Что означает этап загрузка данных в etl процессе

Введение в Data Engineering. ETL, схема «звезды» и Airflow

Способность data scientist-а извлекать ценность из данных тесно связана с тем, насколько развита инфраструктура хранения и обработки данных в компании. Это значит, что аналитик должен не только уметь строить модели, но и обладать достаточными навыками в области data engineering, чтобы соответствовать потребностям компании и браться за все более амбициозные проекты.

При этом, несмотря на всю важность, образование в сфере data engineering продолжает оставаться весьма ограниченным. Мне повезло, поскольку я успел поработать со многими инженерами, которые терпеливо объясняли мне каждый аспект работы с данными, но не все обладают такой возможностью. Именно поэтому я решил написать эту статью — введение в data engineering, в которой я расскажу о том, что такое ETL, разнице между SQL- и JVM-ориентированными ETL, нормализации и партиционировании данных и, наконец, рассмотрим пример запроса в Airflow.

Что означает этап загрузка данных в etl процессе

Data Engineering

Maxime Beauchemin, один из разработчиков Airflow, так охарактеризовал data engineering: «Это область, которую можно рассматривать как смесь бизнес-аналитики и баз данных, которая привносит больше элементов программирования. Эта сфера включает в себя специализацию по работе с распределенными системами больших данных, расширенной экосистемой Hadoop и масштабируемыми вычислениями».

Среди множества навыков инженера данных можно выделить один, который является наиболее важным — способность разрабатывать, строить и поддерживать хранилища данных. Отсутствие качественной инфраструктуры хранения данных приводит к тому, что любая активность, связанная с анализом данных, либо слишком дорога, либо немасштабируема.

ETL: Extract, Transform, Load

Extract, Transform и Load — это 3 концептуально важных шага, определяющих, каким образом устроены большинство современных пайплайнов данных. На сегодняшний день это базовая модель того, как сырые данные сделать готовыми для анализа.

Что означает этап загрузка данных в etl процессе

Extract. Это шаг, на котором датчики принимают на вход данные из различных источников (логов пользователей, копии реляционной БД, внешнего набора данных и т.д.), а затем передают их дальше для последующих преобразований.

Transform. Это «сердце» любого ETL, этап, когда мы применяем бизнес-логику и делаем фильтрацию, группировку и агрегирование, чтобы преобразовать сырые данные в готовый к анализу датасет. Эта процедура требует понимания бизнес задач и наличия базовых знаний в области.

Load. Наконец, мы загружаем обработанные данные и отправляем их в место конечного использования. Полученный набор данных может быть использован конечными пользователями, а может являться входным потоком к еще одному ETL.

Какой ETL-фреймворк выбрать?

В мире batch-обработки данных есть несколько платформ с открытым исходным кодом, с которыми можно попробовать поиграть. Некоторые из них: Azkaban — open-source воркфлоу менеджер от Linkedin, особенностью которого является облегченное управление зависимостями в Hadoop, Luigi — фреймворк от Spotify, базирующийся на Python и Airflow, который также основан на Python, от Airbnb.

У каждой платформы есть свои плюсы и минусы, многие эксперты пытаются их сравнивать (смотрите тут и тут). Выбирая тот или иной фреймворк, важно учитывать следующие характеристики:

Что означает этап загрузка данных в etl процессе

Конфигурация. ETL-ы по своей природе довольно сложны, поэтому важно, как именно пользователь фреймворка будет их конструировать. Основан ли он на пользовательском интерфейсе или же запросы создаются на каком-либо языке программирования? Сегодня все большую популярность набирает именно второй способ, поскольку программирование пайплайнов делает их более гибкими, позволяя изменять любую деталь.

Мониторинг ошибок и оповещения. Объемные и долгие batch запросы рано или поздно падают с ошибкой, даже если в самой джобе багов нет. Как следствие, мониторинг и оповещения об ошибках выходят на первый план. Насколько хорошо фреймворк визуализирует прогресс запроса? Приходят ли оповещения вовремя?

Обратное заполнение данных (backfilling). Часто после построения готового пайплайна нам требуется вернуться назад и заново обработать исторические данных. В идеале нам бы не хотелось строить две независимые джобы: одну для обратного а исторических данных, а вторую для текущей деятельности. Насколько легко осуществлять backfilling c помощью данного фреймворка? Масштабируемо и эффективно ли полученное решение?

2 парадигмы: SQL против JVM

Как мы выяснили, у компаний есть огромный выбор того, какие инструменты использовать для ETL, и для начинающего data scientist-а не всегда понятно, какому именно фреймворку посвятить время. Это как раз про меня: в Washington Post Labs очередность джобов осуществлялась примитивно, с помощью Cron, в Twitter ETL джобы строились в Pig, а сейчас в Airbnb мы пишем пайплайны в Hive через Airflow. Поэтому перед тем, как пойти в ту или иную компанию, постарайтесь узнать, как именно организованы ETL в них. Упрощенно, можно выделить две основные парадигмы: SQL и JVM-ориентированные ETL.

JVM-ориентированные ETL обычно написаны на JVM-ориентированном языке (Java или Scala). Построение пайплайнов данных на таких языках означает задавать преобразования данных через пары «ключ-значение», однако писать пользовательские функции и тестировать джобы становится легче, поскольку не требуется использовать для этого другой язык программирования. Эта парадигма весьма популярна среди инженеров.

SQL-ориентированные ETL чаще всего пишутся на SQL, Presto или Hive. В них почти все крутится вокруг SQL и таблиц, что весьма удобно. В то же время написание пользовательских функций может быть проблематично, поскольку требует использования другого языка (к примеру, Java или Python). Такой подход популярен среди data scientist-ов.

Поработав с обеими парадигмами, я все-таки предпочитаю SQL-ориентированные ETL, поскольку, будучи начинающим data scientist-ом, намного легче выучить SQL, чем Java или Scala (если, конечно, вы еще с ними не знакомы) и сконцентрироваться на изучении новых практик, чем накладывать это поверх изучения нового языка.

Моделирование данных, нормализация и схема «звезды»

В процессе построения качественной аналитической платформы, главная цель дизайнера системы — сделать так, чтобы аналитические запросы было легко писать, а различные статистики считались эффективно. Для этого в первую очередь нужно определить модель данных.

В качестве одного из первых этапов моделирования данных необходимо понять, в какой степени таблицы должны быть нормализованы. В общем случае нормализованные таблицы отличаются более простыми схемами, более стандартизированными данными, а также исключают некоторые типы избыточности. В то же время использование таких таблиц приводит к тому, что для установления взаимоотношений между таблицами требуется больше аккуратности и усердия, запросы становятся сложнее (больше JOIN-ов), а также требуется поддерживать больше ETL джобов.

С другой стороны, гораздо легче писать запросы к денормализованным таблицам, поскольку все измерения и метрики уже соединены. Однако, учитывая больший размер таблиц, обработка данных становится медленнее (“Тут можно поспорить, ведь все зависит от того, как хранятся данные и какие запросы бывают. Можно, к примеру, хранить большие таблицы в Hbase и обращаться к отдельным колонкам, тогда запросы будут быстрыми” — прим. пер.).

Среди всех моделей данных, которые пытаются найти идеальный баланс между двумя подходами, одной из наиболее популярных (мы используем ее в Airbnb) является схема «звезды». Данная схема основана на построении нормализованных таблиц (таблиц фактов и таблиц измерений), из которых, в случае чего, могут быть получены денормализованные таблицы. В результате такой дизайн пытается найти баланс между легкостью аналитики и сложностью поддержки ETL.

Что означает этап загрузка данных в etl процессе

Таблицы фактов и таблицы измерений

Чтобы лучше понять, как строить денормализованные таблицы из таблиц фактов и таблиц измерений, обсудим роли каждой из них:

Таблицы фактов чаще всего содержат транзакционные данные в определенные моменты времени. Каждая строка в таблице может быть чрезвычайно простой и чаще всего является одной транзакцией. У нас в Airbnb есть множество таблиц фактов, которые хранят данные по типу транзакций: бронирования, оформления заказов, отмены и т.д.

Таблицы измерений содержат медленно меняющиеся атрибуты определенных ключей из таблицы фактов, и их можно соединить с ней по этим ключам. Сами атрибуты могут быть организованы в рамках иерархической структуры. В Airbnb, к примеру, есть таблицы измерений с пользователями, заказами и рынками, которые помогают нам детально анализировать данные.

Ниже представлен простой пример того, как таблицы фактов и таблицы измерений (нормализованные) могут быть соединены, чтобы ответить на простой вопрос: сколько бронирований было сделано за последнюю неделю по каждому из рынков?

Партиционирование данных по временной метке

Сейчас, когда стоимость хранения данных очень мала, компании могут себе позволить хранить исторические данные в своих хранилищах, вместо того, чтобы выбрасывать. Обратная сторона такого тренда в том, что с накоплением количества данных аналитические запросы становятся неэффективными и медленными. Наряду с такими принципами SQL как «фильтровать данные чаще и раньше» и «использовать только те поля, которые нужны», можно выделить еще один, позволяющий увеличить эффективность запросов: партиционирование данных.

Основная идея партиционирования весьма проста — вместо того, чтобы хранить данные одним куском, разделим их на несколько независимых частей. Все части сохраняют первичный ключ из исходного куска, поэтому получить доступ к любым данным можно достаточно быстро.

В частности, использование временной метки в качестве ключа, по которому проходит партиционирование, имеет ряд преимуществ. Во-первых, в хранилищах типа S3 сырые данные часто сортированы по временной метке и хранятся в директориях, также отмеченных метками. Во-вторых, обычно batch-ETL джоб проходит примерно за один день, то есть новые партиции данных создаются каждый день для каждого джоба. Наконец, многие аналитические запросы включают в себя подсчет количества событий, произошедших за определенный временной промежуток, поэтому партиционирование по времени здесь очень кстати.

Обратное заполнение (backfilling) исторических данных

Еще одно важное преимущество использования временной метки в качестве ключа партиционирования — легкость обратного заполнения данных. Если ETL-пайплайн уже построен, то он рассчитывает метрики и измерения наперед, а не ретроспективно. Часто нам бы хотелось посмотреть на сложившиеся тренды путем расчета измерений в прошлом — этот процесс и называется backfilling.

Backfilling настолько распространен, что в Hive есть встроенная возможность динамического партиционирования, чтобы выполнять одни и те же SQL запросы по нескольким партициям сразу. Проиллюстрируем эту идею на примере: пусть требуется заполнить количество бронирований по каждому рынку для дашборда, начиная с earliest_ds и заканчивая latest_ds. Одно из возможных решений выглядит примерно так:

Такой запрос возможен, однако он слишком громоздкий, поскольку мы выполняем одну и ту же операцию, только над разными партициями. Используя динамическое партиционирование мы можем все упростить до одного запроса:

Отметим, что мы добавили ds в SELECT и GROUP BY выражения, расширили диапазон в операции WHERE и изменили синтаксис с PARTITION (ds= ‘<>’) на PARTITION (ds). Вся прелесть динамического партиционирования в том, что мы обернули GROUP BY ds вокруг необходимых операций, чтобы вставить результаты запроса во все партиции в один заход. Такой подход очень эффективен и используется во многих пайплайнах в Airbnb.

Теперь, рассмотрим все изученные концепции на примере ETL джобы в Airflow.

Направленный ациклический граф (DAG)

Казалось бы, с точки зрения идеи ETL джобы очень просты, однако на деле они часто очень запутаны и состоят из множества комбинаций Extract, Transform и Load операций. В этом случае очень полезно бывает визуализировать весь поток данных, используя граф, в котором узел отображает операцию, а стрелка — взаимосвязь между операциями. Учитывая, что каждая операция выполняется единожды, а данные идут дальше по графу, то он является направленным и ациклическим, отсюда и название.

Что означает этап загрузка данных в etl процессе

Одна из особенностей интерфейса Airflow — это наличие механизма, который позволяет визуализировать пайплайн данных через DAG. Автор пайплайна должен задать взаимосвязи между операциями, чтобы Airflow записал спецификацию ETL джоба в отдельный файл.

При этом помимо DAG-ов, которые определяют порядок запуска операций, в Airflow есть операторы, которые задают, что необходимо выполнить в рамках пайплайна. Обычно есть 3 вида операторов, каждый из которых имитирует один из этапов ETL-процесса:

Простой пример

Ниже представлен простой пример того, как объявить DAG-файл и определить структуру графа, используя операторы в Airflow, которые мы обсудили выше:

Когда граф будет построен, можно увидеть следующую картинку:

Что означает этап загрузка данных в etl процессе

Итак, надеюсь, что в данной статье мне удалось максимально быстро и эффективно погрузить вас в интересную и многообразную сферу — Data Engineering. Мы изучили, что такое ETL, преимущества и недостатки различных ETL-платформ. Затем обсудили моделирование данных и схему «звезды», в частности, а также рассмотрели отличия таблиц фактов от таблиц измерений. Наконец, рассмотрев такие концепции как партиционирование данных и backfilling, мы перешли к примеру небольшого ETL джоба в Airflow. Теперь вы можете самостоятельно изучать работу с данными, наращивая багаж своих знаний. Еще увидимся!

Роберт отмечает недостаточное количество программ по data engineering в мире, однако мы таковую проводим, и уже не в первый раз. В октябре у нас стартует Data Engineer 3.0, регистрируйтесь и расширяйте свои профессиональные возможности!

Источник

Что такое ETL: как справиться с анализом big data

Крупные предприятия собирают, хранят и обрабатывают разные типы данных из множества источников, таких как системы начисления заработной платы, записи о продажах, системы инвентаризации и других. Эта информация извлекается, преобразуется и переносится в хранилища данных с помощью ETL-систем. Расскажем, что такое ETL, а также какие платные и общедоступные решения для работы с данными есть на рынке.

ETL — что это такое и зачем?

В переводе ETL (Extract, Transform, Load) — извлечение, преобразование и загрузка. То есть процесс, с помощью которого данные из нескольких систем объединяют в единое хранилище данных.

Представьте ритейлера с розничными и интернет-магазинами. Ему нужно анализировать тенденции продаж и онлайн, и офлайн. Но бэкэнд-системы для них, скорее всего, будут отдельными. Они могут иметь разные поля или форматы полей для сбора данных, использовать системы, которые не могут «общаться» друг с другом.

И вот тогда наступает момент для ETL.

ETL-система извлекает данные из обеих систем, преобразует их в соответствии с требованиями к формату хранилища данных, а затем загружает в это хранилище.

ETL — что это на практике, а не на примере?

Современные инструменты ETL собирают, преобразуют и хранят данные из миллионов транзакций в самых разных источниках данных и потоках. Эта возможность предоставляет множество новых возможностей: анализ исторических записей для оптимизации процесса продаж, корректировка цен и запасов в реальном времени, использование машинного обучения и искусственного интеллекта для создания прогнозных моделей, разработка новых потоков доходов, переход в облако и многое другое.

Облачная миграция. Процесс переноса данных и приложений в облако называют облачной миграцией. Она помогает сэкономить деньги, сделать приложения более масштабируемыми и защитить данные. ETL в таком случае используют для перемещения данных в облако.

Хранилище данных. Хранилище данных — база данных, куда передают данные из различных источников, чтобы их можно было совместно анализировать в коммерческих целях. Здесь ETL используют для перемещения данных в хранилище данных.

Машинное обучение. Машинное обучение — метод анализа данных, который автоматизирует построение аналитических моделей. ETL может использоваться для перемещения данных в одно хранилище для машинного обучения.

Интеграция маркетинговых данных. Маркетинговая интеграция включает в себя перемещение всех маркетинговых данных — о клиентах, продажах, из социальных сетей и веб-аналитики — в одно место, чтобы вы могли проанализировать их. ETL используют для объединения маркетинговых данных.

Интеграция данных IoT. То есть данных, собранных различными датчиками, в том числе встроенными в оборудование. ETL помогает перенести данные от разных IoT в одно место, чтобы вы могли сделать их подробный анализ.

Репликация базы данных — данные из исходных баз данных копируют в облачное хранилище. Это может быть одноразовая операция или постоянный процесс, когда ваши данные обновляются в облаке сразу же после обновления в исходной базе. ETL можно использовать для осуществления процесса репликации данных.

Бизнес-аналитика. Бизнес-аналитика — процесс анализа данных, позволяющий руководителям, менеджерам и другим заинтересованным сторонам принимать обоснованные бизнес-решения. ETL можно использовать для переноса нужных данных в одно место, чтобы их можно было использовать.

Популярные ETL-системы: обзор, но коротко

Cloud Big Data — PaaS-сервис для анализа больших данных (big data) на базе Apache Hadoop, Apache Spark, ClickHouse. Легко масштабируется, позволяет заменить дорогую и неэффективную локальную инфраструктуру обработки данных на мощную облачную инфраструктуру. Помогает обрабатывать структурированные и неструктурированные данные из разных источников, в том числе в режиме реального времени. Развернуть кластер интеграции и обработки данных в облаках можно за несколько минут, управление осуществляется через веб-интерфейс, командную строку или API.

IBM InfoSphere — инструмент ETL, часть пакета решений IBM Information Platforms и IBM InfoSphere. Доступен в различных версиях (Server Edition, Enterprise Edition и MVS Edition). Помогает в очистке, мониторинге, преобразовании и доставке данных, среди преимуществ: масштабируемость, возможность интеграции почти всех типов данных в режиме реального времени.

PowerCenter — набор продуктов ETL, включающий клиентские инструменты PowerCenter, сервер и репозиторий. Данные хранятся в хранилище, где к ним получают доступ клиентские инструменты и сервер. Инструмент обеспечивает поддержку всего жизненного цикла интеграции данных: от запуска первого проекта до успешного развертывания критически важных корпоративных приложений.

iWay Software предоставляет возможность интеграции приложений и данных для удобного использования в режиме реального времени. Клиенты используют их для управления структурированной и неструктурированной информацией. В комплект входят: iWay DataMigrator, iWay Service Manager и iWay Universal Adapter Framework.

Microsoft SQL Server — платформа управления реляционными базами данных и создания высокопроизводительных решений интеграции данных, включающая пакеты ETL для хранилищ данных.

OpenText — платформа интеграции, позволяющая извлекать, улучшать, преобразовывать, интегрировать и переносить данные и контент из одного или нескольких хранилищ в любое новое место назначения. Позволяет работать со структурированными и неструктурированными данными, локальными и облачными хранилищами.

Oracle GoldenGate — комплексный программный пакет для интеграции и репликации данных в режиме реального времени в разнородных IT-средах. Обладает упрощенной настройкой и управлением, поддерживает облачные среды.

Pervasive Data Integrator — программное решение для интеграции между корпоративными данными, сторонними приложениями и пользовательским программным обеспечением. Data Integrator поддерживает сценарии интеграции в реальном времени.

Pitney Bowes предлагает большой набор инструментов и решений, нацеленных на интеграцию данных. Например, Sagent Data Flow — гибкий механизм интеграции, который собирает данные из разнородных источников и предоставляет полный набор инструментов преобразования данных для повышения их коммерческой ценности.

SAP Business Objects — централизованная платформа для интеграции данных, качества данных, профилирования данных, обработки данных и отчетности. Предлагает бизнес-аналитику в реальном времени, приложения для визуализации и аналитики, интеграцию с офисными приложениями.

Sybase включает Sybase ETL Development и Sybase ETL Server. Sybase ETL Development — инструмент с графическим интерфейсом для создания и проектирования проектов и заданий по преобразованию данных. Sybase ETL Server — масштабируемый механизм, который подключается к источникам данных, извлекает и загружает данные в хранилища.

Open source ETL-средства

Большинство инструментов ETL с открытым исходным кодом помогают в управлении пакетной обработкой данных и автоматизации потоковой передачи информации из одной системы данных в другую. Эти рабочие процессы важны при создании хранилища данных для машинного обучения.

Некоторые из бесплатных и открытых инструментов ETL принадлежат поставщикам, которые в итоге хотят продать корпоративный продукт, другие обслуживаются и управляются сообществом разработчиков, стремящихся демократизировать процесс.

Open source ETL-инструменты интеграции данных:

Apache Airflow — платформа с удобным веб-интерфейсом, где можно создавать, планировать и отслеживать рабочие процессы. Позволяет пользователям объединять задачи, которые нужно выполнить в строго определенной последовательности по заданному расписанию. Пользовательский интерфейс поддерживает визуализацию рабочих процессов, что помогает отслеживать прогресс и видеть возникающие проблемы.

Apache Kafka — распределенная потоковая платформа, которая позволяет пользователям публиковать и подписываться на потоки записей, хранить потоки записей и обрабатывать их по мере появления. Kafka используют для создания конвейеров данных в реальном времени. Он работает как кластер на одном или нескольких серверах, отказоустойчив и масштабируем.

Apache NiFi — распределенная система для быстрой параллельной загрузки и обработки данных с большим числом плагинов для источников и преобразований, широкими возможностями работы с данными. Пользовательский веб-интерфейс NiFi позволяет переключаться между дизайном, управлением, обратной связью и мониторингом.

CloverETL (теперь CloverDX) был одним из первых инструментов ETL с открытым исходным кодом. Инфраструктура интеграции данных, основанная на Java, разработана для преобразования, отображения и манипулирования данными в различных форматах. CloverETL может использоваться автономно или встраиваться и подключаться к другим инструментам: RDBMS, JMS, SOAP, LDAP, S3, HTTP, FTP, ZIP и TAR. Хотя продукт больше не предлагается поставщиком, его можно безопасно загрузить с помощью SourceForge. CloverDX по-прежнему поддерживает CloverETL в соответствии со стандартным соглашением о поддержке.

Jaspersoft ETL — один из продуктов с открытым исходным кодом TIBCO Community Edition, позволяет пользователям извлекать данные из различных источников, преобразовывать их на основе определенных бизнес-правил и загружать в централизованное хранилище данных для отчетности и аналитики. Механизм интеграции данных инструмента основан на Talend. Community Edition прост в развертывании, позволяет создавать витрины данных для отчетности и аналитики.

Apatar — кроссплатформенный инструмент интеграции данных с открытым исходным кодом, который обеспечивает подключение к различным базам данных, приложениям, протоколам, файлам. Позволяет разработчикам, администраторам баз данных и бизнес-пользователям интегрировать информацию разного формата из различных источников данных. У инструмента интуитивно понятный пользовательский интерфейс, который не требует кодирования для настройки заданий интеграции данных. Инструмент поставляется с предварительно созданным набором инструментов интеграции и позволяет пользователям повторно использовать ранее созданные схемы сопоставления.

Итак, почему стоит отказаться от локальных ETL-решений?

Традиционные локальные ETL чаще всего поставляются в комплекте с головной болью. Например, создаются собственными силами, поэтому могут быстро устареть или не иметь сложных функций и возможностей. Они дороги и требуют времени на обслуживание, а также поддерживают только пакетную обработку данных и плохо масштабируются.

Локальные платформы ETL были важнейшим компонентом инфраструктуры предприятий на протяжении десятилетий. С появлением облачных технологий, SaaS и больших данных выросло число источников информации, что вызвало рост спроса на более мощную и сложную интеграцию данных.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *