Что означает термин искусственный интеллект
Всё, что вам нужно знать об ИИ — за несколько минут
Приветствую читателей Хабра. Вашему вниманию предлагается перевод статьи «Everything you need to know about AI — in under 8 minutes.». Содержание направлено на людей, не знакомых со сферой ИИ и желающих получить о ней общее представление, чтобы затем, возможно, углубиться в какую-либо конкретную его отрасль.
Знать понемногу обо всё иногда (по крайней мере, для новичков, пытающихся сориентироваться в популярных технических направлениях) бывает полезнее, чем знать много о чём-то одном.
Многие люди думают, что немного знакомы с ИИ. Но эта область настолько молода и растёт так быстро, что прорывы совершаются чуть ли не каждый день. В этой научной области предстоит открыть настолько многое, что специалисты из других областей могут быстро влиться в исследования ИИ и достичь значимых результатов.
Эта статья — как раз для них. Я поставил себе целью создать короткий справочный материал, который позволит технически образованным людям быстро разобраться с терминологией и средствами, используемыми для разработки ИИ. Я надеюсь, что этот материал окажется полезным большинству интересующихся ИИ людей, не являющихся специалистами в этой области.
Введение
Искусственный интеллект (ИИ), машинное обучение и нейронные сети — термины, используемые для описания мощных технологий, базирующихся на машинном обучении, способных решить множество задач из реального мира.
В то время, как размышление, принятие решений и т.п. сравнительно со способностями человеческого мозга у машин далеки от идеала (не идеальны они, разумеется, и у людей), в недавнее время было сделано несколько важных открытий в области технологий ИИ и связанных с ними алгоритмов. Важную роль играет увеличивающееся количество доступных для обучения ИИ больших выборок разнообразных данных.
Область ИИ пересекается со многими другими областями, включая математику, статистику, теорию вероятностей, физику, обработку сигналов, машинное обучение, компьютерное зрение, психологию, лингвистику и науку о мозге. Вопросы, связанные с социальной ответственностью и этикой создания ИИ притягивают интересующихся людей, занимающихся философией.
Мотивация развития технологий ИИ состоит в том, что задачи, зависящие от множества переменных факторов, требуют очень сложных решений, которые трудны к пониманию и сложно алгоритмизируются вручную.
Растут надежды корпораций, исследователей и обычных людей на машинное обучение для получения решений задач, не требующих от человека описания конкретных алгоритмов. Много внимания уделяется подходу «чёрного ящика». Программирование алгоритмов, используемых для моделирования и решения задач, связанных с большими объёмами данных, занимает у разработчиков очень много времени. Даже когда нам удаётся написать код, обрабатывающий большое количество разнообразных данных, он зачастую получается очень громоздким, трудноподдерживаемым и тяжело тестируемым (из-за необходимости даже для тестов использовать большое количество данных).
Современные технологии машинного обучения и ИИ вкупе с правильно подобранными и подготовленными «тренировочными» данными для систем могут позволить нам научить компьютеры «программировать» за нас.
Обзор
Интеллект — способность воспринимать информацию и сохранять её в качестве знания для построения адаптивного поведения в среде или контексте
Это определение интеллекта из (англоязычной) Википедии может быть применено как к органическому мозгу, так и к машине. Наличие интеллекта не предполагает наличие сознания. Это — распространённое заблуждение, принесённое в мир писателями научной фантастики.
Попробуйте поискать в интернете примеры ИИ — и вы наверняка получите хотя бы одну ссылку на IBM Watson, использующий алгоритм машинного обучения, ставший знаменитым после победы на телевикторине под названием «Jeopardy» в 2011 г. С тех пор алгоритм претерпел некоторые изменения и был использован в качестве шаблона для множества различных коммерческих приложений. Apple, Amazon и Google активно работают над созданием аналогичных систем в наших домах и карманах.
Обработка естественного языка и распознавание речи стали первыми примерами коммерческого использования машинного обучения. Вслед за ними появились задачи другие задачи автоматизации распознавания (текст, аудио, изображения, видео, лица и т.д.). Круг приложений этих технологий постоянно растёт и включает в себя беспилотные средства передвижения, медицинскую диагностику, компьютерные игры, поисковые движки, спам-фильтры, борьбу с преступностью, маркетинг, управление роботами, компьютерное зрение, перевозки, распознавание музыки и многое другое.
ИИ настолько плотно вошёл в современные используемые нами технологии, что многие даже не думают о нём как об «ИИ», то есть, не отделяют его от обычных компьютерных технологий. Спросите любого прохожего, есть ли искусственный интеллект в его смартфоне, и он, вероятно, ответит: «Нет». Но алгоритмы ИИ находятся повсюду: от предугадывания введённого текста до автоматического фокуса камеры. Многие считают, что ИИ должен появиться в будущем. Но он появился некоторое время назад и уже находится здесь.
Термин «ИИ» является довольно обобщённым. В фокусе большинства исследований сейчас находится более узкое поле нейронных сетей и глубокого обучения.
Как работает наш мозг
Человеческий мозг представляет собой сложный углеродный компьютер, выполняющий, по приблизительным оценкам, миллиард миллиардов операций в секунду (1000 петафлопс), потребляющий при этом 20 Ватт энергии. Китайский суперкомпьютер под названием «Tianhe-2» (самый быстрый в мире на момент написания статьи) выполняет 33860 триллионов операций в секунду (33.86 петафлопс) и потребляющий при этом 17600000 Ватт (17.6 Мегаватт). Нам предстоит проделать определённое количество работы перед тем, как наши кремниевые компьютеры смогут сравниться со сформировавшимися в результате эволюции углеродными.
Точное описание механизма, применяемого нашим мозгом для того, чтобы «думать» является предметом дискуссий и дальнейших исследований (лично мне нравится теория о том, что работа мозга связана с квантовыми эффектами, но это — тема для отдельной статьи). Однако, механизм работы частей мозга обычно моделируется с помощью концепции нейронов и нейронных сетей. Предполагается, что мозг содержит примерно 100 миллиардов нейронов.
Нейроны взаимодействуют друг с другом с помощью специальных каналов, позволяющих им обмениваться информацией. Сигналы отдельных нейронов взвешиваются и комбинируются друг с другом перед тем, как активировать другие нейроны. Эта обработка передаваемых сообщений, комбинирование и активация других нейронов повторяется в различных слоях мозга. Учитывая то, что в нашем мозгу находится 100 миллиардов нейронов, совокупность взвешенных комбинаций этих сигналов устроена довольно сложно. И это ещё мягко сказано.
Но на этом всё не заканчивается. Каждый нейрон применяет функцию, или преобразование, к взвешенным входным сигналам перед тем, как проверить, достигнут ли порог его активации. Преобразование входного сигнала может быть линейным или нелинейным.
Изначально входные сигналы приходят из разнообразных источников: наших органов чувств, средств внутреннего отслеживания функционирования организма (уровня кислорода в крови, содержимого желудка и т.д.) и других. Один нейрон может получать сотни тысяч входных сигналов перед принятием решения о том, как следует реагировать.
Мышление (или обработка информации) и полученные в результате его инструкции, передаваемые нашим мышцам и другим органам являются результатом преобразования и передачи входных сигналов между нейронами из различных слоёв нейронной сети. Но нейронные сети в мозгу могут меняться и обновляться, включая изменения алгоритма взвешивания сигналов, передаваемых между нейронами. Это связано с обучением и накоплением опыта.
Эта модель человеческого мозга использовалась в качестве шаблона для воспроизведения возможностей мозга в компьютерной симуляции — искуственной нейронной сети.
Искусственные Нейронные Сети (ИНС)
Искусственные Нейронные Сети — это математические модели, созданные по аналогии с биологическими нейронными сетями. ИНС способны моделировать и обрабатывать нелинейные отношения между входными и выходными сигналами. Адаптивное взвешивание сигналов между искусственными нейронами достигается благодаря обучающемуся алгоритму, считывающему наблюдаемые данные и пытающемуся улучшить результаты их обработки.
Для улучшения работы ИНС применяются различные техники оптимизации. Оптимизация считается успешной, если ИНС может решать поставленную задачу за время, не превышающее установленные рамки (временные рамки, разумеется, варьируются от задачи к задаче).
ИНС моделируется с использованием нескольких слоёв нейронов. Структура этих слоёв называется архитектурой модели. Нейроны представляют собой отдельные вычислительные единицы, способные получать входные данные и применять к ним некоторую математическую функцию для определения того, стоит ли передавать эти данные дальше.
В простой трёхслойной модели первый слой является слоем ввода, за ним следует скрытый слой, а за ним — слой вывода. Каждый слой содержит не менее одного нейрона.
С усложнением структуры модели посредством увеличения количества слоёв и нейронов возрастают потенциал решения задач ИНС. Однако, если модель оказывается слишком «большой» для заданной задачи, её бывает невозможно оптимизировать до нужного уровня. Это явление называется переобучением (overfitting).
Архитектура, настройка и выбор алгоритмов обработки данных являются основными составляющими построения ИНС. Все эти компоненты определяют производительность и эффективность работы модели.
Модели часто характеризуются так называемой функцией активации. Она используется для преобразования взвешенных входных данных нейрона в его выходные данные (если нейрон решает передавать данные дальше, это называется его активацией). Существует множество различных преобразований, которые могут быть использованы в качестве функций активации.
ИНС являются мощным средством решения задач. Однако, хотя математическая модель небольшого количества нейронов довольно проста, модель нейронной сети при увеличении количества составляющих её частей становится довольно запутанно. Из-за этого использование ИНС иногда называют подходом «чёрного ящика». Выбор ИНС для решения задачи должен быть тщательно обдуманным, так как во многих случаях полученное итоговое решение нельзя будет разобрать на части и проанализировать, почему оно стало именно таким.
Глубокое обучение
Термин глубокое обучение используется для описания нейронных сетей и используемых в них алгоритмах, принимающих «сырые» данные (из которых требуется извлечь некоторую полезную информацию). Эти данные обрабатываются, проходя через слои нейросети, для получения нужных выходных данных.
Обучение без учителя (unsupervised learning) — область, в которой методики глубокого обучения отлично себя показывают. Правильно настроенная ИНС способна автоматически определить основные черты входных данных (будь то текст, изображения или другие данные) и получить полезный результат их обработки. Без глубокого обучения поиск важной информации зачастую ложится на плечи программиста, разрабатывающего систему их обработки. Модель глубокого обучения же самостоятельно способна найти способ обработки данных, позволяющий извлекать из них полезную информацию. Когда система проходит обучение (то есть, находит тот самый способ извлекать из входных данных полезную информацию), требования к вычислительной мощности, памяти и энергии для поддержания работы модели сокращаются.
Проще говоря, алгоритмы обучения позволяют с помощью специально подготовленных данных «натренировать» программу выполнять конкретную задачу.
Глубокое обучение применяется для решения широкого круга задач и считается одной из инновационных ИИ-технологий. Существуют также другие виды обучения, такие как обучение с учителем (supervised learning) и обучение с частичным привлечением учителя(semi-supervised learning), которые отличаются введением дополнительного контроля человека за промежуточными результатами обучения нейронной сети обработке данных (помогающего определить, в правильном ли направлении движется система).
Теневое обучение (shadow learning) — термин, используемый для описания упрощённой формы глубокого обучения, при которой поиск ключевых особенностей данных предваряется их обработкой человеком и внесением в систему специфических для сферы, к которой относятся эти данные, сведений. Такие модели бывают более «прозрачными» (в смысле получения результатов) и высокопроизводительными за счёт увеличения времени, вложенного в проектирование системы.
Искусственный интеллект (ИИ)
Что такое искусственный интеллект?
В последние несколько десятилетий появилось множество самых разных определений искусственного интеллекта, но Джон Маккарти в 2004 году в своей статье (PDF, 106 КБ) (внешняя ссылка) определяет ИИ так: «Это наука и технология создания интеллектуальных систем, в особенности — интеллектуальных компьютерных программ. Искусственный интеллект связан с задачей использования компьютеров для понимания работы человеческого разума, но не ограничивается использованием методов, наблюдаемых в биологии».
Однако впервые тема искусственного интеллекта возникла гораздо раньше: за несколько десятилетий до этого определения. В 1950 году Алан Тьюринг опубликовал свою эпохальную научную работу «Вычислительные машины и разум» (PDF, 89,8 КБ) (внешняя ссылка). В этой статье Тьюринг, которого часто называют «отцом компьютерных наук», задает вопрос: «Способны ли машины мыслить?». Чтобы это проверить, он предложил тест, который сегодня все знают как «тест Тьюринга»: экспериментатор по письменным ответам пытается определить, с кем он взаимодействует: с человеком или с компьютером. После публикации результаты этого теста вызвали бурные дискуссии, но, несмотря на это, тест по-прежнему остается значимой вехой в истории ИИ и даже в какой-то мере философским понятием, так как работает на стыке с лингвистикой.
Через некоторое время Стюарт Рассел и Питер Норвиг опубликовали книгу «Искусственный интеллект: современный подход» (внешняя ссылка), которая стала одним из самых известных и популярных учебников по ИИ. Авторы классифицируют ИИ по четырем основным категориям, характеризующим компьютерные системы в зависимости от рационального мышления и действий:
Человеческий подход:
Идеальный подход:
Определение Алана Тьюринга можно было бы отнести к категории «системы, действующие как люди».
В самом примитивном варианте искусственный интеллект — это область, объединяющая вычислительные технологии с надежными наборами данных для решения проблем. Вместе с понятием «искусственный интеллект» часто упоминают и два его подраздела: машинное обучение и глубокое обучение. Эти дисциплины представляют собой совокупность алгоритмов ИИ, направленных на создание экспертных систем, способных делать прогнозы и составлять классификации на основе входных данных.
Сегодня вокруг развития ИИ по-прежнему наблюдается огромный ажиотаж, неизбежный при появлении на рынке любой новой технологии. Согласно теории цикла зрелости технологий Gartner (внешняя ссылка), каждый инновационный продукт, например беспилотные автомобили или личные помощники, проходит «типовую кривую развития: от чрезмерного энтузиазма через период разочарования до окончательного понимания значимости инновации и ее места на рынке или в определенной области». Как отмечает Лекс Фридман в своей лекции (внешняя ссылка) в Массачусетском технологическом институте в 2019 году, мы сейчас находимся на «пике завышенных ожиданий» и приближаемся к «пропасти разочарования».
По мере роста полемики вокруг этики ИИ мы можем наблюдать первые признаки приближения к «пропасти разочарования». Более подробную информацию о позиции IBM в отношении этики ИИ можно посмотреть здесь.
Типы искусственного интеллекта — слабый и сильный ИИ
Слабый ИИ — узкий ИИ или узкий искусственный интеллект (ANI) — это ИИ, обученный и умеющий выполнять только определенные задачи. На сегодняшний день слабый ИИ является самым распространенным вариантом ИИ. Термин «узкий» больше подходит для описания ИИ этого типа, поскольку «слабым» его точно не назовешь. Он обеспечивает работу достаточно серьезных приложений, например Apple Siri, Amazon Alexa, компьютер IBM Watson и беспилотные автомобили.
«Сильный ИИ» складывается из Общего искусственного интеллекта (AGI) и Искусственного сверхинтеллекта (ASI). Общий искусственный интеллект (AGI) или «общий ИИ» — это гипотетическая разновидность ИИ, полностью аналогичная человеческому разуму и обладающая самосознанием, способным решать проблемы, учиться и планировать будущее. Искусственный сверхинтеллект (ASI), который иногда называют «сверхразумом», должен превзойти интеллектуальные способности человеческого мозга. Несмотря на то, что сильный ИИ пока существует только в теории, и практических примеров его применения на сегодняшний день не существует, это не означает, что исследователи ИИ не изучают перспективы его развития. Пока в качестве лучшего примера ASI можно привести сверхразумный компьютер HAL из научно-фантастического фильма Космическая одиссея 2001, который в итоге вышел из-под контроля.
Глубокое обучение и машинное обучение: в чем разница?
Так как люди часто путают глубокое обучение и машинное обучение, давайте остановимся на отличительных особенностях каждого из этих понятий. Как упоминалось ранее, и глубокое, и машинное обучение представляют собой подразделы искусственного интеллекта, причем глубокое обучение является подразделом машинного.
Глубокое обучение — это комплект нейронных сетей. Понятие «глубокая» обозначает нейросети, в которых больше трех уровней (с учетом входного и выходного) — только такие нейросети могут считаться алгоритмами глубокого обучения. Обычно глубокую нейросеть изображают следующим образом:
Разница между глубоким и машинным обучением заключается в способе обучения алгоритмов. В глубоком обучении большая часть процесса извлечения признаков автоматизирована, что практически исключает необходимость контроля со стороны человека и позволяет использовать большие наборы данных. Лекс Фридман в своей вышеупомянутой лекции в Массачусетском технологическом институте называет глубокое обучение «масштабируемым машинным обучением». Эффективность классического, «неглубокого» машинного обучения в большей степени зависит от контроля со стороны человека. Иерархия признаков для понимания разницы между входными данными определяется специалистом-человеком. Обычно для машинного обучения требуются более структурированные данные.
Безусловно, для алгоритмов «глубокого» машинного обучения также можно использовать размеченные наборы данных (этот принцип еще называется «контролируемым» обучением), но это необязательно. Глубокое обучение способно работать с неструктурированными данными в исходном формате (например, это может быть текст или изображения): алгоритм способен самостоятельно определять набор признаков для различения разных категорий данных. В отличие от машинного обучения, вмешательство человека при обработке данных не требуется, что открывает намного больше возможностей применения этой технологии.
Приложения искусственного интеллекта
На сегодняшний день ИИ распространился повсеместно, и практических примеров его использования очень много. Вот несколько самых популярных:
История искусственного интеллекта: Ключевые даты и имена
Идея способной к мышлению машины возникла еще в Древней Греции. Ниже перечислены ключевые вехи и важнейшие события в эволюции искусственного интеллекта, которая ускорилась после появления электронных вычислений:
Искусственный интеллект и IBM Cloud
Компания IBM занимает лидирующие позиции в разработке технологий на основе ИИ для предприятий и в числе первых сформировала будущее систем машинного обучения во многих отраслях. Основываясь на десятилетиях исследований в области ИИ, многолетнем опыте работы с организациями всех размеров и выводах, сделанных в ходе реализации более чем 30000 проектов с IBM Watson, IBM разработала процесс поэтапного освоения ИИ для успешного внедрения искусственного интеллекта:
IBM Watson предоставляет в распоряжение предприятий инструменты ИИ, помогающие трансформировать бизнес-системы и рабочие процессы, существенно повысив показатели автоматизации и эффективности. Для того чтобы подробнее узнать о том, как IBM может помочь вам пройти путь к ИИ, обратитесь к описанию портфеля управляемых услуг и решений IBM.
Зарегистрируйтесь для получения IBMid и создайте учетную запись IBM Cloud.
Искусственный интеллект: краткая история, развитие, перспективы
Сейчас технологии развиваются с немыслимой скоростью. Ранее те возможности, что, казалось бы, были доступны только профессиональным ученым, в современной жизни доступны каждому. Один из подобных прорывов – искусственный интеллект, прочно обосновавшийся во многих сферах человеческой жизни.
Сегодня поговорим о том, что такое ИИ, как он возник, где применяется, а также чем он отличается от человеческого разума.
Что представляет собой искусственный интеллект
Искусственный интеллект – это свойство интеллектуальной системы выполнять те функции и задачи, которые обычно характерны для разумных существ. Это может быть проявление каких-то творческих способностей, склонность к рассуждению, обобщение, обучение на основании полученного ранее опыта и так далее.
Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.
История возникновения и развития искусственного интеллекта
Впервые термин artificial intelligence (с английского переводится как «искусственный интеллект») был упомянут в 1956 году Джоном МакКарти, основателем функционального программирования и изобретателем языка Lisp, на конференции в Университете Дартмута.
Однако сама идея подобной системы была сформирована в 1935 году Аланом Тьюрингом. Ученый дал описание абстрактной вычислительной машине, состоящей из безграничной памяти и сканера, перемещающегося вперед и назад по памяти. Однако позднее, в 1950 году, он предложил считать интеллектуальными те системы, которые в общении не будут отличаться от человека.
Тогда же Тьюринг разработал эмпирический тест для оценки машинного интеллекта. Он показывает, насколько искусственная система продвинулась в обучении общению и удастся ли ей выдать себя за человека.
Самая ранняя успешная программа искусственного интеллекта была создана Кристофером Стрейчи в 1951 году. А уже в 1952 году она играла в шашки с человеком и удивляла зрителей своими способностями предсказывать ходы. По этому поводу в 1953 году Тьюринг опубликовал статью о шахматном программировании.
В 1965 году специалист Массачусетского технологического университета Джозеф Вайценбаум разработал программу «Элиза», которая ныне считается прообразом современной Siri. В 1973 году была изобретена «Стэндфордская тележка», первый беспилотный автомобиль, контролируемый компьютером. К концу 1970-х интерес к ИИ начал спадать.
Новое развитие искусственный интеллект получил в середине 1990-х. Самый известный пример – суперкомпьютер IBM Deep Blue, который в 1997 году обыграл в шахматы чемпиона мира Гарри Каспарова. Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой.
Отличие ИИ от нейросетей и машинного обучения
Нейросети представляют собой математическую модель, компьютерный алгоритм, работа которого основана на множестве искусственных нейронов. Суть этой системы в том, что ее не нужно заранее программировать. Она моделирует работу нейронов человеческого мозга, проводит элементарные вычисления и обучается на основании предыдущего опыта, но это не соотносимо с ИИ.
Искусственный интеллект, как мы помним, является свойством сложных систем выполнять задачи, обычно свойственные человеку. К ИИ часто относят узкоспециализированные компьютерные программы, также различные научно-технологические методы и решения. ИИ в своей работе имитирует человеческий мозг, при этом основывается на прочих логических и математических алгоритмах или инструментах, в том числе нейронных сетях.
Под машинным обучением понимают использование различных технологий для самообучающихся программ. Соответственно, это одно из многочисленных направлений ИИ. Системы, основанные на машинном обучении, получают базовые данные, анализируют их, затем на основе полученных выводов находят закономерности в сложных задачах со множеством параметров и дают точные ответы. Один из наиболее распространенных вариантов организации машинного обучения – применение нейросетей.
Если сравнивать с человеком, то ИИ подобен головному мозгу, машинное обучение – это один из многочисленных способов обработки поступающих данных и решения назревающих задач, а нейросети соответствуют объединению более мелких, базовых элементов мозга – нейронов.
Разница между искусственным и естественным интеллектом
Сравнивать искусственный и естественный интеллект можно лишь по некоторым общим параметрам. Например, человеческий мозг и компьютер работают по примерно схожему принципу, включающему четыре этапа – кодирование, хранение данных, анализ и предоставление результатов. И естественный, и искусственный разум склонны к самообучению, они решают те или иные задачи и проблемы, используя специальные алгоритмы.
Помимо общих умственных способностей к рассуждению, обучению и решению проблем, человеческое мышление также имеет эмоциональную окраску и сильно зависит от влияния социума. Искусственный интеллект не имеет никакого эмоционального характера и не ориентирован социально.
Если говорить об IQ – большинство ученых склонны считать, что сей параметр оценки никак не связан с искусственным интеллектом. С одной стороны, это действительно так, ведь стандартные IQ-тесты направлены на измерение «качества» человеческого мышления и связаны с развитием интеллекта на разных возрастных этапах.
С другой стороны, для ИИ создан собственный «IQ-тест», названный в честь Тьюринга. Он помогает определить, насколько хорошо машина обучилась и способна ли она уподобиться в общении человеку. Это своего рода планка для ИИ, установленная людьми. А ведь все больше ученых склоняется к тому, что скоро компьютеры обгонят человечество по всем параметрам… Развитие технологий идет по непредсказуемому сценарию, и вполне допустимо, что так и будет.
Применение ИИ в современной жизни
В зависимости от области и обширности сферы применения, выделяют два вида ИИ – Weak AI, называемый еще «слабым», и Strong AI, «сильный». В первом случае перед системой ставят узкоспециализированные задачи – диагностика в медицине, управление роботами, работа на базе электронных торговых платформ. Во втором же подразумевается решение глобальных задач.
Так, одна из наиболее популярных сфер применения ИИ – это Big Data в коммерции. Крупные торговые площадки используют подобные технологии для исследования потребительского поведения. Компания «Яндекс» вообще создает с их помощью музыку. В некоторые мобильные приложения встроены голосовые помощники вроде Siri, Алисы или Cortana. Они упрощают процесс навигации и совершения покупок в сервисе. И не стоит забывать про программы с нейросетями, обрабатывающими фото и видео.
ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…
Люксовые бренды внедряют ИИ в свои системы для анализа потребностей клиентов. Стремительно развивается использование подобных систем в системах здравоохранения, в основном при диагностике заболеваний, разработке лекарств, создании медицинских страховок, проведении клинических исследований и так далее.
Перечислить разом все области, в которых задействован искусственный интеллект, практически нереально. На данный момент он затрагивает все больше самых разных сфер. И причин на то немало – та же автоматизация производственных процессов, стремительный рост информационного оборота и инвестиций в эту сферу, даже социальное давление.
Влияние на различные области
ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают.
Искусственный интеллект может оказать существенное влияние на рынок труда. Это может привести к массовому увольнению рабочего персонала из-за автоматизации большинства процессов. Ну и росту востребованности разработчиков, конечно.
Перспективы развития искусственного интеллекта
Современные компьютеры приобретают все больше знаний и «умений». Скептики же утверждают, что все возможности ИИ – не более чем компьютерная программа, а не пример самообучения. Однако это не мешает технологии широко распространяться в самых различных сферах и открывать невиданные ранее потенциалы для развития. Со временем компьютеры будут становиться все мощнее, а ИИ еще быстрее совершенствоваться в своем развитии.
Заключение
Не так давно, казалось бы, ученые ввели понятие «искусственный интеллект», а чуть больше полвека спустя технология уже находит широкий спрос в самых различных сферах. Сейчас искусственный разум, можно сказать, находится в шаговой доступности для любого человека – компьютер и ноутбук, смартфон и электронные часы, даже многие простейшие приложения работают именно с его помощью. ИИ в самых разных своих проявлениях проник во многие сферы человеческой жизни и прочно обосновался в них.
Возможно, страхи ученых вполне обоснованы? Как знать 🙂