще было различить одну пару скобок от другой, скобки обозначают разными размерами, либо дополнительно применяют квадратные и фигурные скобки, либо скобки изображают попарно разным цветом.

1. Скобки обозначены разных размеров:

2. Дополнительно применены квадратные и фигурные скобки:

3. Скобки изображены попарно разным цветом:

У меня есть дополнительная информация к этой части урока!

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Скобки в качестве символа математического языка стали использовать в XVI— начале XVII века.

Первыми появились скобки [ ] в 1550 г. их ввел итальянский математик Рафаэль Бомбелли.

Круглые скобки ( ) появились в 1556 г.

Итальянский математик Никколо Тарталье впервые применил круглые скобки в написанной им в 1556 г.,книге под названием «Общие исследования чисел и мер».

Фигурные скобки появились немного позже, в 1593 году, благодаря французскому математику Франсуа Виету.

Несмотря на появление скобок различных видов, долгое время многие ученые, математики предпочитали вместо скобок подчеркивать выделяемое выражение или изображать линию над выделяемым выражением.

Широкое распространение скобки получили позже (в первой половине XVIII века), благодаря математикам Г. В. Лейбницу и Л. Эйлеру

Пройти тест и получить оценку можно после входа или регистрации

Раскрытие скобок

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

Как вам уже известно, скобки в математических выражениях часто используют для разграничения рядом стоящих знаков или для объединения и перегруппировки чисел, с которыми будут выполнятся определенные математические действия.

Но иногда при решении математических выражений удобно раскрыть скобки, нежели высчитывать их значение.

Раскрыть скобки- это значит освободить выражение от скобок, избавить выражение от лишних знаков, тем самым упростить его для вычисления.

Значение выражение со скобками и значение выражения, полученное после раскрытия скобок, равны, их записывают в виде равенства.

При преобразовании громоздких выражений, в которых содержится большое количество скобок, возникает потребность записывать промежуточные результаты вычислений. В таких случаях решение записывается в виде цепочки равенств.

Рассмотрим правила раскрытия скобок.

Разберем случаи, когда перед скобками стоит знак плюс «+».

1. Выражение вида а + (-b) можно записать, опустив скобки.

2. Выражение вида а + (b+ c) можно записать без скобок.

Согласно сочетательному свойству сложения, если к числу прибавить сумму двух чисел, то нужно сначала к этому числу прибавить первое слагаемое, а затем второе слагаемое.

а + (b + c) = а + b + c

3. Рассмотрим еще одно выражение а + (b c), и преобразуем это выражение в выражение без скобок.

Если первое слагаемое в скобках стоит без знака, то его знак определяется как знак плюс «+».

Известно, что вычитание можно заменить сложением, следовательно:

а + (b c) = а + (b+ (-c))

Применив сочетательное свойство, упростим выражение а + (b+ (-c)), в результате получим:

а + (b c) = а + b c

Рассуждая подобным образом, попробуем преобразовать еще два выражения со скобками.

4. Преобразуем выражение вида а + (-b+ c) в выражение без скобок.

Зная, что вычитание можно заменить сложением и применив сочетательное свойство сложения, упростим выражение:

5. Преобразуем выражение вида а + (-b c) в выражение без скобок.

Зная, что вычитание можно заменить сложением, и применив сочетательное свойство сложения, упростим выражение:

Заметим, что в левой части каждого из равенств перед скобкой стоит знак «+», а слагаемые, стоящие в скобке, после преобразования сохраняют свои знаки:

а + (b + c) = а + b+ c

Пример: 15 + (5 + 2) = 15 + 5 + 2 = 22

а + (b c) = а + b c

Сформулируем правило раскрытия скобок, перед которыми стоит знак плюс:

Если перед скобками стоит знак плюс или не стоит никакого знака, то этот знак «+» и скобки необходимо опустить, сохранив знаки слагаемых, которые стояли в скобках.

Пример:

Избавимся от скобок, используя правило раскрытия скобок, перед которыми стоит знак «+».

Затем найдем значение выражения, используя переместительное свойство сложения и правило сложения чисел с разными знаками.

Ответ: 2

Рассмотрим случаи, когда перед раскрываемыми скобками стоит знак минус «-».

Вспомним, какие числа называют противоположными: два числа называют противоположными, если они отличны друг от друга только знаками, модули их равны.

Число а противоположно числу (-а).

-(-а) противоположно числу (-а).

Тогда верно утверждение, что -(-а) = а

Найдем значение выражения: -(-8 + 4)

Определим значение данного выражения двумя способами:

1. Найдем значение суммы в скобках, затем полученную сумму запишем со знаком минус «-».

В первом и во втором случае получили одинаковый результат, он равен четырем.

Сформулируем правило раскрытия скобок, перед которыми стоит знак минус.

Если перед скобками стоит знак минус, то этот знак «-» и скобки необходимо опустить, изменив знаки слагаемых, которые стояли в скобках на противоположные (знак минус меняется на плюс, знак плюс на минус).

Рассмотрим несколько равенств и раскроем скобки в них согласно данному правилу.

У меня есть дополнительная информация к этой части урока!

Что означает цифра в скобках. Смотреть фото Что означает цифра в скобках. Смотреть картинку Что означает цифра в скобках. Картинка про Что означает цифра в скобках. Фото Что означает цифра в скобках

В математике существуют правила достаточно объемные и сложные для понимания.

Благодаря стихотворной форме некоторые математические законы, правила и формулы становятся проще для запоминания и усвоения.

В связи с этим математики придумали множество забавных стихотворений о правилах раскрытия скобок.

Вот некоторые из них:

1. Если перед скобкой минус,

Он ведет себя как вирус.

Скобки сразу все съедает,

Всем, кто в скобках, знак меняет.

Ну, а если плюс стоит,

Он все знаки сохранит.

2. Перед скобкой плюс стоит,

Он о том и говорит,

Что ты скобки опускай,

Да все числа выпускай.

Перед скобкой минус строгий

Загородит нам дорогу.

Чтобы скобки все убрать,

Надо знаки поменять.

3. Перед скобкой вижу плюс,

Ошибиться не боюсь.

Пример:

Избавимся от скобок, используя правило раскрытия скобок, перед которыми стоит знак «-».

Затем найдем значение выражения, используя переместительное свойство сложения и правило сложения чисел с разными знаками.

Разберем правило раскрытия скобок при умножении числа на сумму (суммы на число).

Правило раскрытия скобок для данного случая звучит так:

Для раскрытия скобок в выражениях, содержащих умножение суммы на число или числа на сумму, используется распределительное свойство умножения относительно сложения.

Если число с положительное, то знаки слагаемых a и b не изменяются.

Если число с отрицательное, то знаки слагаемых a и b меняются на противоположные.

Пример:

Воспользуемся правилом раскрытия скобок при умножении суммы на число.

Ответ: 3,8

Пример:

Воспользуемся правилом раскрытия скобок при умножении суммы на число.

Пройти тест и получить оценку можно после входа или регистрации

Заключительный тест

Пройти тест и получить оценку можно после входа или регистрации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *