Что означает точка принадлежит отрезку
Геометрия 7 класс.
Точка, прямая и отрезок
Казалось бы, что таким простым понятиям, как «точка» или «прямая», которые мы повседневно используем в жизни, крайне просто дать определения. Но на практике оказалось, что это не так.
Существует множество определений, которые давали знаменитые математики терминам «точка» и «прямая». За многие века ученые так и не пришли к единому определению.
Мы не будем приводить все определения точки и прямой. Остановимся на объяснениях, которые, на наш взгляд, наиболее простым образом их описывают.
Точка — элементарная фигура, не имеющая частей.
Прямая состоит из множества точек и простирается бесконечно в обе стороны.
То есть выражаясь геометрическими обозначениями, информацию о расположении прямой и точек на рисунке выше можно записать так:
Как обозначить прямую
Прямую обычно обозначают одной маленькой латинской буквой.
Прямую, на которой отмечены две точки, иногда обозначают по названиям этих точек большими латинскими точками.
Задача № 1 из учебника Атанасян 7-9 класс
Решение задачи
Опишем взаимное расположение точек и прямой.
Как обозначается пересечение прямых
Хотя на чертеже не видно, но прямые a и c тоже пересекаются (это становится ясно, если мысленно продолжить вниз прямые a и с ).
Прямые e и f не имеют общей точки — т.е. они не пересекаются.
Взаимное расположение прямой и точек
Через одну точку (·)A можно провести сколько угодно прямых.
Через две точки (·)A и (·)B можно провести только одну прямую.
Сколько общих точек имеют две прямые
Две прямые либо имеют только одну общую точку, либо не имеют общих точек.
Докажем утверждение выше. Для этого рассмотрим все возможные случаи расположения двух прямых.
Первый случай расположения прямых
На рисунке выше мы видим, что у прямых f и e нет общих точек, т.к. эти прямые не пересекаются.
Второй случай расположения прямых
Третий случай расположения прямых
Вывод: две прямые либо имеют только одну общую точку, либо не имеют общих точек.
Задача № 3 из учебника Атанасян 7-9 класс
Проведите три прямые так, чтобы каждые две из них пересекались. Обозначьте все точки пересечения этих прямых. Сколько получилось точек? Рассмотрите все возможные случаи.
Решение задачи
Проведём две прямые a и b так, чтобы эти две прямые пересекались, и обозначим точку пересечения.
Как мы видим, точка пересечения только одна. Мы можем провести третью прямую так, чтобы она тоже проходила через эту точку пересечения.
Мы убедились, что возможны оба варианта. Поэтому в ответе запишем их оба.
Ответ: точек пересечения получается одна или три.
Что такое отрезок
Отрезок — часть прямой, ограниченная двумя точками.
В отличии от прямой любой отрезок можно измерить. Т.е. каждый отрезок имеет длину.
Отрезок. Ломаная линия
Отрезок представляет собой часть прямой линии, которая находится между двумя точками. Эти точки называют концы отрезка.
Иными словами, отрезок – это множество точек прямой линии, находящиеся между двух известных точек, которые называют концами отрезка.
Рис. 1 Отрезок на прямой
Рис. 2 Несколько отрезков на прямой
Отрезок делит прямую линию на три объекта (смотри рисунок 3):
То есть, два конца отрезка прямой являются соответственно началами двух лучей этой же прямой.
Рис. 3 Отрезок и лучи прямой
Рис. 4 Отрезок без прямой
Рис. 5 Отрезок и принадлежащие ему точки
Так, на рисунке 5 видно, что:
В последнем случае точка F хотя и лежит на одной прямой линии с отрезком AB (если вы мысленно продлите линию от точки B дальше, то увидите это), но не принадлежит ему, потому что находится не между его концами, а справа от отрезка.
Рис. 6 Отрезок и части отрезка
Построение и измерение отрезка
Произвольный отрезок можно построить двумя способами:
Рис. 7 Построение произвольного отрезка
Измерить отрезок можно:
Сравнить отрезки между собой можно при помощи циркуля или циркуля-измерителя. Для этого нужно сперва поставить иглу на один конец отрезка, а затем вторую иглу или грифельный стержень (если используется обычный чертежный циркуль) совместить со вторым концом отрезка (рисунок 8).
Рис. 8 Сравнение отрезков
На рисунке 8 видно, что:
Длину отрезка измеряют линейкой с делениями или другим измерительным инструментом.
Длина отрезка – это расстояние между концами этого отрезка.
Равные отрезки — это такие отрезки, которые имеют одинаковую длину.
На рисунке 9 измерены длины отрезков предыдущего рисунка. Проверьте, правильно ли мы сравнили эти отрезки при помощи циркуля?
Рис. 9 Измерение длины отрезка
Для этого на плоскости обозначают один конец отрезка (ставят точку), а затем при помощи линейки отмеряют необходимую длину отрезка (к примеру, 9 см), ставят точку второго конца отрезка и соединяют оба конца линией.
Рис. 10 Построение отрезка заданной длины
Отрезок — это самое короткое расстояние между двумя точками.
В этом вы можете убедиться самостоятельно на практике. Возьмите любой твердый длинный предмет, например, линейку, и шнурок. Линейка будет играть роль отрезка, а из шнурка сделайте кривую и ломаную линию, наподобие таких, какие показаны на рисунке 11, и соедините ими два конца линейки. После чего выпрямите шнурок и сравните его длину с длиной линейки.
Рис. 11 Кривая, ломаная, отрезок
Ломаная линия
Ломаная линия – это линия, которая состоит из отрезков, принадлежащих разным прямым, и эти отрезки последовательно соединены друг с другом.
Рис. 12 Ломаная линия
На рисунке 12 видно, что:
Количество звеньев у ломаной линии может быть каким угодно, бесконечным, но самое меньшее – это два звена.
Замкнутая ломаная линия – это такая ломаная, у которой совпадают точки начала и конца, то есть, которая начинается и заканчивается в одной точке.
Разомкнутая (не замкнутая) ломаная линия начинается и заканчивается в разных точках.
Рис. 12. Замкнутая и разомкнутая ломаные линии
Самопересекающаяся ломаная линия – это такая ломаная, у которой есть хотя бы два пересекающихся звена.
Самопересекающимися могут быть как замкнутые, так и разомкнутые ломаные.
Рис. 13. Самопересекающиеся ломаные линии
Вычислительная геометрия, или как я стал заниматься олимпиадным программированием. Часть 2
Вступление
Это вторая часть моей статьи посвящена вычислительной геометрии. Думаю, эта статья будет интереснее предыдущей, поскольку задачки будут чуть сложнее.
Начнем с взаимного расположения точки относительно прямой, луча и отрезка.
Задача №1
Определить взаимное расположении точки и прямой: лежит выше прямой, на прямой, под прямой.
Решение
Понятно, что если прямая задана своим уравнением ax + by + c = 0, то тут и решать нечего. Достаточно подставить координаты точки в уравнение прямой и проверить чему оно равно. Если больше нуля, то точка находится в верхней полуплоскости, если равна нулю, то точка находится на прямой и если меньше нуля, то точка находится в нижней полуплоскости. Интереснее случай, когда прямая задана, задана координатами двух точек назовем их P1(x1, y1), P2(x2, y2). В этом случае можно спокойно найти коэффициенты a, b и c и применить предыдущее рассуждение. Но надо сначала подумать, оно нам надо? Конечно, нет! Как я говорил косое произведения — это просто жемчужина вычислительной геометрии. Давайте применим его. Известно, что косое произведение двух векторов положительно, если поворот от первого вектора ко второму идет против часовой стрелки, равно нулю, если векторы коллинеарны и отрицательно, если поворот идет по часовой стрелки. Поэтому нам достаточно посчитать косое произведение векторов P1P2 и P1M и по его знаку сделать вывод.
Задача №2
Определить принадлежит ли точка лучу.
Решение
Давайте вспомним, что такое луч: луч — это прямая, ограниченная точкой с одной стороны, а с другой стороны бесконечная. То есть луч задается некоторой начальной точкой и любой точкой лежащей на нем. Пусть точка P1(x1, y1) — начало луча, а P2(x2, y2) — любая точка принадлежащая лучу. Понятно, что если точка принадлежит лучу, то она принадлежит и прямой проходящей через эти точки, но не наоборот. Поэтому принадлежность прямой является необходимым, но не достаточным условием для принадлежности лучу. Поэтому от проверки косового произведения нам никуда не деться. Для достаточного условия нужно вычислить еще и скалярное произведение тех же векторов. Если оно меньше нуля, то точка не принадлежит лучу, если же оно не отрицательно, то точка лежит на луче. Почему так? Давайте посмотрим на рисунок.
Итак, для того чтобы точка M(x, y) лежала на луче с начальной точкой P1(x1, y1), где P2(x2, y2) лежит на луче необходимо и достаточно выполнения двух условий:
1. [P1P2, P1M] = 0 – косое произведение (точка лежит на прямой)
2. (P1P2, P1M) ≥ 0 – скалярное произведение (точка лежит на луче)
Задача №3
Определить принадлежит ли точка отрезку.
Решение
Пусть точки P1(x1, y1), P2(x2, y2) концы заданного отрезка. Опять-таки необходимым условием принадлежности точки отрезку является ее принадлежность прямой проходящей через P1, P2. Далее нам нужно определить лежит ли точка между точками P1 и P2, для этого нам на помощь приходит скалярное произведение векторов только на этот раз других: (MP1, MP2). Если оно меньше либо равно нуля, то точка лежит на отрезке, иначе вне отрезка. Почему так? Посмотрим на рисунок.
Итак, для того чтобы точка M(x, y) лежала на отрезке с концами P1(x1, y1), P2(x2, y2) необходимо и достаточно выполнения условий:
1. [P1P2, P1M] = 0 – косое произведение (точка лежит на прямой)
2. (MP1,MP2) ≤ 0 – скалярное произведение (точка лежит между P1 и P2)
Задача №4
Взаимное расположение двух точек относительно прямой.
Решение
В этой задаче необходимо определить по одну или по разные стороны относительно прямой находятся две точки.
Если точки находятся по разные стороны относительно прямой, то косые произведения имеют разные знаки, а значит их произведение отрицательно. Если же точки лежат по одну сторону относительно прямой, то знаки косых произведений совпадают, значит, их произведение положительно.
Итак:
1. [P1P2, P1M1] * [P1P2, P1M2] 0 – точки лежат по одну сторону.
3. [P1P2, P1M1] * [P1P2, P1M2] = 0 – одна (или две) из точек лежит на прямой.
Кстати, задача об определении наличия точки пересечения у прямой и отрезка решается точно также. Точнее, это и есть эта же задача: отрезок и прямая пересекаются, когда концы отрезка находятся по разные стороны относительно прямой или когда концы отрезка лежат на прямой, то есть необходимо потребовать [P1P2, P1M1] * [P1P2, P1M2] ≤ 0.
Задача №5
Определить пересекаются ли две прямые.
Решение
Будем считать, что прямые не совпадают. Понятно, что прямые не пересекаются, только если они параллельны. Поэтому, найдя условие параллельности, мы можем, определить пересекаются ли прямые.
Допустим прямые заданы своими уравнениями a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0. Тогда условие параллельности прямых заключается в том, что a1b2 — a2b1 = 0.
Если же прямые заданы точками P1(x1, y1), P2(x2, y2), M1(x3, y3), M2(x4, y4), то условие их параллельности заключается в проверки косого произведения векторов P1P2 и M1M2: если оно равно нулю, то прямые параллельны.
В общем, то когда прямые заданы своими уравнениями мы тоже проверяем косое произведение векторов (-b1, a1), (-b2, a2) которые называются направляющими векторами.
Задача №6
Определить пересекаются ли два отрезка.
Решение
Вот эта задача мне, действительно, нравится. Отрезки пересекаются тогда, когда, концы каждого отрезка лежат по разные стороны от другого отрезка. Посмотрим на рисунок:
Итак, нам нужно проверить, чтобы концы каждого из отрезков лежали по разные стороны относительного концов другого отрезка. Пользуемся косым произведением векторов. Посмотрите на первый рисунок: [P1P2, P1M2] > 0, [P1P2, P1M1] [P1P2, P1M2] * [P1P2, P1M1] 2 + b 2 ).
Задача №8
Расстояние от точки до луча.
Решение
Эта задача отличается от предыдущей тем, что в этом случае может получиться, так что перпендикуляр из точки не падает на луч, а падает на его продолжение.
В случае, когда перпендикуляр не падает на луч необходимо найти расстояние от точки до начала луча – это и будет ответом на задачу.
Теперь рассмотрим случай, когда центр второго круга O2 находится между точками O1 и C. В этом случае получим отрицательное значение величины d2. Использование отрицательного значения d2 приводит к отрицательному значению α. В этом случае необходимо для правильного ответа прибавить к α 2π.
Заключение
Ну вот и все. Мы рассмотрели не все, но наиболее часто встречаемые задачи вычислительной геометрии касающиеся взаимного расположения объектов.
Что означает точка принадлежит отрезку
На этом уроке учитель продолжит разговор о линиях и точках, расскажет, что такое отрезок, как он обозначается. Также вы узнаете о четырех способах сравнения отрезков и узнаете о единицах измерения длины. В конце урока вы вместе с учителем потренируетесь решать задачи, используя единицы измерения длины.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Измерение» и «Связь числа и геометрии. Часть 1. Измерения в геометрии. Свойства фигур»
Если заданы точка и линия, то точка либо принадлежит этой линии, либо нет. Еще говорят, что линия проходит через точку.
На рисунке 1 точка не принадлежит линии , или линия не проходит через точку . Точка принадлежит линии , или линия проходит через точку .
Рис. 1. Линия и точки: принадлежащие линии и не принадлежащие
Пусть у нас есть две точки и (рис. 2). Сколько можно провести линий, которые будут проходить через обе эти точки? Или сколькими линиями можно соединить эти две точки? Бесконечное количество.
Рис. 2. Точки и
Точки и могут обозначать два места, например дом и школу. А линии, их соединяющие, – траекторию, по которой можно пройти от дома до школы (рис. 3). Часто интересует самая короткая дорога от дома до школы, от одного места до другого, от точки до точки .
Рис. 3. Дорога от дома до школы как отрезок
Какая дорога от школы до дома самая короткая? Какая линия, соединяющая и , будем самой короткой?
Чтобы дорога оказалась самой короткой, идти от школы до дома надо по прямой. Чтобы линия, соединяющая точки, оказалась самой короткой, соединять их нужно по прямой.
Соединим и самой короткой возможной линией. Такая линия называется отрезком (рис. 4). Точки и называются концами отрезка.
Рис. 4. Точки и – концы отрезка
Обозначается сам отрезок , по именам точек – концов отрезка. Другой такой же короткой линии, соединяющей и , не существует. Если провести из в любую другую линию, она обязательно окажется длиннее. То есть существует только одна кратчайшая линия между и . Она и называется отрезком.
Если мы хотим указать на другие линии, соединяющие наши точки, например верхние или нижние, то нужно добавить еще точки, чтобы не было путаницы (рис. 5).
Рис. 5. Линии и , соединяющие точки и
Если две точки и необходимо соединить отрезком, то используется линейка. Линия, проведенная по линейке от точки до точки по линейке, и будет нужным отрезком (рис. 6). Сам отрезок будет называться . Точки и – его концами. Отрезок является кратчайшей линией, соединяющей точки и .
Рис. 6. Построение отрезка с помощью линейки
Любая точка либо принадлежит отрезку, либо не принадлежит.
Или говорят еще: «точка лежит на отрезке либо не лежит на отрезке». На рисунке точки и не принадлежат отрезку , точка принадлежит отрезку (рис. 7).
Рис. 7. Точки, принадлежащие и не принадлежащие отрезку
Сами точки и , концы отрезка, тоже принадлежат отрезку .
Посмотрим на два отрезка на рисунке 8. Что про них можно сказать? Отрезок короче отрезка (рис. 8). .
Рис. 8. Отрезки и
Как мы это поняли? Просто увидели. То есть сравнить эти два отрезка оказалось несложно.
Задача сравнения отрезков, их длины встречается в жизни достаточно часто. Например, два человека хотят выяснить, чей рост больше, кто из них выше.
Он подходит, если отрезки сильно отличаются и ответ однозначен.
Очевидно, что на рисунке 9 отрезок больше, длиннее, чем отрезок .
Очевидно, что папа выше сына.
Рис. 9. Сравнение роста папы и сына
Очевидно, что телебашня выше дерева на рисунке 10.
Рис. 10. Сравнение высоты телебашни и дерева
Этот способ очень прост, но может привести к ошибке.
Иногда, когда мы смотрим на картинку, то мы совершенно уверены, что понимаем, какой из двух отрезков больше. Но оказывается, что мы ошибаемся, потому что дополнительные построения вокруг отрезков обманывают зрение.
На картинке 1 нам кажется, что верхний отрезок длиннее нижнего.
Рис. 10.2. Иллюзия: кажется, что отрезки разной длины
Но это не так. В этом легко убедиться, если построить еще две линии.
Рис. 10.3. Одинаковые отрезки
Один из самых простых примеров ошибки восприятия. Какой отрезок короче на рисунке 3?
Рис. 10.4. Иллюзия: кажется, что отрезки не равны по длине
«Конечно же, первый!» – говорит наше восприятие. Но это не так. Эти отрезки одинаковые. В этом можно будет убедиться, воспользовавшись любым из остальных способов сравнения отрезков, которые мы рассматриваем на нашем сегодняшнем уроке.
Сложно поверить, что отрезки и равны. Дополнительные линии вокруг заставляют нас поверить, что отрезок намного короче отрезка на рисунке 4.
Рис. 10.5. Иллюзия: отрезки и имеют одинаковую длину
Все рассмотренные картинки являются примерами оптических иллюзий. Наберите в поисковой системе «оптические иллюзии», и вы найдете огромное количество очень интересных примеров по этой теме. Не только про сравнение отрезков.
Ну а мы с вами делаем главный вывод из этих примеров: не всегда можно доверять нашей оценке «на глаз». Нужны более точные методы сравнения отрезков.
Если бабушка хочет понять, одинаковы ли две спицы по длине, то она возьмет их вместе, зажмет в руку и несильно стукнет ими по столу, чтобы нижние края спиц оказались на одном уровне (рис. 11). По положению верхних краев она поймет, одинаковы ли спицы, если нет, то какая из них длиннее.
Рис. 11. Проверка с помощью наложения
Такой способ можно использовать, если предметы, которые мы сравниваем, можно легко приложить один к другому. Например, для сравнения роста люди встают спиной друг к другу и смотрят, чья макушка окажется выше.
Итак, метод заключается в том, что два предмета прикладывают друг к другу, совмещают концы с одной стороны и по положению других концов понимают, какой отрезок больше или, может быть, они равны.
Этот метод уже является точным, в отличие от первого. Но у него есть один серьезный недостаток. Чтобы им воспользоваться, нужно иметь возможность взять один отрезок и переместить, приложить его ко второму. Это не всегда возможно.
Ведь даже если нарисованы два отрезка, затруднительно взять один из них и приложить к другому. Если только разрезать лист, сложить части друг с другом и посмотреть на просвет.
Если один предмет мы не можем приставить к другому, то можно использовать третий, который легко совмещается с первым и вторым по очереди. Таким измерителем часто являются наши руки.
Если мы хотим понять, пройдет ли диван в дверной проем, мы руками отмечаем его ширину и, стараясь не изменить расстояние между руками, подходим к дверному проему и проверяем, хватит ли ширины дверей.
Мы можем использовать веревку, нитку, палку, чтобы сравнить длины двух предметов, которые сложно перемещать. Приложить нитку к одному предмету, потом ее же к другому. Так сразу будет понятно, какой из предметов длиннее. В математике для этой цели используются специальный измеритель, циркуль.
Нужно сравнить два отрезка и (рис. 12).
Рис. 12. Отрезки для сравнения
Совмещаем концы отрезка с иголками измерителя (рис. 13) и, не меняя раствора, сравниваем с другим отрезком (рис. 14).
Рис. 13. Измерение отрезка
Рис. 14. Измерение отрезка
Отрезок равен отрезку .
Записывается это так: .
Или может оказаться такая ситуация (рис. 15).
Рис. 15. Отрезки для сравнения
Отрезок не равен отрезку . Он равен отрезку , который является частью отрезка (рис. 16).
Рис. 16. Отрезок равен части отрезка
Отрезок меньше отрезка , так как является его частью.
Отрезок меньше отрезка , потому что равен его части.
Во всех предыдущих способах мы сравнивали отрезки, выясняли, у кого из них длина больше. Но саму длину не измеряли. Мы ее не знали.
Так, два человека могут встать друг другу спиной и выяснить, кто из них выше. Но каков рост каждого из них, они не узнают.
Последний способ, который мы сейчас рассмотрим, заключается в том, чтобы измерить длину каждого отрезка и сравнить их длины.
Так, если два человека знают, что рост одного составляет 1 м 73 см, а другого – 1 м 75 см, то понятно, что второй выше, и не нужно вставать рядом, чтобы это понять.
Длина, выраженная числом, то есть измеренная, становится очень удобным инструментом. Мы теперь эту длину можем записать, передать по телефону, запомнить.
Чтобы измерить отрезок, нужно приложить к нему линейку с нанесенной шкалой.
На рисунке 17 мы видим, что длина первого отрезка составляет 6 см, второго – 7 см.
Рис. 17. Измерение отрезков линейкой
Второй отрезок больше. Кроме того, мы теперь знаем, что второй не просто больше, а больше на 1 см.
А что если один отрезок измерял один человек, а второй – другой человек, да еще и в другом городе? Можно ли будет сравнить эти два отрезка? Да, это возможно потому, что на всех линейках нанесены одинаковые деления и не важно, какой конкретно линейкой мы пользовались. Скорее всего, на всех таких линейках мы увидим одинаковые деления – сантиметры и миллиметры.
Одна из самых часто встречающихся единиц длины – это метр.
Метр используется при измерении объектов не маленьких, но и не огромных, таких, которые можно оценить на глаз, увидеть сразу целиком: длина комнаты или двора, высота дерева или дома, расстояние от дома до школы и так далее. Сокращенно метр обозначается буквой «м». Точка, обозначающая сокращение, не нужна.
Все остальные единицы для измерения либо очень больших объектов, либо намного меньших получаются из метра.
Приставка «кило-» означает тысячу. Если перед словом метр поставить приставку «кило-», то полученное слово «километр» будет обозначать тысячу метров.
Сам километр кратко обозначается двумя буквами «км», тоже без точки для сокращения.
В километрах мы меряем большие расстояния, например расстояния между городами.
Если соединить центры Москвы и Санкт-Петербурга воображаемым отрезком (рис. 18), то его длина будет равна 635 км, или 635 000 метров.
Рис. 18. Отрезок между Москвой и Санкт-Петербургом
Для измерения длин небольших объектов используют более мелкие единицы. Разделим 1 метр на 10. Чтобы получить название этой единицы длины, поставим приставку «деци-» перед словом «метр».
Приставка «деци-» означает одну десятую, что в десять раз меньше. Обозначается дециметр буквами «дм».
Разделим 1 метр на 100. Чтобы получить название этой единицы длины, поставим приставку «санти-» перед словом «метр». Приставка «санти-» означает одну сотую, что-то, в сто раз меньшее. Обозначается сантиметр буквами «см».
Разделим 1 метр на 1000. Чтобы получить название этой единицы длины, поставим приставку «милли-» перед словом «метр». Приставка «милли-» означает одну тысячную, что-то, в тысячу раз меньшее. Обозначается миллиметр буквами «мм».
Кроме понимания, сколько в 1 метре содержится дециметров, сантиметров и миллиметров, полезно запомнить и соотношения напрямую между соседними единицами.
Мы делили метр на 10, 100 и 1000 частей. Но это равносильно делению на 10 уже полученных единиц. То есть поделили метр на 10, получили дециметр. Поделили еще раз на 10, получили сантиметр. Еще раз на 10, получили миллиметр.
Посмотрим еще раз на все эти единицы измерения вместе. Метр примерно можно получить как расстояние от плеча одной руки до вытянутых кончиков пальцев другой руки (рис. 19).
Рис. 19. Расстояние от плеча одной руки до конца второй руки примерно равно метру
На рисунке 20 деления на верхней линейке – сантиметры. В 1 метре 100 сантиметров. На нижней линейке сантиметры разделены на 10 делений. Это миллиметры.
Рис. 20. Линейки с различными шкалами
Дециметры обычно не отмечают на линейках и не делают для них специальных делений. Так сложилось, что в жизни редко используют эту величину. Мы почти не слышим слова «дециметр», хотя слова «сантиметр» и «миллиметр» можем услышать достаточно часто. В различных задачах эта единица бывает часто, и, чтобы решать их, нужно обязательно помнить, что это такое.
Рост человека измеряют или только в сантиметрах, или метрах и сантиметрах. Если рост человека составляет 1 м 75 см, то каков его рост в сантиметрах?
Так как 1 м равен 100 сантиметрам, то рост равен .
Рост Петра Первого составлял 203 см. Как его рост записать другим способом?
Дорога длиной 3 км и шириной 2 м 40 см выложена квадратной плиткой со стороной 6 дм. Сколько плиток понадобилось, чтобы выложить всю дорогу?
Рассмотрим рисунок 21.
Рис. 21. Иллюстрация к задаче
Найдем сначала, сколько плиток помещается в ширину дороги.
Для этого нужно ширину дороги разделить на размер стороны плитки, но перед этим нужно указать эти размеры в одинаковых единицах измерения.
В одном метре 10 дм, следовательно, 2 метра – это 20 дм. 10 сантиметров – это 1 дециметр, следовательно, 40 см – это 4 дм.
Получаем: .
В ширину дороги укладывается То есть дорожка в 4 раза шире, чем плитка. Значит, в ширину помещается 4 плитки.
Теперь посчитаем, сколько плиток помещается в длину.
Длина дороги составляет 30 000 дм. Разделим эту длину на размер плитки, на 6 дм.
Итак, в длину помещается 5000 плиток, а в ширину – 4 штуки.
Всего необходимо плиток.
Список литературы
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание