Что означает точность измерений
ТОЧНОСТЬ ИЗМЕРЕНИЙ
Смотреть что такое «ТОЧНОСТЬ ИЗМЕРЕНИЙ» в других словарях:
Точность измерений — Качество измерений, отражающее близость их результатов к истинному значению измеряемой величины Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений … Словарь-справочник терминов нормативно-технической документации
точность измерений — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN accuracy of measurements … Справочник технического переводчика
Точность измерений — помощью так называемых измерительных приборов постоянно возрастает с ростом науки (Измерения; Единицы мер абсолютные системы). Она зависит теперь не только от тщательного приготовления приборов, но еще от нахождения новых принципов измерений. Так … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
точность измерений — поверка. поверять. прибор врет. см. показывать время … Идеографический словарь русского языка
ГОСТ Р ЕН 306-2011: Теплообменники. Измерения и точность измерений при определении мощности — Терминология ГОСТ Р ЕН 306 2011: Теплообменники. Измерения и точность измерений при определении мощности: 3.31 величина воздействия: Величина, не являющаяся предметом измерения, но способная влиять на получаемый результат. Определения термина из… … Словарь-справочник терминов нормативно-технической документации
точность результата измерений — точность измерений Одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность. [РМГ 29 99] Тематики метрология,… … Справочник технического переводчика
точность — 3.1.1 точность (accuracy): Степень близости результата измерений к принятому опорному значению. Примечание Термин «точность», когда он относится к серии результатов измерений, включает сочетание случайных составляющих и общей систематической… … Словарь-справочник терминов нормативно-технической документации
Точность — средства измерений степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью… … Википедия
точность — Степень близости результата измерений к принятому опорному значению. Примечание. Термин «точность», когда он относится к серии результатов измерений (испытаний), включает сочетание случайных составляющих и общей систематической… … Справочник технического переводчика
точность средства измерений — точность Характеристика качества средства измерений, отражающая близость его погрешности к нулю. Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений. [РМГ 29 99] Тематики метрология, основные понятия Синонимы точность … Справочник технического переводчика
Точность измерений
Смотреть что такое «Точность измерений» в других словарях:
Точность измерений — Качество измерений, отражающее близость их результатов к истинному значению измеряемой величины Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений … Словарь-справочник терминов нормативно-технической документации
ТОЧНОСТЬ ИЗМЕРЕНИЙ — характеристика качества измерений, отражающая степень близости результатов измерений к истинному значению измеряемой величины. Чем меньше результат измерения отклоняется от истинного значения величины, т. е. чем меньше его погрешность, тем выше Т … Физическая энциклопедия
точность измерений — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN accuracy of measurements … Справочник технического переводчика
точность измерений — поверка. поверять. прибор врет. см. показывать время … Идеографический словарь русского языка
ГОСТ Р ЕН 306-2011: Теплообменники. Измерения и точность измерений при определении мощности — Терминология ГОСТ Р ЕН 306 2011: Теплообменники. Измерения и точность измерений при определении мощности: 3.31 величина воздействия: Величина, не являющаяся предметом измерения, но способная влиять на получаемый результат. Определения термина из… … Словарь-справочник терминов нормативно-технической документации
точность результата измерений — точность измерений Одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность. [РМГ 29 99] Тематики метрология,… … Справочник технического переводчика
точность — 3.1.1 точность (accuracy): Степень близости результата измерений к принятому опорному значению. Примечание Термин «точность», когда он относится к серии результатов измерений, включает сочетание случайных составляющих и общей систематической… … Словарь-справочник терминов нормативно-технической документации
Точность — средства измерений степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью… … Википедия
точность — Степень близости результата измерений к принятому опорному значению. Примечание. Термин «точность», когда он относится к серии результатов измерений (испытаний), включает сочетание случайных составляющих и общей систематической… … Справочник технического переводчика
точность средства измерений — точность Характеристика качества средства измерений, отражающая близость его погрешности к нулю. Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений. [РМГ 29 99] Тематики метрология, основные понятия Синонимы точность … Справочник технического переводчика
Точность измерений
Я столкнулся с фактом, который удивил меня и скорее всего удивит и вас. Оказывается, измерить напряжение в сети с точностью хотя бы до одного вольта — почти невыполнимая задача.
Шесть приборов на этом фото показывают разные значения, причём максимальное отличается от минимального, более чем на 6 вольт.
В процессе подготовки статьи об измерителях мощности я провёл эксперимент с одновременным измерением сетевого напряжения несколькими приборами и получив такие разные результаты начал разбираться с точностью.
Обычно для цифровых приборов производители указывают точность в виде ±(0.8%+10). Эта запись означает плюс-минус 0.8% плюс 10 единиц младшего разряда. Например, если прибор измеряет напряжение и показывает целые и десятые значения, то при напряжении 230 вольт его точность будет ±(230/100*0.8+10*0.1), то есть ±2.84 В (десять единиц младшего разряда в данном случае составляют 1 вольт).
Иногда указывается точность в виде ±(0.5FS+0.01). FS — это Full Scale. Такая запись означает, что прибор может иметь отклонения показаний до 0.5% от предела диапазона измерения плюс 0.01 вольта (если это вольтметр). Например, если диапазон 750V и указано ±(0.5FS+0.01), отклонение может быть до ±(750/100*0.5+0.01), т. е. ±3.76 В независимо от того, какое напряжение измеряется.
Есть два неприятных нюанса.
Часто в характеристиках прибора производители указывают общие значения точности для типа измерения, а на отдельных диапазонах всё может быть ещё хуже. Так, для моего мультиметра UNI-T UT61E, который я всегда считал очень точным, для измерения переменного напряжения везде, в том числе на сайте производителя указана точность ±(0.8%+10), но если внимательно почитать инструкцию, на 48й странице можно обнаружить вот такую табличку:
В диапазоне 750 V на частоте сети точность измерения на самом деле составляет ±(1.2%+10), то есть ±3.76 В на напряжении 230 В.
Второй нюанс в том, что запись точности зависит от того, сколько знаков после запятой показывает прибор. ±(1%+20) может оказаться точнее, чем ±(1%+3), если первый прибор показывает два знака после запятой, а второй один. В характеристиках приборов количество знаков после запятой на каждом диапазоне указывают редко, поэтому о реальной точности можно только гадать.
Из таблички, приведённой выше, я узнал удивительное. Оказывается, мой UNI-T UT61E на напряжении до 220 вольт показывает два знака после запятой, и значит имеет точность ±1.86 В на напряжении 220 В, ведь в данном случае в записи ±(0.8%+10) 10 — это всего лишь 0.1 В, а вот при напряжении более 220 вольт он начинает показывать один знак после запятой и точность снижается более, чем вдвое.
Я вам ещё не сосем заморочил голову? 🙂
С моим вторым мультиметром Mastech MY65 всё ещё интереснее. На его коробке указана точность измерения переменного напряжения для диапазона 750V ±(0.15%+3). У прибора в этом диапазоне один знак после запятой, значит точность вроде как ±0.645 В на напряжении 230 В.
Но не тут то было! В коробке лежит инструкция, в ней уже ±(1%+15) на том же диапазоне 750 V, а это уже ±3.8 В на напряжении 230 В.
Но и это ещё не всё. Смотрим официальный сайт. А там уже ±(1.2%+15), то есть ±4.26 В на 230 В. Точность неожиданно уменьшилась почти в семь раз!
Этот MY65 вообще странный. Под этим названием продаются два разных мультиметра. Вот, например на одном и том же сайте зелёный MY65 и жёлтый MY65 с разными возможностями, разной конструкцией и разными параметрами.
В китайских интернет-магазинах часто встречается вот такая штука за 3.5 доллара, которая втыкается в розетку и показывает напряжение.
Знаете, какая у неё точность? ±(1.5%+2). Теперь вы знаете, как это расшифровать. Штука показывает целые вольты, значит на напряжении 230 вольт её точность составляет ±(230/100*1.5+2), то есть ±5.45 В. Как в анекдоте, плюс-минус трамвайная остановка.
На самом деле всё не так плохо. Многие приборы имеют реальную точность на порядок выше заявленной. Но эта точность не гарантируется производителем. Может будет гораздо точнее, чем обещали, а может и нет.
Что означает точность измерений
Измеряемые величины не могут быть определены абсолютно достоверно. Измерительные инструменты и системы всегда имеют некоторое допустимое отклонение и помехи, которые выражаются степенью неточности. К тому же, необходимо учитывать и особенности конкретных приборов.
В отношении неточности измерений часто используются следующие термины:
Часто эти термины путаются. Поэтому здесь я хотел бы подробно рассмотреть вышеуказанные понятия.
Неточность измерения
Неточности измерения могут быть разделены на систематические и случайные измерительные ошибки. Систематические ошибки вызваны отклонениями при усилении и настройкой «нуля» измерительного оборудования. Случайные ошибки вызваны шумом и индуцированными напряжениями и/или токами.
Погрешность и точность
Часто понятия погрешность и точность рассматриваются как синонимы. Однако, эти термины имеют совершенно различные значения. Погрешность показывает, насколько близко измеренное значение к его реальной величине, то есть отклонение между измеренным и фактическим значением. Точность относится к случайному разбросу измеряемых величин.
Когда мы проводим некоторое число измерений до момента стабилизации напряжения или же какого-то другого параметра, то в измеренных значениях будет наблюдаться некоторая вариация. Это вызвано тепловым шумом в измерительной цепи измерительного оборудования и измерительной установки. Ниже, на левом графике показаны эти изменения.
Определения неопределенностей. Слева — серия измерений. Справа — значения в виде гистограммы.
Гистограмма
Измеренные значения могут быть изображены в виде гистограммы, как показано справа на рисунке. Гистограмма показывает, как часто наблюдается измеренное значение. Самая высокая точка на гистограмме, это чаще всего наблюдаемое измеренное значение, в случае симметричного распределения равно среднему значению (изображено синей линии на обоих графиках). Черная линия представляет истинное значение параметра. Разница между средним измеренной величины и истинным значением и является погрешностью. Ширина гистограммы показывает разброс отдельных измерений. Этот разброс измерений называется точностью.
Используйте правильные термины
Погрешность и точность, таким образом, имеют различные значения. Поэтому вполне возможно, что измерение является очень точным, но имеющим погрешность. Или наоборот, с малой погрешностью, но не точное. В общем, измерение считается достоверным, если оно точное, и с малой погрешностью.
Погрешность
Погрешность является индикатором корректности измерения. Из-за того, что в одном измерении точность оказывает влияние на погрешность, то учитывается среднее серии измерений.
Погрешность измерительного прибора обычно задается двумя значениями: погрешностью показания и погрешностью по всей шкале. Эти две характеристики вместе определяют общую погрешность измерения. Эти значения погрешности измерения указываются в процентах или в ppm (parts per million, частей на миллион) относительно действуюшего национального стандарта. 1% соответствует 10000 ppm.
Погрешность приводится для указанных температурных диапазонов и для определенного периода времени после калибровки. Обратите внимание, что в разных диапазонах, возможны, и различные погрешности.
Погрешность показаний
Указание процентного отклонения без дополнительной спецификации также относится к показанию. Допустимые отклонения делителей напряжения, точность усиления и абсолютные отклонения при считывании и оцифровке являются причинами этой погрешности.
Неточность показаний в 5% для значения 70 В
Вольтметр, который показывает 70.00 В и имеет спецификацию «± 5% от показаний», будет обладать погрешностью в ±3.5 В (5% от 70 В). Фактическое напряжение будет лежать между 66.5 и 73.5 вольтами.
Погрешность по всей шкале
Этот тип погрешности обусловлен ошибками смещения и ошибками линейности усилителей. Для приборов, которые оцифровывают сигналы, присутствует нелинейность преобразования и погрешности АЦП. Эта характеристика относится ко всему используемому диапазону измерений.
Вольтметр может иметь характеристику «3% шкалы». Если во время измерения выбран диапазон 100 В (равный полной шкале), то погрешность составляет 3% от 100 В = 3 В независимо от измеренного напряжения. Если показание в этом диапазоне 70 В, то реальное напряжение лежит между 67 и 73 вольтами.
Погрешность 3% шкалы в диапазоне 100 В
Погрешность шкалы в цифрах
Часто для цифровых мультиметров приводится погрешность шкалы в разрядах вместо процентного значения.
Вычисление погрешности измерения
Спецификации допустимых отклонений показания и шкалы вместе определяют полную погрешность измерения прибора. Ниже при расчете используются те же значения, что и в приведенных выше примерах:
Точность: ±5% показания (3% шкалы)
Полная погрешность измерения вычисляется следующим образом:
В этом случае, полная погрешность ±6.5В. Истинное значение лежит между 63.5 и 76.5 вольтами. На рисунке ниже это показано графически.
Полная неточность для неточностей показания 5% и 3% шкалы для диапазона 100 В и показания 70 В
Цифры
Цифровые мультиметры могут иметь спецификацию «± 2.0% показания, + 4 цифры». Это означает, что 4 цифры должны быть добавлены к 2% погрешности показания. В качестве примера снова рассмотрим 3½ разрядный цифровой индикатор. Он показывает 5.00 В для выбранного диапазона 20 В. 2% показания будет означать погрешность в 0,1 В. Добавьте к этому численную погрешность (= 0,04 В). Общая погрешность, следовательно, 0,14 В. Истинное значение должно быть в диапазоне между 4.86 и 5,14 вольтами.
Суммарная погрешность
Зачастую в расчет принимается только погрешность измерительного прибора. Но также, дополнительно следует принимать во внимание погрешности измерительных инструментов, в том случае, если они используются. Вот несколько примеров:
Увеличение погрешности при использовании пробника 1:10
Если в процессе измерений используется щуп 1:10, то необходимо учитывать не только измерительную погрешность прибора. На погрешность также влияет входной импеданс используемого прибора и сопротивление щупа, которые вместе составляют делитель напряжения.
Подключенный к осциллографу щуп 1:1
На рисунке выше схематически показан осциллограф с подключенным к нему пробником 1:1. Если мы рассмотрим этот пробник как идеальный (нет сопротивления соединения), то приложенное напряжение передается прямо на вход осциллографа. Погрешность измерения теперь определяется только допустимыми отклонениями аттенюатора, усилителя и цепями, принимающими участие в дальнейшей обработке сигнала и задается производителем прибора. (На погрешность также влияет сопротивление соединения, которое формирует внутреннее сопротивление
. Оно включается в заданные допустимые отклонения).
На рисунке ниже показан тот же самый осциллограф, но теперь ко входу подключен щуп 1:10. Этот пробник имеет внутреннее сопротивление соединенияи вместе со входным сопротивлением осциллографа
образует делитель напряжения. Допустимое отклонение резисторов в делителе напряжения является причиной его собственной погрешности.
Пробник 1:10, подключенный к осциллографу, вносит дополнительную погрешность
Допустимое отклонение входного сопротивления осциллографа может быть найдено в его спецификации. Допустимое отклонение сопротивления соединения щупа
не всегда дано. Тем не менее, погрешность системы заявляется производителем определенного осциллографического пробника для конкретного типа осциллографа. Если щуп используется с другим типом осциллографа, нежели рекомендуемый, то измерительная погрешность становится неопределенной. Этого нужно всегда стараться избегать.
Предположим, что осциллограф имеет допустимое отклонение 1.5% и используется щуп 1:10 с погрешностью в системе 2.5%. Эти две характеристики можно перемножить для получения полной погрешности показания прибора:
Здесь — полная погрешность измерительной системы, — погрешность показания прибора,
— погрешность щупа, подключенного к осциллографу, подходящего типа.
Измерения с шунтирующим резистором
Часто при измерениях токов используют внешний шунтирующий резистор. Шунт имеет некоторое допустимое отклонение, которое влияет на измерение.
Увеличение погрешности при использовании шунтирующего резистора
Заданное допустимое отклонение шунтирующего резистора влияет на погрешность показания. Для нахождения полной погрешности, допустимое отклонение шунта и погрешность показаний измерительного прибора перемножаются:
В этом примере, полная погрешность показания равна 3.53%.
Сопротивление шунта зависит от температуры. Значение сопротивления определяется для данной температуры. Температурную зависимость часто выражают в
Для примера вычислим значение сопротивления для температуры окружающей среды. Шунт имеет характеристики:Ом(соответственнои) и температурную зависимость
Ток, протекающий через шунт является причиной рассеяния энергии на шунте, что приводит к росту температуры и, следовательно, к изменению значения сопротивления. Изменение значения сопротивления при протекании тока зависит от нескольких факторов. Для проведения очень точного измерения, необходимо откалибровать шунт на дрейф сопротивления и условия окружающей среды при которых проводятся измерения.
Точность
Термин точность используется для выражения случайности измерительной ошибки. Случайная природа отклонений измеряемых значений в большинстве случае имеет тепловую природу. Из-за случайной природы этого шума не возможно получить абсолютную ошибку. Точность дается только вероятностью того, что измеряемая величина лежит в некоторых пределах.
Распределение Гаусса
Тепловой шум имеет гауссово, или, как еще говорят, нормальное распределение. Оно описывается следующим выражением:
Здесь — среднее значение,показывает дисперсию и соответствует RMS-значению шумового сигнала. Функция дает кривую распределения вероятностей, как показано на рисунке ниже, где среднее значениеи эффективная амплитуда шума
Распределение вероятностей с
В таблице указаны шансы получения значений в заданных пределах.
Граница | Шанс |
0.5·σ | 38.3 % |
0.674·σ | 50.0 % |
1·σ | 68.3 % |
2·σ | 95.4 % |
3·σ | 99.7 % |
Как видно, вероятность того, что измеренное значение лежит в диапазоне ±равна
Повышение точности
Точность может быть улучшена передискретизацией (изменением частоты дискретизации) или фильтрацией. Отдельные измерения усредняются, поэтому шум значительно снижается. Также снижается разброс измеренных значений. Используя передискретизацию или фильтрацию необходимо учитывать, что это может привести к снижению пропускной способности.
Разрешение
Разрешением, или, как еще говорят, разрешающей способностью измерительной системы является наименьшая различимая измеряемая величина. Определение разрешения прибора не относится к точности измерения.
Цифровые измерительные системы
Цифровая система преобразует аналоговый сигнал в цифровой эквивалент посредством аналого-цифрового преобразователя. Разница между двумя значениями, то есть разрешение, всегда равно одному биту. Или, в случае с цифровым мультиметром, это одна цифра.
Возможно также выразить разрешение через другие единицы, а не биты. В качестве примера рассмотрим цифровой осциллограф, имеющий 8-битный АЦП. Чувствительность по вертикали установлена в 100 мВ/дел и число делений равно 8, полный диапазон, таким образом, равен 800 мВ. 8 бит представляются 2 8 =256 различными значениями. Разрешение в вольтах тогда равно 800 мВ / 256 = 3125 мВ.
Аналоговые измерительные системы
В случае аналогового прибора, где измеряемая величина отображается механическим способом, как в стрелочном приборе, сложно получить точное число для разрешения. Во-первых, разрешение ограничено механическим гистерезисом, причиной которого является трение механизма стрелки. С другой стороны, разрешение определяется наблюдателем, делающем свою субъективную оценку.
Критерии качества измерений
Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью, воспроизводимостью и погрешностью измерений.
Точность – это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответсвует малым погрешностям как систематическим, так и случайным. Точность количественно оценивают обратной величиной модуля относительной погрешности. Напремер, если погрешность измерений равна 0,05%, то точность будет равна 1/0,0005 = 2000.
Достоверность измерений характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ.
Правильность измерений – качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.
Сходимость – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Сходимость измерений отражает влияние случайных погрешностей.
Воспроизводимость – это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными методами и средствами).
Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму ряда составляющих, каждая из которых имеет свою причину. Можно выделить слудующие группы причин возникновения погрешностей:
Анализируя причины возникновения погрешностей, необходимо в первую очередь выявить те из них, которые оказывают существенное влияние на резульат измерения. Анализ должен проводится в определенной последовательности.