Что означает это знак в геометрии 7 класс

Обозначения и символика

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык, составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I — обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается — Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

Линии уровня обозначаются: h — горизонталь; f— фронталь.

Для прямых используются также следующие обозначения:

(АВ) — прямая, проходящая через точки А а В;

[АВ) — луч с началом в точке А;

[АВ] — отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) — плоскость α определяется параллельными прямыми а и b;

5. Углы обозначаются:

6. Угловая: величина (градусная мера) обозначается знаком Что означает это знак в геометрии 7 класс, который ставится над углом:

Что означает это знак в геометрии 7 класс— величина угла АВС;

Что означает это знак в геометрии 7 класс— величина угла φ.

Прямой угол отмечается квадратом с точкой внутри Что означает это знак в геометрии 7 класс

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками — ||.

|АВ| — расстояние между точками А и В (длина отрезка АВ);

|Аа| — расстояние от точки А до линии a;

|Аα| — расстояшие от точки А до поверхности α;

|аb| — расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

π2 —фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π3, π4 и т. д.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: Ha — горизонтальный след прямой (линии) а;

Fa — фронтальный след прямой (линии ) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3. n:

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0 :

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1 :

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Источник

Термины, определения и формулы по геометрии за 7 класс

Геометрия – наука, занимающаяся изучением геометрических фигур (в переводе с греческого слово «геометрия» означает «землемерие»).

В планиметрии изучаются свойства фигур на плоскости. В стереометрии изучаются свойства фигур в пространстве.

Отрезок — это часть прямой, ограниченная двумя точками. Эти точки называются концами отрезка.

Угол — это геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки.

Лучи называются сторонами угла, а точка — вершиной угла.

Окружностью называется геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки. Данная точка называется центром окружности.

Радиус окружности – отрезок, соединяющий центр окружности с какой-либо её точкой.

Отрезок, соединяющий две точки окружности, называется ее хордой.

Хорда, проходящая через центр окружности, называется диаметром.

Круг — это часть плоскости, ограниченная окружностью.

Угол называется развёрнутым, если обе его стороны лежат на одной прямой. ( Развёрнутый угол равен 180°).

Две геометрические фигуры называются равными, если их можно совместить наложением.

Середина отрезка — это точка отрезка, делящая его пополам, т.е. на два равных отрезка.

Биссектриса угла — это луч, исходящий из вершины угла и делящий его на два равных угла.

Угол называется прямым, если он равен 90°.

Угол называется острым, если он меньше 90° (т.е. меньше прямого угла).

Угол называется тупым, если он больше 90°, но меньше 180°. (т.е. больше прямого, но меньше развёрнутого).

Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой, называются смежными. Сумма смежных углов равна 180°.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого. Вертикальные углы равны.

Расстоянием от точки до прямой называется длина перпендикуляра, проведённого из этой точки к прямой.

Перпендикулярные прямые — прямые, которые при пересечении образуют прямой угол.

Параллельные прямые — прямые, лежащие в одной плоскости и не имеющие общих точек.

Треугольник — это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой и трех отрезков, соединяющих эти точки. Точки называются вершинами, а отрезки — сторонами треугольника.

Сумма углов треугольника равна 180°.

Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника.

Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Если все три угла треугольника острые, то треугольник называется остроугольным.

Если один из углов треугольника тупой, то треугольник называется тупоугольным.

Если один из углов треугольника прямой, то треугольник называется прямоугольным.

Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой, а две стороны, образующие прямой угол — катетами.

(Т. о соотношениях между сторонами и углами треугольника) В треугольнике против большей стороны лежит больший угол, и обратно, против большего угла лежит большая сторона.

В прямоугольном треугольнике гипотенуза больше катета.

(Признак равнобедр. треугольника) Если два угла треугольника равны, то треугольник равнобедренный.

(Т. Неравенство треугольника) Каждая сторона треугольника меньше суммы двух других сторон.

Если два треугольника равны, то элементы (т.е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника.

Теорема – утверждение, справедливость которого устанавливается путём рассуждений. Сами рассуждения называются доказательством теоремы.

Первый признак равенства треугольников

«Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то эти треугольники равны.»

Сокращенно его называют равенство «по двум сторонам и углу между ними».

На рисунке 1 представлен треугольник ABС. Который имеет три вершины (А, В и С). И стороны – АВ, АС и ВС.

Треугольники считаются равными, когда все их стороны и углы соответственно равны друг другу (в случае, когда равны лишь углы, а стороны пропорциональны, треугольники называются подобными). Таким образом очевидно, что равные треугольники можно наложить друг на друга – и они полностью совпадут.

Доказательство первого признака равенства треугольников

Два треугольника: ABC и DEF (рисунок 2).

Что означает это знак в геометрии 7 класс

По условию теоремы две пары отрезков этих треугольников равны между собой (АС = FD и СВ = EF). Углы между отрезками также равны (т.е. ∠АСВ = ∠EFD).

Доказать, что треугольник ABC равен треугольнику DEF.

Поскольку имеется равенство углов (∠АСВ = ∠EFD), треугольники можно наложить друг на друга, так чтобы вершина С совпадала с вершиной F.
При этом отрезки СА и СВ наложатся на отрезки FE и FD.
А поскольку отрезки двух треугольников равны между собой (АС = FD и СВ = EF по условию), то отрезок АВ также совпадёт со стороной ED.
Это в свою очередь даст совмещение вершин А и D, В и Е.
Следовательно, треугольники полностью совместятся, а значит, они равны.
Теорема доказана.

Второй признак равенства треугольников

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Что означает это знак в геометрии 7 класс

Как и в доказательстве первого признака, нужно убедиться, достаточно ли этого для равенства треугольников, можно ли их полностью совместить?

1. Так как MN=PR, то эти отрезки совмещаются, если совместить их конечные точки.

2. Так как∡N=∡R и∡M=∡P, то лучи MK и NK наложатся соответственно на лучи PT и RT.

3. Если совпадают лучи, то совпадают точки их пересечения K и T.

4. Совмещены все вершины треугольников, то есть ΔMNK и ΔPRT полностью совместятся, значит они равны.

Третий признак равенства треугольников

Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.

Что означает это знак в геометрии 7 класс

Опять попробуем совместить треугольникиΔMNK и ΔPRT наложением и убедится, что соответственно равные стороны гарантирует и равенство соответственных углов этих треугольников и они полностью совпадут.

Что означает это знак в геометрии 7 класс

Совместим, например, одинаковые отрезки MK иPT. Допустим, что точки N и R при этом не совмещаются.

Пусть O — середина отрезка NR. Соответственно данной информацииMN=PR, KN=TR. Треугольники MNR и KNR равнобедренные с общим основанием NR.

Поэтому их медианы MO и KO являются высотами, значит перпендикулярны NR. Прямые MO и KO не совпадают, так как точки M, K, O не лежат на одной прямой. Но через точку O прямой NR можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.

Доказано, что должны совместиться и вершины N и R.

Третий признак позволяет назвать треугольник очень сильной, устойчивой фигурой, иногда говорят, что треугольник — жёсткая фигура. Если длины сторон не меняются, то углы тоже не меняются. Например, у четырёхугольника такого свойства нет. Поэтому разные поддержки и укрепления делают треугольными.

Перпендикуляр к прямой

Из точки не лежащей на прямой можно провести перпендикуляр к этой прямой и притом только один

Медианы,биссектриссы и высоты треугольника

В любом треугольнике медианы пересекаются в одной точке. Биссектрисы пересекаются в одной точке. Высоты или их продолжения также пересекаются в одной точке

Свойства равнобедренного треугольника

Что означает это знак в геометрии 7 класс

Признаки параллельности двух прямых. Теорема 1

Если при пересечении двух прямых секущей накрест лежащие углы равны то прямые параллельны.

Признаки параллельности прямых.Теорема 2

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Признаки параллельности прямых. Теорема 3.

Если при пересечении двух прямых секущей сумма односторонних углов равна 180⁰ то прямые параллельны.

Теорема об углах образованных двумя параллельными прямыми и секущей.

Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

Аксиома параллельных прямых.

В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.

Теоремы об углах, образованных двумя параллельными прямыми и секущей

Теорема Сумма углов треугольника равна 180°.

Что означает это знак в геометрии 7 класс

Рассмотрим произвольный треугольник KLM и докажем, что ∡K+∡L+∡M=180°.

Проведём через вершину L прямую a, параллельную стороне KM.

Углы, обозначенные 1, являются накрест лежащими углами при пересечении параллельных прямых a и KMсекущей KL, а углы, обозначенные 2 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ML.

Очевидно, сумма углов 1, 2 и 3 равна развёрнутому углу с вершиной L, т. е.
∡1+∡2+∡3= 180°или ∡K+∡L+∡M=180°.

Следствия из теоремы о сумме углов треугольника

Следствие 1. Сумма острых углов прямоугольного треугольника равна 90°.

Следствие 2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45°.

Следствие 3. В равностороннем треугольнике каждый угол равен 60°.

Следствие 4. В любом треугольнике либо все углы острые, либо два угла острые, а третий — тупой или прямой.

Следствие 5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Из равенств ∡KML+∡BML= 180° и ∡K+∡L+∡KML=180° получаем, что ∡BML=∡K+∡L.

Четырёхугольники

Многоугольник — фигура, состоящая из нескольких точек плоскости, поочередно соединённых между собой непересекающимися отрезками.

Выпуклый многоугольник — это многоугольник, который весь лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.

Теорема:Сумма внутренних углов выпуклого n-угольника равна (n-2)*1800.

Параллелограмм- это четырёхугольник, у которого противоположные стороны попарно параллельны.

Свойство:в параллелограмме противоположные стороны равны и противоположные углы равны.

Свойство:диагонали параллелограмма точкой пересечения делятся пополам.

Теорема(признакпараллелограмма): Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм.

Теорема(признак параллелограмма): Если в четырёхугольнике противоположные стороны попарно равны, то этот четырёхугольник – параллелограмм.

Теорема(признак параллелограмма): Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник – параллелограмм.

Трапеция — это четырёхугольник, у которого две стороны параллельны, а две другие не параллельны.Параллельные стороны-основания, непараллельные стороны-боковые.

Равнобедренная трапеция — это трапеция, у которой боковые стороны равны.

Прямоугольная трапеция — это трапеция, у которой один из углов прямой.

Теорема Фалеса: если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пресекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.

Прямоугольник — это параллелограмм, у которого все углы прямые.

Свойство: диагонали прямоугольника равны.

Теорема(признакпрямоугольника): если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.

Ромб — это параллелограмм, у которого все стороны равны.

Свойство: диагонали ромба взаимно перпендикулярны и делят его углы пополам.

Квадрат — это прямоугольник, у которого все стороны равны.

Площадь

Площадь плоской фигуры-это количество единичных квадратов, вмещающихся в данную фигуру.

Площадь квадрата равна квадрату его стороны.

Площадь прямоугольника равна произведению его смежных сторон.

Площадь параллелограмма равна произведению его основания на высоту.

Площадь треугольника равна половине произведения его основания на высоту.

Площадь прямоугольного треугольника равна произведению его катетов.

Если высоты двух треугольников равны, то их площади относятся как основания.

Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.

Площадь трапеции равна полусумме её оснований на высоту.

Теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Теорема(обр.): если квадрат одной стороны треугольника равен сумме квадратов двух других его сторон, то треугольник прямоугольный.

Подобные треугольники

Отрезки m и n пропорциональны отрезкам m1и n1,если отношения их длин равны m:m1= n: n1.

Подобные треугольники — это треугольники,у которых соответственные углы равны, а сходственные стороны пропорциональны.

Коэффициент подобия — это число, равное отношению сходственных сторон подобных треугольников.

Теорема: Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Свойство биссектрисы тр-ка: биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.

Теорема(первый признак подобия треугольников): если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Теорема(второй признак подобия треугольников): если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.

Теорема(первый признак подобия треугольников): если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то такие треугольники подобны.

Средняя линия треугольника – это отрезок, соединяющий середины двух его сторон.

Теорема: Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

С. Высота прямоугольного треугольника, проведённая из вершины прямого угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику.

Среднее пропорциональное(среднее геометрическое)двух величин – это квадратный корень из произведения этих величин.

С. Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.

С. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы,заключённым между катетом и высотой, проведённой из вершины прямого угла.

Синус острого угла прямоугольного треугольника — это отношение противолежащего катета к гипотенузе.

Косинус острого угла прямоугольного треугольника- это отношение прилежащего катета к гипотенузе.

Окружность

Касательная к окружности – это прямая, имеющая с окружностью только одну общую точку.

Т. Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

Т.(обр.) Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.

Центральный угол – это угол с вершиной в центре окружности.

Дуга окружности измеряется центральным углом, который на неё опирается.

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают окружность.

Т.Вписанный угол равен половине дуги, на которую он опирается.

С. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

С. Вписанный угол, опирающийся на полуокружность, — прямой.

Т. Если две хорды окружности пересекаются, произведение отрезков одной хорды равно произведению отрезков другой хорды.

Источник

Справочник по геометрии для 7 класса

Учитель математики МОУ « Школа № 32 города Донецка»

Сысоева Светлана Ярославовна

СПРАВОЧНИК ПО ГЕОМЕТРИИ, 7 КЛАСС

Аннотация. Ни для кого не является секретом то, что при изучении математики затруднения вызывает именно геометрия.

Уникальность геометрии как учебного предмета заключается в том, что она позволяет наиболее ярко устанавливать связи между естественными представлениями об окружающих предметах и их абстрактными моделями; формировать мыслительные операции различных видов и уровней; учитывать индивидуальные особенности протекания психических процессов учащихся. Ясно, что успешное решение этих задач возможно лишь при условии непрерывного геометрического образования.

Цель работы – созд ание справочник а по геометрии, в котором

— изложить курс геометрии, к ратко и последовательно ;

— помочь обучающимся овладеть базовым понятийным аппаратом по основным

— систематизировать знания о плоских фигурах и их свойствах.

Учитывая что, особенностью модернизации образовательного процесса на современном этапе является усиление самостоятельности обучающихся на всех его организационных этапах, предлагаемый справочник предназначен для самостоятельного выбора той или иной темы в решении задач.

Справочник содержит все определения, правила, формулы и теоремы геометрии 7 класса. Подробное и последовательное содержание курса геометрии позволяет легко и быстро получать необходимую информацию.

Ключевые слова: геометрия, точка, угол, треугольник, параллельные прямые, перпендикулярные прямые, расстояние, аксиома, теорема, признак, биссектриса, медиана, высота, катет, гипотенуза.

1. Геометрия (греч. слова geо – «Земля» и metreo – «измеряю») – наука, занимающаяся изучением геометрических фигур (в переводе с греческого слово «геометрия» означает «землемерие»).

2. В планиметрии ( лат.слово planum – «плоскость» и metreo – «измеряю» ) изучаются свойства фигур на плоскости. В стереометрии ( греч. слова stereos – «объемный» и metreo – «измеряю» ) изучаются свойства фигур в пространстве.

Точка — это абстрактный объект, который не имеет измерительных характеристик: ни высоты, ни длины, ни радиуса. В рамках задачи важно только его местоположение.

Точка обозначается заглавной (большой) латинской буквой, несколько точек разными буквами, чтобы их можно было различать.

Прямая линия — это линия, которая не искривляется, не имеет ни начала, ни конца, её можно бесконечно продолжать в обе стороны. Даже когда виден небольшой участок прямой, предполагается, что она бесконечно продолжается в обе стороны.

Обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами — точками, лежащими на прямой.

Прямая линия изображается так:

Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 класс

Через любые две точки можно провести прямую, и притом только одну.

Отрезок изображается так: ЕМ, АВ. Что означает это знак в геометрии 7 класс

Луч — это направленная полупрямая, которая имеет точку начала и не имеет конца. Луч изображается так: А Что означает это знак в геометрии 7 классВ

Что означает это знак в геометрии 7 классАВ и АС – дополнительные лучи.

Что означает это знак в геометрии 7 класс

Круг составит 1/360 * 360 = 1° * 360 = 360°.

Если плоскость круга разделить диаметром (двумя радиусами, расположенными на одной прямой линии) на две равные части, то плоскость полукруга составит угол в 360°: 2 = 180°.

Если плоскость круга разделить двумя диаметрами (горизонтальной и вертикальной линиями) на четыре равные части, то плоскость одной части составит угол в 360° : 4 = 90°.

Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 класс

Все острые углы имеют градусную меру в пределах: больше 0° и меньше 90°.

Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 класс Что означает это знак в геометрии 7 классУгол 135°

Что означает это знак в геометрии 7 классАС = ВС =1/2 АВ

Что означает это знак в геометрии 7 класс

12. Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой, называются смежными. Сумма смежных углов равна 180°.

13. Два угла называются вертикальными (лат. слов о verticalis – «вершинный») , если стороны одного угла являются продолжениями сторон другого. Вертикальные углы равны.

или Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 класс

Перпендикулярность прямых (или их отрезков) обозначают знаком перпендикулярности « ».

Свойства перпендикулярных прямых

Что означает это знак в геометрии 7 класс

с) Несколько перпендикуляров, проведенных через различные точки к одной прямой, никогда между собой не пересекаются.

Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 класс

У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т.д.)

Что означает это знак в геометрии 7 классЧто означает это знак в геометрии 7 класс

В равных треугольниках против равных сторон лежат равные углы , а против равных углов – равные стороны.

Если «утверджение-условие», то «утверждение-вывод».

Что означает это знак в геометрии 7 классЕсли

то Что означает это знак в геометрии 7 класс

Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Что означает это знак в геометрии 7 классh a –высота, проведенная из вершины А к стороне а,

Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 классЕсли АВ = ВС, то треугольник АВС – равнобедренный.

24. Теорема о свойстве равнобедренного треугольника.

В равнобедренном треугольнике углы при основании равны: ∠ A = ∠ C.

В равнобедренном треугольнике медиана, проведенная к основанию , является биссектрисой и высотой. BL –биссектриса, высота.

Что означает это знак в геометрии 7 классВсе углы равностороннего треугольника равны:

27. Теорема. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Что означает это знак в геометрии 7 класс

то Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 классЕсли

то Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 класс Длина окружности: Что означает это знак в геометрии 7 класс

Площадь круга: Что означает это знак в геометрии 7 класс

31. Отрезок, соединяющий две точки окружности, называется ее хордой (греч. χορδή «струна, жила»). CD – хорда.

Хорда, проходящая через центр окружности, называется д и аметром ( греч. διάμετρος «поперечник» ) .

32. Часть окружности, заключенная между двумя ее точками называется дугой

(от русск. « радуга »); окружности. Две точки окружности определяют две дуги.

Что означает это знак в геометрии 7 классХорда CD стягивает две дуги: C А D и C В D

Для обозначения параллельных прямых используют символ « || ». То есть, если прямые c и d параллельны, то можно кратко записать:

Что означает это знак в геометрии 7 классc || d

35. Расстоянием между параллельными прямым и называется расстояние от произвольной точки одной из параллельных прямых до другой прямой.

Угол между двумя параллельными лучами равен нулю, если у них одинаковые направления, и 180°, если их направления противоположны.

Что означает это знак в геометрии 7 класс

1) соответственные углы ( 1 и 5; 2 и 6; 3 и 7; 4 и 8 ); эти углы попарно

равны: ( Что означает это знак в геометрии 7 класс 1 = Что означает это знак в геометрии 7 класс 5; Что означает это знак в геометрии 7 класс2 = Что означает это знак в геометрии 7 класс 6; Что означает это знак в геометрии 7 класс 3 = Что означает это знак в геометрии 7 класс 7; Что означает это знак в геометрии 7 класс4 = Что означает это знак в геометрии 7 класс 8 );

2) внутренние накрест лежащие углы ( 4 и 6 ; 3 и 5 ); они попарно равны;

3 ) внешние накрест лежащие углы ( 1 и 7 ; 2 и 8 ); они попарно равны;

4) внутренние односторонние углы ( 3 и 6 ; 4 и 5 ); их сумма равна 180°

( Что означает это знак в геометрии 7 класс3 + Что означает это знак в геометрии 7 класс6 = 180° ; Что означает это знак в геометрии 7 класс 4 + Что означает это знак в геометрии 7 класс5 = 180° );

5) внешние односторонние углы ( 1 и 8 ; 2 и 7 ); их сумма равна 180°

Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 классЕсли прямая c пересекает одну прям ую a , причем a || b , то она пересекает и прямую b .

45 . Теорема. Признак параллельных прямых .

Что означает это знак в геометрии 7 классЕсли a || c, b || c, тогда a || b.

Теоремой, обратной данной, называется такая теорема, в которой условием является вывод данной теоремы, а выводом – условие данной теоремы.

Что означает это знак в геометрии 7 классЕсли a || b , тогда Что означает это знак в геометрии 7 класс3= Что означает это знак в геометрии 7 класс5.

50. Углы с соответственно параллельными сторонами либо равны друг другу ( если они оба острые, или оба тупые), либо их сумма равна 180°.

Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 классАВС = Что означает это знак в геометрии 7 классDEF Что означает это знак в геометрии 7 классABC + Что означает это знак в геометрии 7 классDEF = 180°

51. Углы с соответственно перпендикулярными сторонами либо равны друг другу ( если они оба острые, или оба тупые ), либо их сумма равна 180° ( если один из них острый, а другой тупой ).

Что означает это знак в геометрии 7 класс

52. Обратная теорема. Углы с соответственно перпендикулярными сторонами равны между собой, если они оба острые или оба тупые.

53. Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.

Что означает это знак в геометрии 7 классЧто означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 класс

Что означает это знак в геометрии 7 класс

этот треугольник равнобедренный;

то этот треугольник равнобедренный.

Что означает это знак в геометрии 7 классЧто означает это знак в геометрии 7 класс

Сумма двух острых углов прямоугольного треугольника равна 90°.

Что означает это знак в геометрии 7 класс Что означает это знак в геометрии 7 классA + Что означает это знак в геометрии 7 классВ = 9 0°

Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

67 . Свойств а прямоугольного треугольника .

Что означает это знак в геометрии 7 классЕсли ВС = ½ АВ, то / B = 3 0°

Что означает это знак в геометрии 7 классмедиана CF = ½ AB

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

Что означает это знак в геометрии 7 класс

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему острому углу другого, то такие треугольники равны.

Что означает это знак в геометрии 7 класс

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

Что означает это знак в геометрии 7 класс

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *