Что означает сложение и умножение событий
1.2.3. Сложение и умножение событий
Пожалуйста, запомните ВАЖНЕЙШЕЕ ПРАВИЛО, без которого освоить тервер просто нереально:
Сложение событий обозначает логическую связку ИЛИ,
а умножения событий – логическую связку И.
1) Суммой двух событий и
называется событие
которое состоит в том, что наступит или событие
, или событие
, или оба события одновременно. В том случае, если событияy несовместны, последний вариант отпадает, то есть может наступить или событие
или событие
.
Правило распространяется и на бОльшее количество слагаемых, например, событие состоит в том, что произойдёт хотя бы одно из событий
, а если события несовместны – то одно и только одно событие из этой суммы: или событие
, или событие
, или событие
, или событие
, или
.
Событие (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет 1, или 2, или 3, или 4, или 6 очков.
Все примеры ОСМЫСЛЕННО проговариваем ВСЛУХ!
Это важно.
Событие состоит в том, что выпадет не более двух очков (1 или 2 очка).
Событие состоит в том, что выпадет 2, или 4, или 6 очков (чётное число очков).
Событие заключается в том, что из колоды будет извлечена карта красной масти (черва или бубна), а событие
– в том, что будет извлечена «картинка» (валет или дама или король или туз).
Чуть занятнее дело с событиями совместными:
Событие состоит в том, что из колоды будет извлечена трефа или семёрка или семёрка треф. Согласно данному выше определению, хотя бы что-то – или любая трефа или любая семёрка или их «пересечение» – семёрка треф. Легко подсчитать, что данному событию соответствует 12 элементарных исходов (9 трефовых карт + 3 оставшиеся семёрки).
Событие состоит в том, что завтра в 12.00 наступит ХОТЯ БЫ ОДНО из суммируемых совместных событий, а именно:
– будет только дождь / только гроза / только солнце;
– или наступит только какая-нибудь пара событий (дождь + гроза / дождь + солнце / гроза + солнце);
– или все три события появятся одновременно.
То есть, событие включает в себя 7 возможных исходов, которые, к слову, несовместны – по той причине, что любая «погодная комбинация» исключает появление других.
Второй столп алгебры событий:
2) Произведением двух событий и
называют событие
, которое состоит в совместном появлении этих событий, иными словами, умножение
означает, что при некоторых обстоятельствах наступит и событие
, и событие
. Аналогичное утверждение справедливо и для бОльшего количества событий, так, например, произведение
подразумевает, что при определённых условиях произойдёт и событие
, и событие
, и событие
, …, и событие
.
Рассмотрим испытание, в котором подбрасываются две монеты (не имеет значения, одновременно или нет) и следующие события:
– на 1-й монете выпадет орёл;
– на 1-й монете выпадет решка;
– на 2-й монете выпадет орёл;
– на 2-й монете выпадет решка.
Тогда:
– событие состоит в том, что на 1-й монете выпадет орёл и на 2-й орёл;
– событие состоит в том, что на 1-й монете выпадет решка и на 2-й решка;
– событие состоит в том, что на 1-й монете выпадет орёл и на 2-й монете выпадет решка;
– событие состоит в том, что на 1-й монете выпадет решка и на 2-й монете выпадет орёл.
Осмысливаем и проговариваем вслух!!
Очевидно, что события несовместны (т.к. не может, например, выпасть 2 орла и в то же самое время 2 решки) и образуют полную группу (поскольку учтены все возможные исходы броска двух монет).
Давайте просуммируем данные события: . Как интерпретировать эту запись? Очень просто – умножение означает логическую связку И, а сложение – ИЛИ. Таким образом, эту сумму легко прочитать понятным человеческим языком: «выпадут два орла или две решки, или на 1-й монете выпадет орёл и на 2-й решка, или на 1-й монете выпадет решка и на 2-й монете орёл ».
Это был пример, когда в одном испытании задействовано несколько объектов, в данном случае две монеты. Другая распространенная в практических задачах схема – это повторные испытания, когда, например, один и тот же игральный кубик бросается 3 раза подряд. В качестве демонстрации рассмотрим следующие события:
– в 1-м броске выпадет 4 очка;
– во 2-м броске выпадет 5 очков;
– в 3-м броске выпадет 6 очков.
Тогда событие состоит в том, что в 1-м броске выпадет 4 очка и во 2-м броске выпадет 5 очков и в 3-м броске выпадет 6 очков.
…понимаю, что разбираются не очень интересные примеры, но это часто встречающиеся в задачах вещи и от них никуда не деться. Помимо монетки, кубика и колоды карт вас поджидают урны с разноцветными шарами, несколько стрелков, стреляющих по мишени, и неутомимый рабочий, который постоянно вытачивает какие-то детали =)
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин
Учебник по теории вероятностей
1.4. Сложение и умножение вероятностей
События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается очевидно: А = В.
Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.
Теорема о сложении вероятностей. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.
Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:
Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.
Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:
Вероятность произведения зависимых событий вычисляется по формуле условной вероятности.
Примеры решений задач с событиями
Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.
Решение. Обозначим события: А – вынули белый шар из первого ящика, ;
— вынули черный шар из первого ящика,
;
В – белый шар из второго ящика, ;
— черный шар из второго ящика,
.
Нам нужно, чтобы произошло одно из событий или
. По теореме об умножении вероятностей
,
.
Тогда искомая вероятность по теореме сложения будет .
Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) двойного промаха, в) хотя бы одного попадания; г) одного попадания.
Пусть А – попадание первого стрелка, ;
В – попадание второго стрелка, .
Тогда — промах первого,
;
— промах второго,
.
Найдем нужные вероятности.
а) АВ – двойное попадание,
б)
– двойной промах,
.
в) А+В – хотя бы одно попадание,
.
г) – одно попадание,
.
Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.
А – формула содержится в первом справочнике;
В – формула содержится во втором справочнике;
С – формула содержится в третьем справочнике.
Воспользуемся теоремами сложения и умножения вероятностей.
1.
2. .
3.
Вероятность наступления хотя бы одного события
Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий?
Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.
Примеры решений на эту тему
Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1 = 0,8; p2 = 0,7; p3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.
Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия),
(попадание второго орудия) и
(попадание третьего орудия) независимы в совокупности.
Вероятности событий, противоположных событиям ,
и
(т. е. вероятности промахов), соответственно равны:
,
,
Искомая вероятность .
Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).
Решение. События «машина работает» и «машина не работает» (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:
Отсюда вероятность того, что машина в данный момент не работает, равна
Искомая вероятность
Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.
Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?
Решение. Обозначим через А событие «при n выстрелах стрелок попадает в цель хотя бы один раз». События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .
Приняв во внимание, что, по условию, (следовательно,
), получим
Прологарифмируем это неравенство по основанию 10:
Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.