Что означает структурированность данных
10 типов структур данных, которые нужно знать + видео и упражнения
Екатерина Малахова, редактор-фрилансер, специально для блога Нетологии адаптировала статью Beau Carnes об основных типах структур данных.
«Плохие программисты думают о коде. Хорошие программисты думают о структурах данных и их взаимосвязях», — Линус Торвальдс, создатель Linux.
Структуры данных играют важную роль в процессе разработки ПО, а еще по ним часто задают вопросы на собеседованиях для разработчиков. Хорошая новость в том, что по сути они представляют собой всего лишь специальные форматы для организации и хранения данных.
В этой статье я покажу вам 10 самых распространенных структур данных. Для каждой из них приведены видео и примеры их реализации на JavaScript. Чтобы вы смогли попрактиковаться, я также добавил несколько упражнений из бета-версии новой учебной программы freeCodeCamp.
Обратите внимание, что некоторые структуры данных включают временную сложность в нотации «большого О». Это относится не ко всем из них, так как иногда временная сложность зависит от реализации. Если вы хотите узнать больше о нотации «большого О», посмотрите это видео от Briana Marie.
В статье я привожу примеры реализации этих структур данных на JavaScript: они также пригодятся, если вы используете низкоуровневый язык вроде С. В многие высокоуровневые языки, включая JavaScript, уже встроены реализации большинства структур данных, о которых пойдет речь. Тем не менее, такие знания станут серьезным преимуществом при поиске работы и пригодятся при написании высокопроизводительного кода.
Связные списки
Связный список — одна из базовых структур данных. Ее часто сравнивают с массивом, так как многие другие структуры можно реализовать с помощью либо массива, либо связного списка. У этих двух типов есть преимущества и недостатки.
Так устроен связный список
Связный список состоит из группы узлов, которые вместе образуют последовательность. Каждый узел содержит две вещи: фактические данные, которые в нем хранятся (это могут быть данные любого типа) и указатель (или ссылку) на следующий узел в последовательности. Также существуют двусвязные списки: в них у каждого узла есть указатель и на следующий, и на предыдущий элемент в списке.
Основные операции в связном списке включают добавление, удаление и поиск элемента в списке.
Упражнения от freeCodeCamp
Стеки
Стек — это базовая структура данных, которая позволяет добавлять или удалять элементы только в её начале. Она похожа на стопку книг: если вы хотите взглянуть на книгу в середине стека, сперва придется убрать лежащие сверху.
Так устроен стек
В стеках можно выполнять три операции: добавление элемента (push), удаление элемента (pop) и отображение содержимого стека (pip).
Упражнения от freeCodeCamp
Очереди
Эту структуру можно представить как очередь в продуктовом магазине. Первым обслуживают того, кто пришёл в самом начале — всё как в жизни.
Так устроена очередь
Очередь устроена по принципу FIFO (First In First Out, «первый пришёл — первый вышел»). Это значит, что удалить элемент можно только после того, как были убраны все ранее добавленные элементы.
Очередь позволяет выполнять две основных операции: добавлять элементы в конец очереди (enqueue) и удалять первый элемент (dequeue).
Упражнения от freeCodeCamp
Множества
Так выглядит множество
Множество хранит значения данных без определенного порядка, не повторяя их. Оно позволяет не только добавлять и удалять элементы: есть ещё несколько важных функций, которые можно применять к двум множествам сразу.
Упражнения от freeCodeCamp
Map — это структура, которая хранит данные в парах ключ/значение, где каждый ключ уникален. Иногда её также называют ассоциативным массивом или словарём. Map часто используют для быстрого поиска данных. Она позволяет делать следующие вещи:
Структурированные и неструктурированные данные: сравнение и объяснение
Оглавление
В этой статье вы подробнее познакомитесь со структурированными и неструктурированными данными. Давайте посмотрим, в чем разница между ними и почему вы должны знать это в первую очередь. Кроме того, мы поможем вам понять, как обрабатывать каждый тип данных и какие программные инструменты доступны для каждой цели.
Структурированные и неструктурированные данные в двух словах
Данные существуют во множестве различных форм и размеров, но большинство из них могут быть представлены в виде структурированных и неструктурированных данных.
Ключевые различия между неструктурированными данными и структурированными данными.
Структурированные данные представляют собой высокоорганизованную, фактическую и точную информацию. Обычно он представлен в форме букв и цифр, которые хорошо вписываются в строки и столбцы таблиц. Структурированные данные обычно существуют в таблицах, подобных файлам Excel и электронным таблицам Google Docs.
Неструктурированные данные не имеют заранее определенной структуры и представлены во всем разнообразии форм. Примеры неструктурированных данных варьируются от изображений и текстовых файлов, таких как документы PDF, до видео и аудио файлов, и это лишь некоторые из них.
Структурированные данные часто называют количественными данными, что означает, что их объективный и заранее определенный характер позволяет нам легко подсчитывать, измерять и выражать данные в числах. Неструктурированные данные также называются качественными данными в том смысле, что они имеют субъективный и интерпретирующий характер. Эти данные можно разделить на категории в зависимости от их характеристик и свойств.
Сделав это резюме, давайте перейдем к более описательному объяснению различий.
Что такое структурированные данные?
Итак, структурированные данные – это хорошо организованные и точно отформатированные данные. Эти данные существуют в формате реляционных баз данных ( СУБД ), то есть информация хранится в таблицах со связанными строками и столбцами. Таким образом структурированные данные аккуратно упорядочиваются и записываются, поэтому их можно легко найти и обработать. Пока данные вписываются в структуру СУБД, мы можем легко искать конкретную информацию и выделять отношения между ее частями. Такие данные можно использовать только по прямому назначению. Кроме того, для структурированных данных обычно не требуется много места для хранения.
Для работы с реляционными базами данных и хранилищами используется специальный язык программирования SQL, который означает язык структурированных запросов и был разработан IBM еще в 1970-х годах.
Примеры структурированных данных. Структурированные данные знакомы большинству из нас. Файлы Google Sheets и Microsoft Office Excel – это первое, что приходит на ум, когда речь идет о примерах структурированных данных. Эти данные могут содержать как текст, так и числа, такие как имена сотрудников, контакты, почтовые индексы, адреса, номера кредитных карт и т. Д.
Типичный пример структурированных данных: электронная таблица Excel, содержащая информацию о покупателях и покупках.
Практически каждый имел дело с бронированием билета через одну из систем бронирования авиабилетов или снятием наличных в банкомате. Во время этих операций мы обычно не думаем о том, с какими приложениями имеем дело и какие типы данных они обрабатывают. Однако это системы, которые обычно также используют структурированные данные и реляционные базы данных.
Что такое неструктурированные данные?
Имеет смысл, что если определение структурированных данных подразумевает аккуратную организацию компонентов предопределенным образом, определение неструктурированных данных будет противоположным. Части таких данных не структурированы заранее определенным образом, то есть данные хранятся в своих собственных форматах.
Принимая во внимание все разнообразие форматов файлов неструктурированных данных, неудивительно, что они составляют более 80 процентов всех данных. При этом компании, игнорирующие неструктурированные данные, остаются далеко позади, поскольку не получают достаточно ценной информации.
Примеры неструктурированных данных. Существует широкий спектр форм, которые составляют неструктурированные данные, такие как электронная почта, текстовые файлы, сообщения в социальных сетях, видео, изображения, аудио, данные датчиков и так далее.
Сообщение туристического агентства в Facebook: пример неструктурированных данных.
В качестве примера мы можем взять сообщения в социальных сетях туристического агентства или все публикации, если на то пошло. Каждый пост содержит некоторые показатели, такие как репосты или хэштеги, которые можно количественно определить и структурировать. Однако сами посты относятся к категории неструктурированных данных. Мы пытаемся сказать, что для анализа сообщений и сбора полезной информации потребуется некоторое время, усилия, знания и специальные программные инструменты. Если агентство публикует новые туристические туры и хочет узнать реакцию аудитории (комментарии), им нужно будет изучить публикацию в ее собственном формате (просмотреть публикацию в приложении социальных сетей или использовать передовые методы, такие как анализ настроений ).
Ключевые различия между структурированными и неструктурированными данными
Подробнее о различиях между структурированными и неструктурированными данными.
Теперь давайте обсудим еще несколько важных различий между структурированными и неструктурированными данными:
Форматы данных: несколько форматов против множества форматов
Структурированные данные обычно представлены в виде текста и чисел. Его форматы стандартизированы и удобочитаемы. Наиболее распространены CSV и XML. В модели данных формат данных был определен заранее.
В отличие от структурированных данных, неструктурированные форматы данных представлены в избытке различных форм и размеров. Неструктурированные данные не имеют заранее определенной модели данных и хранятся в своих собственных форматах (так называемых «исходных» форматах). Это могут быть аудио (WAV, MP3, OGG и т. Д.) Или видеофайлы (MP4, WMV и т. Д.), PDF-документы, изображения (JPEG, PNG и т. Д.), Электронные письма, сообщения в социальных сетях, данные датчиков и т. Д.
Модели данных: предопределенные и гибкие
Структурированные данные менее гибкие, так как они основаны на строгой организации модели данных. Такие данные зависят от схемы. Схема базы данных обозначает конфигурацию столбцов (также называемых полями) и типы данных, которые должны храниться в этих столбцах. Такая зависимость является как преимуществом, так и недостатком. Хотя информацию здесь можно легко найти и обработать, все записи должны соответствовать очень строгим требованиям схемы.
С другой стороны, неструктурированные данные обеспечивают большую гибкость и масштабируемость. Отсутствие заранее определенной цели неструктурированных данных делает их очень гибкими, поскольку информация может храниться в различных форматах файлов. Однако эти данные субъективны и с ними труднее работать.
Хранилища для аналитического использования: озера данных или хранилища данных
Чем больше объем данных, тем больше места требуется для хранения. Картинка с высоким разрешением весит намного больше, чем текстовый файл. Следовательно, неструктурированные данные требуют больше места для хранения и обычно хранятся в озерах данных, репозиториях хранения, которые позволяют хранить практически неограниченные объемы данных в необработанных форматах. Помимо озер данных, неструктурированные данные хранятся в собственных приложениях.
В обоих случаях есть потенциал для использования облака.
Базы данных: SQL против NoSQL
Реляционные базы данных используют SQL или язык структурированных запросов для доступа к хранимым данным и управления ими. Синтаксис SQL аналогичен синтаксису английского языка, что обеспечивает простоту его написания, чтения и интерпретации.
Вот как SQL помогает делать запросы.
Говоря о базах данных для неструктурированных данных, наиболее подходящим вариантом для этого типа данных будут нереляционные базы данных, также известные как базы данных NoSQL.
NoSQL означает «не только SQL». Эти базы данных имеют различные модели данных и хранят данные в нетабличном виде. Наиболее распространенные типы баз данных NoSQL – это ключ-значение, документ, граф и широкий столбец. Такие базы данных могут обрабатывать огромные объемы данных и справляться с высокими пользовательскими нагрузками, поскольку они достаточно гибкие и масштабируемые. В мире NoSQL существуют скорее коллекции данных, чем таблицы. В этих сборниках есть так называемые документы. Хотя документы могут выглядеть как строки в таблицах, они не используют одну и ту же схему. В одной коллекции может быть несколько документов с разными полями. Кроме того, между элементами данных практически нет отношений. Идея здесь состоит в том, чтобы уменьшить количество слияний отношений и вместо этого иметь сверхбыстрые и эффективные запросы. Хотя будут и дубликаты данных.
Пример структуры данных NoSQL.
Легкость поиска, анализа и обработки
Одно из основных различий между структурированными и неструктурированными данными заключается в том, насколько легко их можно подвергнуть анализу. Структурированные данные в целом легко искать и обрабатывать, независимо от того, обрабатывает ли это человек или выполняет программные алгоритмы. Неструктурированные данные, напротив, гораздо сложнее искать и анализировать. После обнаружения такие данные должны быть внимательно обработаны, чтобы понять их ценность и применимость. Этот процесс сложен, поскольку неструктурированные данные не могут поместиться в фиксированные поля реляционных баз данных, пока они не будут собраны и обработаны.
С исторической точки зрения, поскольку структурированные данные существуют дольше, логично, что для них существует отличный выбор зрелых аналитических инструментов. В то же время те, кто работает с неструктурированными данными, могут столкнуться с меньшим выбором инструментов аналитики, поскольку большинство из них все еще разрабатываются. Использование традиционных инструментов интеллектуального анализа данных обычно разбивается о неорганизованную внутреннюю структуру этого типа данных.
Природа данных: количественные vs качественные
Неструктурированные данные, в свою очередь, часто классифицируются как качественные данные, содержащие субъективную информацию, которую невозможно обработать с помощью традиционных методов и инструментов программного анализа. Например, качественные данные могут поступать из опросов клиентов или отзывов в социальных сетях в текстовой форме. Для обработки и анализа качественных данных требуются более современные аналитические методы, такие как:
Инструменты и технологии
Инструменты структурированных данных. Ясная и высокоорганизованная сущность структурированных данных способствует широкому спектру инструментов управления данными и аналитики. Это открывает возможности для групп данных с точки зрения выбора наиболее подходящего программного продукта для работы со структурированными данными.
Инструменты управления структурированными данными.
Среди наиболее часто используемых систем управления реляционными базами данных, инструментов и технологий для обработки данных можно выделить следующие:
Инструменты для неструктурированных данных. Поскольку неструктурированные данные бывают разных форм и размеров, для их правильного анализа и обработки требуются специально разработанные инструменты. Кроме того, необходимо найти квалифицированную команду по анализу данных. Мало того, что полезно понимать тему данных, но также важно выяснить отношения этих данных.
Инструменты управления неструктурированными данными.
Ниже вы найдете несколько примеров инструментов и технологий для эффективного управления неструктурированными данными:
В свое время анализ неструктурированных данных обычно выполнялся вручную и требовал много времени. В настоящее время существует довольно много продвинутых инструментов на основе ИИ, которые помогают сортировать неструктурированные данные, находить соответствующие элементы и сохранять результаты. Технологии и инструменты для неструктурированных данных включают алгоритмы обработки естественного языка и машинного обучения. Таким образом, можно адаптировать программные продукты к потребностям конкретных отраслей.
Команды данных для обработки данных
В отличие от инструментов структурированных данных, инструменты, предназначенные для неструктурированных данных, более сложны в работе. Следовательно, им требуется определенный уровень знаний в области науки о данных и машинного обучения для проведения глубокого анализа данных. Кроме того, специалисты, работающие с неструктурированными данными, должны хорошо разбираться в теме данных и их взаимосвязи. Учитывая вышесказанное, для обработки неструктурированных данных компании потребуется квалифицированная помощь специалистов по данным, инженеров и аналитиков.
Примеры и варианты использования структурированных и неструктурированных данных
Поскольку мы частично затронули тему примеров структурированных и неструктурированных данных выше, было бы полезно указать на конкретные варианты использования.
Итак, когда вы думаете о датах, именах, идентификаторах продуктов, информации о транзакциях и т. Д., Вы знаете, что имеете в виду структурированные данные. В то же время неструктурированные данные имеют множество лиц, таких как текстовые файлы, документы PDF, сообщения в социальных сетях, комментарии, изображения, аудио / видео файлы, электронные письма и многие другие.
Чаще всего отраслям необходимо использовать оба типа данных для повышения эффективности своих услуг.
Основные структуры данных. Матчасть. Азы
Все чаще замечаю, что современным самоучкам очень не хватает матчасти. Все знают языки, но мало основы, такие как типы данных или алгоритмы. Немного про типы данных.
Еще в далеком 1976 швейцарский ученый Никлаус Вирт написал книгу Алгоритмы + структуры данных = программы.
40+ лет спустя это уравнение все еще верно. И если вы самоучка и надолго в программировании пробегитесь по статье, можно по диагонали. Можно код кофе.
В статье так же будут вопросы, которое вы можете услышать на интервью.
Что такое структура данных?
Структура данных — это контейнер, который хранит данные в определенном макете. Этот «макет» позволяет структуре данных быть эффективной в некоторых операциях и неэффективной в других.
Какие бывают?
Линейные, элементы образуют последовательность или линейный список, обход узлов линеен. Примеры: Массивы. Связанный список, стеки и очереди.
Нелинейные, если обход узлов нелинейный, а данные не последовательны. Пример: граф и деревья.
Основные структуры данных.
Массивы
Массив — это самая простая и широко используемая структура данных. Другие структуры данных, такие как стеки и очереди, являются производными от массивов.
Изображение простого массива размера 4, содержащего элементы (1, 2, 3 и 4).
Каждому элементу данных присваивается положительное числовое значение (индекс), который соответствует позиции элемента в массиве. Большинство языков определяют начальный индекс массива как 0.
Бывают
Одномерные, как показано выше.
Многомерные, массивы внутри массивов.
Основные операции
Вопросы
Стеки
Стек — абстрактный тип данных, представляющий собой список элементов, организованных по принципу LIFO (англ. last in — first out, «последним пришёл — первым вышел»).
Это не массивы. Это очередь. Придумал Алан Тюринг.
Примером стека может быть куча книг, расположенных в вертикальном порядке. Для того, чтобы получить книгу, которая где-то посередине, вам нужно будет удалить все книги, размещенные на ней. Так работает метод LIFO (Last In First Out). Функция «Отменить» в приложениях работает по LIFO.
Изображение стека, в три элемента (1, 2 и 3), где 3 находится наверху и будет удален первым.
Основные операции
Вопросы
Очереди
Подобно стекам, очередь — хранит элемент последовательным образом. Существенное отличие от стека – использование FIFO (First in First Out) вместо LIFO.
Пример очереди – очередь людей. Последний занял последним и будешь, а первый первым ее и покинет.
Изображение очереди, в четыре элемента (1, 2, 3 и 4), где 1 находится наверху и будет удален первым
Основные операции
Вопросы
Связанный список
Связанный список – массив где каждый элемент является отдельным объектом и состоит из двух элементов – данных и ссылки на следующий узел.
Принципиальным преимуществом перед массивом является структурная гибкость: порядок элементов связного списка может не совпадать с порядком расположения элементов данных в памяти компьютера, а порядок обхода списка всегда явно задаётся его внутренними связями.
Бывают
Однонаправленный, каждый узел хранит адрес или ссылку на следующий узел в списке и последний узел имеет следующий адрес или ссылку как NULL.
Двунаправленный, две ссылки, связанные с каждым узлом, одним из опорных пунктов на следующий узел и один к предыдущему узлу.
Круговой, все узлы соединяются, образуя круг. В конце нет NULL. Циклический связанный список может быть одно-или двукратным циклическим связанным списком.
Самое частое, линейный однонаправленный список. Пример – файловая система.
Основные операции
Вопросы
Графы
Граф-это набор узлов (вершин), которые соединены друг с другом в виде сети ребрами (дугами).
Бывают
Ориентированный, ребра являются направленными, т.е. существует только одно доступное направление между двумя связными вершинами.
Неориентированные, к каждому из ребер можно осуществлять переход в обоих направлениях.
Смешанные
Встречаются в таких формах как
Общие алгоритмы обхода графа
Вопросы
Деревья
Дерево-это иерархическая структура данных, состоящая из узлов (вершин) и ребер (дуг). Деревья по сути связанные графы без циклов.
Древовидные структуры везде и всюду. Дерево скилов в играх знают все.
«Бинарное дерево — это иерархическая структура данных, в которой каждый узел имеет значение (оно же является в данном случае и ключом) и ссылки на левого и правого потомка. » — Procs
Три способа обхода дерева
Вопросы
Trie ( префиксное деревое )
Разновидность дерева для строк, быстрый поиск. Словари. Т9.
Вот как такое дерево хранит слова «top», «thus» и «their».
Слова хранятся сверху вниз, зеленые цветные узлы «p», «s» и «r» указывают на конец «top», «thus « и «their» соответственно.
Вопросы
Хэш таблицы
Хэширование — это процесс, используемый для уникальной идентификации объектов и хранения каждого объекта в заранее рассчитанном уникальном индексе (ключе).
Объект хранится в виде пары «ключ-значение», а коллекция таких элементов называется «словарем». Каждый объект можно найти с помощью этого ключа.
По сути это массив, в котором ключ представлен в виде хеш-функции.
Эффективность хеширования зависит от
Вопросы
Список ресурсов
Вместо заключения
Матчасть так же интересна, как и сами языки. Возможно, кто-то увидит знакомые ему базовые структуры и заинтересуется.
Спасибо, что прочли. Надеюсь не зря потратили время =)
PS: Прошу извинить, как оказалось, перевод статьи уже был тут и очень недавно, я проглядел.
Если интересно, вот она, спасибо Hokum, буду внимательнее.