Что означает тождественно равные выражения
Тождественно равные выражения. Тождества
Два выражения, значения которых равны при любых значениях переменных, называют тождественно равными. |
Рассмотрим две пары выражений:
1) и
Найдем их значения при
Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных и значения выражений и равны.
2)
Найдем их значения при
Мы получили один и тот же результат. Однако, можно указать такие значения и , при которых значения этих выражений не будут иметь равные значения. Например, если , то
Мы получили разные результаты.
Следовательно, выражения и являются тождественно равными, а выражения не являются тождественно равными.
Равенство, верное при любых значениях переменных, называется тождеством. |
Равенство — тождество, т.к. оно верно при любых значениях и .
Также к тождествам можно отнести равенства, выражающие свойства сложения и умножения чисел:
Можно привести и другие примеры тождеств:
Тождествами считают и верные числовые равенства.
Очень часто при вычислении значений выражений, легче сначала упростить имеющееся выражение, а затем выполнять вычисления.
Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. |
К тождественным преобразованиям можно отнести приведение подобных слагаемых и раскрытие скобок.
Примеры:
1) , мы преобразовали выражение в выражение .
2) , мы преобразовали выражение в выражение .
Для того, чтобы доказать, что данное равенство является тождеством (или доказать тождество), используют следующие методы:
1) тождественно преобразуют одну из частей данного равенства, получая другую часть;
2) тождественно преобразуют каждую из частей данного равенства, получая одно и то же выражение;
3) доказывают, что разность левой и правой частей данного равенства тождественно равна нулю.
Также, чтобы доказать, что равенство не является тождеством, достаточно привести контрпример, т.е. указать такое значение переменной (или переменных, если их несколько), при котором данное равенство не выполняется.
Пример: Докажите, что равенство не является тождеством.
Решение: Приведем контрпример. Если , то
, следовательно, равенство не является тождеством.
Поделись с друзьями в социальных сетях:
Тождественно равные выражения: определение, примеры.
Получив представление о тождествах, логично перейти к знакомству с тождественно равными выражениями. В этой статье мы ответим на вопрос, что такое тождественно равные выражения, а также на примерах разберемся, какие выражения являются тождественно равными, а какие – нет.
Навигация по странице.
Что такое тождественно равные выражения?
Определение тождественно равных выражений дается параллельно с определением тождества. Это происходит на уроках алгебры в 7 классе. В учебнике по алгебре для 7 классов автора Ю. Н. Макарычев приведена такая формулировка:
Тождественно равные выражения – это выражения, значения которых равны при любых значениях входящих в них переменных. Числовые выражения, которым отвечают одинаковые значения, также называют тождественно равными.
Это определение используется вплоть до 8 класса, оно справедливо для целых выражений, так как они имеют смысл для любых значений входящих в них переменных. А в 8 классе определение тождественно равных выражений уточняется. Поясним, с чем это связано.
Два выражения, значения которых равны при всех допустимых значениях входящих в них переменных, называются тождественно равными выражениями. Два числовых выражения, имеющие одинаковые значения, также называются тождественно равными.
В данном определении тождественно равных выражений стоит уточнить смысл фразы «при всех допустимых значениях входящих в них переменных». Она подразумевает все такие значения переменных, при которых одновременно имеют смысл оба тождественно равных выражения. Эту мысль разъясним в следующем пункте, рассмотрев примеры.
Определение тождественно равных выражений в учебнике Мордковича А. Г. дается немного иначе:
Тождественно равные выражения – это выражения, стоящие в левой и правой частях тождества.
По смыслу это и предыдущее определения совпадают.
Примеры тождественно равных выражений
Введенные в предыдущем пункте определения позволяют привести примеры тождественно равных выражений.
Однако области допустимых значений переменных в выражениях могут отличаться. Для примера возьмем выражения x−1 и . Областью допустимых значений переменной x в выражении x−1 является все множество действительных чисел, а ОДЗ переменной x в выражении составляют все действительные числа, кроме нуля (иначе будет нуль в знаменателе, а деление на нуль не определено). «Общей» областью допустимых значений переменной x для обоих выражений является пересечение ОДЗ переменной x в каждом из этих выражений в отдельности.
Особую ценность имеет замена одного выражения другим, тождественно равным ему. Такая замена называется тождественным преобразованием выражения, эта тема в силу своей важности заслуживают детального рассмотрения в отдельной статье.
Тождество. Тождественные преобразования. Примеры.
Тождества в основном применяются для решения линейных уравнений.
Тождеством называется равенство, которое верно при всех значениях переменных.
Или другими словами, тождество — это равенство, которое выполняется на всём множестве значений переменных, входящих в него, например:
В этих выражениях при всех значениях a и b равенство верное.
2 выражения с равными значениями при всех значениях переменных являются тождественно равными.
Равенство x+2=5 может существовать не при всех значениях x, а лишь при x=3. Это равенство не будет тождеством, это будет уравнением. Кроме того, тождеством будет равенство, которое не содержит переменные, например 25 2 =625.
Тождественное равенство обозначают символом «≡» (тройное равенство).
Примеры тождеств.
— Тождество Эйлера (кватернионы);
— Тождество Эйлера (теория чисел);
— Тождество четырёх квадратов;
— Тождество восьми квадратов;
Тождественные преобразования.
Тождественное преобразование выражения (преобразование выражения) – это подмена одних выражений другими, тождественно равными друг другу.
Для тождественных преобразований используют формулы сокращенного умножения, законы арифметики и другие тождества.
Выполним тождественные преобразования с такой дробью: .
Полученное тождество, при х ≠ 0 и х ≠ 1 (недопустимые значения), т.к. знаменатель левой части не может быть равен нулю.
Доказательство тождеств.
Для того, чтоб доказать тождество нужно сделать тождественные преобразования обеих или одной части равенства, и получить слева и справа одинаковые алгебраические выражения.
Например, доказать тождество:
Вынесем х за скобки:
Это равенство есть тождество, при х≠0 и х≠1.
Чтоб доказать, что равенство не является тождеством, нужно найти 1-но значение переменной (которое допустимо) у которой числовые выражения (которые были получены) станут не равными друг другу.
5−1 ≠ 5+1 — подставим, к примеру, 5.
Это равенство не тождество.
Разница между тождеством и уравнением.
Тождество верно при всех значениях переменных, а уравнение – это равенство, которое верно только при одном либо нескольких значениях переменной.
Это выражение верно лишь при х = 10.
Тождеством будет равенство, которое не содержит переменных.
Тождественно равные выражения: определение, примеры
После того, как мы разобрались с понятием тождеств, можно переходить к изучению тождественно равных выражений. Цель данной статьи – объяснить, что это такое, и показать на примерах, какие выражения будут тождественно равными другим.
Тождественно равные выражения: определение
Понятие тождественно равных выражений обычно изучается вместе с самим понятием тождества в рамках школьного курса алгебры. Приведем основное определение, взятое из одного учебника:
Тождественно равными друг другу будут такие выражения, значения которых будут одинаковы при любых возможных значениях переменных, входящих в их состав.
Также тождественно равными считаются такие числовые выражения, которым будут отвечать одни и те же значения.
Это достаточно широкое определение, которое будет верным для всех целых выражений, смысл которых при изменении значений переменных не меняется. Однако позже возникает необходимость уточнения данного определения, поскольку помимо целых существуют и другие виды выражений, которые не будут иметь смысла при определенных переменных. Отсюда возникает понятие допустимости и недопустимости тех или иных значений переменных, а также необходимость определять область допустимых значений. Сформулируем уточненное определение.
Тождественно равные выражения – это те выражения, значения которых равны друг другу при любых допустимых значениях переменных, входящих в их состав. Числовые выражения будут тождественно равными друг другу при условии одинаковых значений.
Фраза «при любых допустимых значениях переменных» указывает на все те значения переменных, при которых оба выражения будут иметь смысл. Это положение мы объясним позже, когда будем приводить примеры тождественно равных выражений.
Можно указать еще и такое определение:
Тождественно равными выражениями называются выражения, расположенные в одном тождестве с левой и правой стороны.
Примеры выражений, тождественно равных друг другу
Используя определения, данные выше, рассмотрим несколько примеров таких выражений.
Для начала возьмем числовые выражения.
Так, 2 + 4 и 4 + 2 будут тождественно равными друг другу, поскольку их результаты будут равны ( 6 и 6 ).
Но область допустимого значения в одном выражении может отличаться от области другого.
Если мы заменяем одно выражение на другое, которое является тождественно равным ему, то этот процесс называется тождественным преобразованием. Это понятие очень важно, и подробно о нем мы поговорим в отдельном материале.
Тождественные преобразования
Что такое тождественные преобразования
Тождество — это равенство, выполняемое на всем множестве значений переменных, которые в него включены.
К примеру, тождествами являются, в том числе, квадратные выражения:
a 2 − b 2 = ( a + b ) ( a − b )
( a + b ) 2 = a 2 + 2 a b + b 2
В рассмотренных выражениях любые значения a и b обращают их в верные равенства, что полезно знать при решении примеров.
Тождественно равными выражениями называют такие два выражения, которые обладают равными значениями при всех значениях переменных.
Данное равенство существует только в том случае, когда:
Разница между тождеством и уравнением заключается в том, что тождество является верным при любом из значений переменных. Уравнение же верно лишь в том случае, когда имеется одно или несколько значений переменных.
В этом случае тождество не включает в себя переменные.
Замена чисел и выражений тождественно равными им выражениями
Тождественное преобразование выражения (преобразование выражения) представляет собой замену одних выражений на другие, которые тождественно равны между собой.
Данное объяснение преобразований позволяет значительно упростить решение задач. К примеру, для этого используют законы сокращенного умножения, арифметические свойства и другие тождества.
Рассмотрим конкретный пример:
Выполним работу по тождественным преобразованиям этой дроби:
x 3 – x x 2 – x = x ( x 2 – 1 ) x – 1 = x ( x – 1 ) ( x + 1 ) x ( x – 1 ) = x + 1
x 3 – x x 2 – x = x + 1
Доказательство тождеств
В процессе доказательства тождества необходимо выполнить ряд действий:
В качестве самостоятельного примера для тренировки докажем следующее тождество:
x 3 – x x 2 – x = x 2 + x x
x ( x 2 – 1 ) x ( x – 1 ) = x ( x + 1 ) x
Заметим, что можно сократить х :
( x – 1 ) ( x + 1 ) x – 1 = x + 1
Заключим, что рассмотренное равенство является тождеством, если х ≠ 0 и х ≠ 1
Когда требуется доказать, что равенство не относится к тождеству, следует определить одно допустимое значение переменной, при котором полученные числовые выражения обращаются в неравные друг другу. К примеру:
x 2 – x x = x 2 + x x → x ≠ 0
Упростим вычисления с помощью сокращения х :
Данное равенство не является тождеством.
Примеры тождеств
Изучить тождества на практике можно с помощью решения задач на различные тождественные преобразования алгебраических выражений. Ключевой целью таких действий является замена начального выражения на выражение, которое ему тождественно равно.
От перестановки местами слагаемых сумма не меняется:
От перестановки местами сомножителей произведение не меняется:
Согласно данным правилам, можно записать примеры тождественных выражений:
При наличии в сумме более двух слагаемых допускается группировать их путем заключения в скобки. Также можно предварительно переставлять эти слагаемые местами:
a + b + c + d = ( a + c ) + ( b + d )
Аналогичным способом группируют сомножители в произведении:
a × b × c × d = ( a × d ) × ( b × c )
Приведем примеры таких тождественных преобразований:
15 + 6 + 5 + 4 = ( 15 + 5 ) + ( 6 + 4 )
6 × 8 × 11 × 4 = ( 6 × 4 × 8 ) × 11
При увеличении или уменьшении обеих частей тождества на одинаковое число, данное тождество остается верным:
( a + b ) ± e = ( c + d ) ± e
Равенство сохраняется также при умножении или делении обеих частей этого равенства на одно и то же число:
( a + b ) × e = ( c + d ) × e
( a + b ) ÷ e = ( c + d ) ÷ e
Запишем несколько примеров:
35 + 10 = 9 + 16 + 20 ⇒ ( 35 + 10 ) + 4 = ( 9 + 16 + 20 ) + 4
42 + 14 = 7 × 8 ⇒ ( 42 + 14 ) × 12 = ( 7 × 8 ) × 12
Какую-либо разность допускается записывать, как сумму слагаемых:
Аналогичным способом можно выполнить замену частного на произведение:
Рассмотрим примеры тождественных преобразований:
Заменить математическое выражение на более простое можно с помощью арифметических действий:
Преобразования следует выполнять с соблюдением алгоритма:
14 + 6 × ( 35 – 16 × 2 ) + 11 × 3 = 14 + 18 + 33 = 65
20 ÷ 4 + 2 × ( 25 × 3 – 15 ) – 9 + 2 × 8 = 5 + 120 – 9 + 16 = 132
В арифметических выражениях можно избавляться от скобок при необходимости. Исходя из знаков в выражении, определяются правила, согласно которым раскрывают скобки.
Рассмотрим несколько примеров преобразований с помощью раскрытия скобок:
117 + ( 90 – 74 – 38 ) = 117 + 90 – 74 – 38
22 × ( 8 + 14 ) = 22 × 8 + 22 × 14
18 ÷ ( 4 – 6 ) = 18 ÷ 4 – 18 ÷ 6
Другим распространенным действием при упрощении выражений, содержащих скобки, является вынесение за них общего множителя. В результате в скобках остаются слагаемые, поделенные на вынесенный множитель. Данный способ преобразования можно применять в выражениях, которые содержат буквенные переменные.
3 × 5 + 5 × 6 = 5 × ( 3 + 6 )
28 + 56 – 77 = 7 × ( 4 + 8 – 11 )
31 x + 50 x = x × ( 31 + 50 )
В процессе тождественных преобразований часто применяют формулы для сокращенного выражения.
Примеры тождественных преобразований:
( 31 + 4 ) 2 = 31 2 + 2 ⋅ 31 ⋅ 4 + 4 2 = 1225