Что значит экранированный кабель и сфера его применения
Подписка на рассылку
Довольно часто на промышленных объектах, в производственных цехах, офисных зданиях и т. д. возникает потребность совместной прокладки кабелей различного назначения в одной траншее, лотке, кабельном канале и пр. Изоляция токопроводящих жил и оболочка кабелей не обеспечивают действенной защиты от электрических шумов и паразитарных электромагнитных излучений, возникающих благодаря токам, протекающим по кабелю, и негативно влияющих на работу оборудования. Для таких условий прокладки потребуется кабель с экранированными жилами.
Для чего нужен экранированный кабель
В зависимости от условий эксплуатации, кабели могут являться не только источниками электромагнитных волн, но и выступать в роли антенны, улавливающей наведенные излучения. Экран, входящий в конструкцию кабеля, служит для его защиты от внешних помех, создаваемых другими источниками, а также не позволяет внутреннему магнитному полю оказывать воздействие на кабели, проложенные рядом. Кроме того, экран дает возможность выполнить заземление кабеля, а при соединении отрезков кабеля с помощью муфт – исключить возникновение разности потенциалов на его оболочке. Экранированный кабель выпускается с экранами, изготовленными из электропроводящей бумаги, специальных полимерных композиций, фольгированных лент, в виде повива или оплетки из медной проволоки, а также в комбинированном варианте.
Схема экранированного кабеля
Свойства экранированного кабеля напрямую зависят от его целевого назначения, поэтому конструкция кабелей разного типа отличаются друг от друга. Для силовых кабелей с номинальным напряжением до 3 кВ экран на скрученные токопроводящие жилы обычно накладывается общий экран из фольгированного материала или оплетки из медной проволоки, а у кабелей для передачи данных, помимо общего экрана, защищенными от воздействия электромагнитных полей могут быть индивидуальные пары. Маркировка экранированных кабелей отличается от других типов кабеля наличием в буквенной аббревиатуре литеры «Э». Однако для силовых кабелей на напряжение выше 6 кВ наличие экрана в конструкции является обязательным, поэтому буква «Э» в обозначение экранированного кабеля может не вноситься.
Типы экранированных кабелей
По своему назначению, экранированный кабель с медными или алюминиевыми жилами может быть:
• силовой, рассчитанный на переменное напряжение до 220 кВ частотой до 50 Гц. В зависимости от величины напряжения, экран может накладываться непосредственно на токопроводящие жилы или после их изоляции. • контрольный, используемый для передачи сигналов от различных датчиков к измерительным приборам. В этом случае применение экранированного кабеля требуется для защиты передаваемых сигналов от воздействия внешних электромагнитных помех. • комбинированный, состоящий из силового и управляющего кабеля, заключенных в одну оболочку. Экранированный кабель такого типа выпускается обычно в резиновой изоляции и используется для управления и подключения к силовым сетям различных передвижных механизмов. Экран служит для защиты управляющих сигналов от помех, создаваемых питающими токопроводящими жилами, передающими переменное напряжение до 10 кВ. • сигнально-блокировочный, предназначенный для прокладки в условиях, требующих повышенной защиты о воздействия внешних электромагнитных излучений. Широко используется в охранной и противопожарной сигнализации. • передачи информации, применяемый в цифровой телефонной связи и компьютерных коммуникациях. Как и все другие виды кабельной продукции, кабель экранированный для структурированных систем связи, выпускается для внешней и внутренней прокладки.
Компания «Кабель.РФ ® » является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку экранированного кабеля по выгодным ценам.
Что означает экранированный и неэкранированный кабель
Любой промышленный или бытовой объект, а особенно производственное помещение, имеет высокую степень электрической зашумленности. Электрошумы или электромагнитные помехи (EMI) возникают от так называемых «паразитных» или побочных излучений, а также наводок по цепям энергопитания. Наиболее мощный EMI-резонанс проявляется при переключения мощной нагрузки, работе больших индукционных нагревателей, трансформаторов и высокочастотных устройств. Изоляционное покрытие «прозрачно» для любого вида электропомех, его задача противостоять механическим повреждениям. Поэтому наиболее эффективным способом борьбы с электромагнитными шумами является оборудование кабельной продукции специальными экранами (позиция 4 на рисунке).
Интересно, что кабель может быть как генератором электропомех, то есть служить своего рода передающей антенной, так и принимать их от прочих источников. И только экранирование помогает минимизировать электрозашумленность в обоих случаях.
Описание и особенности применения экранированного кабеля
Это защитное приспособление не позволяет проводу распространять свои собственные электрошумы и защищает собственное электромагнитное поле кабеля от влияния любых внешних помех, которые могут существенно снизить его работоспособность. Кроме того, экранирование способно выполнять и некоторые другие функции:
Для моментального определения разновидности кабеля в маркировке провода с экраном присутствует буква «Э», например, ВВГЭ.
В зависимости от техпараметров и особенностей эксплуатации производятся расчеты, по которым определяют материал, конструкцию и тип защитного экранирования. Например, в электросетях с токовой нагрузкой до 50 А необходимы экраны из достаточно тонкой ленты из алюминия или меди. В силовых проводах экранирующий эффект могут гарантировать только медные проволоки увеличенного сечения. Для кабельной продукции средних токов используются комбо-экраны, состоящие из медной ленты и оплетки-проволоки. А если требуется выровнять электрополе в силовых проводах высокого напряжения, то экранирующее приспособление должно проводить электроток.
Экранным материалом обычно служат металлические, алюминиевые или медные, немагнитные ленты, проволоки, фольгирующие элементы или особая электропроводящая бумага
Для окончательного понимания механизма экранирования следует знать, что:
Классификация кабелей с экраном
Наиболее частое применение среди экранированной кабельной продукции имеют силовые кабеля, которые рассчитаны на низкое, среднее или высокое напряжение сети (0,66/1 кВ, 6-110 кВ и выше). Экраны таких проводов просчитываются таким образом, чтобы блокировать возникающие внутри них электромагнитные поля, не позволяя им влиять на внешнюю среду. Силовые экранированные марки (ВВГЭ, КГВЭВ, ПвП и АПвП) могут оснащаться индивидуальными экранами как по жиле, так и по изоляции, которые выполняются из бумаги, проводящей электроток, или синтетической ленты, а также общим медно-проволочным экраном-оплеткой, спиральной ленточной оплетки, изготовленной из алюминия или меди.
Экран из электропроводящей резины или алюмолавсановой ленты с медной оплёткой накладывается отдельно на каждую фазовую жилу. На схеме, иллюстрирующей конструкцию марок КГЭУ и КГПЭУ, хорошо видно расположение элементов. Общий внешний вид комбинированного провода хорошо виден на примере КГпЭ. Гибкие комбинированные кабеля с экранами часто применяются для присоединения к источникам питания передвижных машин, устройств и установок, к примеру, экскаваторов и кранов.
Контрольные кабели служат для обмена данными с приборами и распределительными устройствами, доступ к которым существенно затруднен или вообще невозможен. Этот тип кабельной продукции требует надежной защиты, ведь передает важную управленческую информацию. Экран в марках КВВГЭ и АКВВГЭ выполнен посредством намотки из фольги (медь или алюминий) с перекрытием, которая обеспечивает неразрывность экрана при допускаемых радиусах изгибания кабелей. При этом в продольном направлении экрана проложена медная проволока. Экранирование провода КГВЭВ, который применяется для нестационарного монтажа, осуществляет медная оплетка. Кроме того, экранным материалом может служить медная, алюминиевая или алюмополимерная лента.
Сигнальные кабели широко применяются в системах, которые отличаются строжайшими требованиями к точности и защите данных. В этот перечень входит практически любая слаботочная аппаратура, включая измерительную, охранную или пожарную. Экранированный кабель для ОПС, например, марки КПСЭнг-FRLS, КПСЭнг-FRHF или КПСЭСнг(А)-FRLS, служит для подключения систем оповещения и эвакуации, дымовых датчиков и прочих приборов, которые должны немедленно срабатывать при возникновении ЧП. За счет температуроустойчивой изоляции на основе кремния экранированный кабель для пожарной сигнализации способен сохранять работоспособность, даже находясь внутри горящего помещения, а также отличается низкой величиной выделения продуктов горения. Экранированный кабель для ОПС обычно оснащен защитой от электропомех, изготовленной из алюмолавсановой ленты.
Также достаточно обширной группой является класс кабелей связи, управления и передачи данных. Данный тип проводной продукции весьма чувствителен к EMI-шумам, поэтому зачастую оборудован защитными экранами. Коротко рассмотрим наиболее распространенные марки и подгруппы данного типа.
ТППШв используется в телемеханических или телефонных локальных сетях, которые требуют от изделий возможности обеспечивать широко- или фазоимпульсную частотную модуляцию сигналов (до 2 МГц). Защищен экраном из алюминиево-полиэтиленовой фольги.
Распределительный РВШЭ-кабель обычно применяют при монтаже радиоаппаратуры и аудиотехники (приспособлений и приборов для записи и воспроизведения звука), в системах телефонии. Экран из медных твердых проволок обеспечивает отличную устойчивость к электропомехам и качественный уровень передачи аудио.
Коаксиальные кабели с обозначениями РК, RG и SAT используются только для телевизоров, антенн, систем видеонаблюдения и радиоэлектроники. Они экранированы алюминизированной полиэстерной пленкой и/или проволочной оплеткой из луженой медной проволоки.
Высокоскоростной обмен данными через проминтерфейс RS-485 в сетях объектов по стандартам TIA/EIA-485-A и ИСО/МЭК 8482, подключение систем, созданных для контроля инженерных сооружений и распределённого сбора информации осуществляется при помощи марок КИПЭВ, КИПЭП, КИПЭВБВ и других. Они экранированы алюминиево-лавсановой лентой или медно-луженной оплеткой с прокладкой дренажного проводника.
Витые пары FTP из подкласса Lan-кабелей имеют защитный экран из фольги, поэтому их можно монтировать даже вблизи с электропроводкой и прочими источниками EMI-излучения.
Кабеля S/FTP представляют собой витые пары с фольгированной оплеткой каждой пары и общей оплеткой для всех пар из тонкой плетеной медной проволоки.
Подгруппа SF/UTP включает марки для передачи дата-данных, защищаемые сдвоенным внешним экраном из фольги и медной оплетки. Кабеля SF/UTP востребованы, когда прокладка витой пары производится рядом с ЛЭП электросетью и требуется дополнительная и надежная защита от электрошумов
Экранированный кабель «витая пара» против неэкранированного кабеля «витая пара». Ошибочный взгляд на рабочие характеристики
Ошибочный взгляд на рабочие характеристики
В последнее время большое внимание уделяется электромагнитной совместимости в различных информационных приложениях кабелей на основе экранированной витой пары (STP) по сравнению с кабелями на основе неэкранированной витой пары (UTP). Широко распространенные традиционные взгляды на экранирование привели к вере в то, что физически “экранированный” кабель безусловно обладает лучшей невосприимчивостью к шуму и более низкими уровнями излучательной способности, чем “неэкранированный” кабель. Однако полученные результаты исследований показывают, что невосприимчивость к шуму и излучательные характеристики информационных кабелей типа неэкранированная витая пара практически не отличаются от таких же характеристик кабелей типа экранированная витая пара. Опубликованная работа “Сравнение характеристик чувствительности к помехам кабелей типа экранированная витая пара и неэкранированная витая пара при передаче данных” дает заключение, что кабельные системы на основе UTP Category 5 демонстрируют превосходные рабочие характеристики с точки зрения электромагнитной совместимости и в то же время обеспечивают конкурентноспособные цены при монтаже и эксплуатации.
Передающие характеристики витой пары
Понимание эффективных способов снижения уровней излучения и повышения невосприимчивости зависит от понимания принципов, на которых основана передача сбалансированного сигнала по паре витых проводников. Сбалансированный сигнал состоит из двух одинаковых по амплитуде и противофазных сигналов, распространяющихся по двум проводникам пары. Приемник интерпретирует сигнал, приходящий по линии передачи витая пара как разницу напряжений между двумя проводниками. В приложении к кабелю термин “баланс” означает насколько точно соответствуют друг другу проводники в одной паре. В идеально сбалансированной кабельной системе электрические наводки вызывают одинаковые шумовые сигналы в обоих проводниках пары. Вследствие того, что шумы в проводниках равны по амплитуде, но не противофазны, приемник, который обнаруживает только разницу напряжений, их игнорирует. Кроме того, при идеальных условиях, два одинаковых по амплитуде и противофазных сигнала, генерируемые передатчиком, образуют равные по напряженности и противофазные электромагнитные поля, которые являются самокомпенсирующими и дают суммарный эффект отсутствия излучения.
К сожалению в реальных ситуациях передаваемые сигналы и кабельные компоненты не бывают идеально сбалансированными. Такая разбалансированность приводит к испусканию электромагнитного излучения, энергия которого зависит от степени разбалансированности и амплитуды передаваемого сигнала. Несбалансированные токи в паре могут рассматриваться как ток, текущий в одну сторону по одному из проводников и возвращающийся обратно по другому, таким образом формируя огромную петлю. Эта часть несбалансированного тока ведет себя как контурная антенна, формирующая поле. Напряженность поля зависит от площади петли и количества проходящего по ней “нескомпенсированного” тока. Такое излучение может мешать работе беспроводных приемников, таких как телевизоры, радиоприемники и сотовые телефоны, а также устройств, использующих медный кабель для приема-передачи сигналов. Уровень излучения зависит от степени сбалансированности пары, а также от других второстепенных факторов, таких как, например, изоляционный материал кабеля. Для снижения уровня излучения энергии важно поддержание баланса пар как для кабелей UTP, так и для кабелей STP.
Невосприимчивость к шуму
В кабелях UTP и STP применяются две различные стратегии противостояния шумовым помехам. В неэкранированных кабелях витая пара для повышения невосприимчивости к шуму основная ставка делается на хороший баланс пар в кабеле. Когда сбалансированность кабельной UTP-системы приближается к идеальной, наведенные шумовые токи на витых проводниках выравниваются и приемник, который способен обнаруживать только разницу напряжений на паре, становиться невосприимчивым к шумовым помехам. Таким образом, даже без защиты с помощью физического «экрана» идеально сбалансированная пара будет демонстрировать отличную невосприимчивость к шуму.
В экранированных кабелях витая пара для улучшения невосприимчивости к шуму используется легко разрушимая и дорогостоящая техника. Поле шумовой помехи наводит ток в металлическом экране кабеля. В результате стекания на землю наведенного тока на сигнальных проводниках под экраном будет наводиться одинаковый по амплитуде и разнофазный ток. По мере приближения качества экрана к идеальному два тока становятся равными по амплитуде и противофазными, компенсируя влияние шумовых помех.
Сложное взаимозависимое соотношение существует между явлениями шумовых помех и испусканием излучения. Идеально сбалансированная кабельная система обладает бесконечно высокой невосприимчивостью к шуму и не испускает электромагнитное излучение (в случае если передатчик и приемник также идеально сбалансированы).
Однако в реальных ситуациях, если сигнальные проводники «открыты» для несбалансированных шумовых токов, не только регистрируется шум на стороне приемника, но и несбалансированный ток создает описанный ранее эффект контурной антенны,. Следовательно, несбалансированная передающая система на витой паре или неправильно заземленная передающая STP-система будут не только испускать излучение, но будут также подвержены шумовым помехам от внешних источников. Как разработчики систем и оборудования, так и конечные пользователи во время принятия решений, касающихся кабельных систем, должны тщательно исследовать возможность возникновения этих явлений:
Инженеры и разработчики систем и оборудования
Физические характеристики кабеля UTP по сравнению с STP
В AT&T Bell Laboratories было проведено сравнительное исследование рабочих характеристик экранированного кабеля витая пара и неэкранированного кабеля витая пара с помощью двух тестовых процедур. Была исследована чувствительность кабеля к шуму при защите только с помощью экранирования (измерение вторично наведенного тока). Результаты этого теста являются индикатором проникновения шума через экран. Еще одна серия исследований была выполнена для сравнения относительных уровней помехового напряжения, наводимого на кабелях UTP Category 3, UTP Category 5 и Type 1 STP в результате воздействия шума (измерение разницы напряжений).
Измерение вторично наведенного тока
Многие проектировщики систем и оборудования, а также конечные пользователи уверены в том, что качество их кабельных систем на основе STP является следствием физического присутствия «экрана». Однако, любой экран, если он изготовлен и терминирован некачественно, будет вести себя как антенна, излучая или поглощая шумы. Эффективно экранированная кабельная система должна быть правильно терминирована с обоих концов и должна поддерживать целостность экрана в каждом соединении по всей кабельной системе. При измерении вторично наведенного тока сравнивают результирующее воздействие шума, произошедшее вследствие нарушения системы заземления, с воздействием шума на хорошо заземленный кабель.
По результатам этого теста невосприимчивость экрана к шуму изменялась от граничной (10% для заземляющего отвода длиной 1 дюйм) до плохой (50% для заземляющего отвода длиной 8 дюймов) и результирующее влияние на сигнал изменялось соответствующим образом. Это замечание является очень важным, так как на практике очень часто экран заземляется с помощью заземляющего отвода.
Результаты измерений вторично наведенного тока четко демонстрируют, что любая деградация экрана может ухудшать невосприимчивость к шуму до такой степени, что начинают происходить искажения сигнала. Очевидно, что физическое наличие экрана само по себе недостаточно для обеспечения невосприимчивости к шуму. Более того, качество терминирования экрана по всей телекоммуникационной системе и качество монтажа системы заземления определяют уровень невосприимчивости к шуму. На самом деле сбалансированная линия передачи с неправильно терминированной системой экранирования может быть более подвержена шумовым помехам, чем если бы она не была экранирована вовсе.
Измерение разницы напряжений
Важным фактором при выборе кабельной продукции как для разработчиков систем и оборудования, так и для конечных пользователей является общий уровень работоспособности кабеля. Измерение разницы напряжений, основанное на измерении уровней помех, вызванных шумом, были проведены для кабелей UTP Category 3, UTP Category 5 и Type 1 STP.
На основании результатов измерений инженеры Bell Labs сделали заключение, что «при соблюдении определенных правил, в реальных рабочих условиях неэкранированный кабель витая пара может достигать таких же высоких рабочих характеристик по сопротивляемости к шуму, какие присущи экранированному кабелю витая пара. Результирующие дифференциальные шумовые напряжения, измеренные в кабелях UTP Category 5 и STP были достаточно низкими для обеспечения точной передачи данных, учитывая жесткие условия эксперимента».
Выводы по результатам измерений
Результаты измерений разницы напряжений и вторично наведенного тока привели к заключению, что и UTP и STP способны обеспечивать степень невосприимчивость к электромагнитным помехам от хорошей до отличной. По определению специалистов Bell Labs степень невосприимчивости «зависит от сбалансированности системы UTP и качества экранирования системы STP. Кабели UTP для высокочастотных приложений с жестко контролируемым балансом могут обеспечивать рабочие характеристики EMC, сравнимые с такими же характеристиками кабельных систем на основе STP с хорошим экраном. И точно так же, плохо экранированная система STP или система с дефектным экраном может оказаться более уязвимой к помехам, чем хорошо сбалансированная система на основе UTP».
Измерения рабочих характеристик, проведенные AT&T развеяли некоторые заблуждения, связанные с рабочими характеристиками кабелей на основе экранированной и неэкранированной витой пары. Результаты измерений вторично наведенного тока привели к заключению, что «сам по себе экранированный кабель не обеспечивает невосприимчивости к шуму. Следует рассматривать внешнее экранирование всей линии, так как на первый взгляд безобидные соединения могут оказывать и оказывают значительное влияние на эффективность экранирования. Кроме того, поддержание высокого качества экрана в каждой точке становиться дорогим, а разработчик системы должен найти компромисс между требованиями, предъявляемыми к системе, учитывая требуемые рабочие характеристики EMC, а также стоимость компонентов и обслуживания системы». В заключение можно констатировать, что при использовании обычных кабельных конфигураций, неэкранированный кабель полностью способен обеспечивать такой же уровень устойчивости к шуму, как и экранированный кабель.
Экранированные и неэкранированные кабели, параметры для оценки ЭМС кабельных систем, затухание излучения и межкабельные наводки
Появились новые термины, такие как alien crosstalk (межкабельные наводки) и coupling attenuation (затухание излучения). Специалистами задавались вопросы о важности этих параметров для практической реализации высокоскоростных систем. Появилась даже мысль, что параметры затухания излучения и межкабельные наводки — это всего лишь теоретические параметры, и не требуется при проектировании структурированной кабельной системы (СКС) их учитывать. Давайте попробуем разобраться с этими параметрами, экранированными и неэкранированными кабелями и рядом возникающих вопросов и проблем.
Работа над новым стандартом 10GBase-T
Работа над стандартом 10GBase-T началась в 2002 году, когда была создана рабочая группа в IEEE. Вначале многие участники рынка с большим скепсисом относились к возможности реализации передачи 10 Гигабит в секунду по витой паре на расстояния до 100 метров. Тем не менее, разработчиками была успешно решена эта достаточно сложная техническая задача за счет использования сложного метода кодирования, подавления наведенных помех на ближнем (NEXT) и компенсации наведенных помех на дальнем конце (FEXT). Предложенные рабочей группой технические решения позволили снизить полосу пропускания в кабельной линии до 417 МГц. В июне 2006 года IEEE был опубликован новый стандарт IEEE 802.3an c возможностью передачи 10 Гигабит в секунду по витой паре.
Особенности реализации приложения 10GBase-T
Поддержка работы высокоскоростного приложения 10GBase-T предъявляет достаточно жесткие требования к техническим характеристикам кабеля витая пара. Применяемый для передачи 10 Гбит/с метод модуляции линейного сигнала по схеме РАМ-16 привел к существенному уменьшению отношения сигнал/шум между логическими уровнями по сравнению с методами модуляции, применяемыми ранее в других протоколах передачи данных Ethernet. Теперь на выходе передатчика сигнального цифрового процессора разница между двумя логическими уровнями находится в диапазоне всего 0,13 В (рис. 1).
При ослаблении сигнала в ходе передачи разница между логическими уровнями становится еще меньше. Чувствительность приемника для распознавания логического уровня поступающих сигналов 10GBase-T должна быть существенно выше по сравнению с протоколом 1GBase-T. При этом сильно сократилось время обработки сигналов. Теперь даже самая незначительная наведенная внешняя помеха на витую пару может повлиять на распознавание логического уровня сигнала. Существенно расширилась полоса пропускания канала связи — она выросла c 62,5 МГц до 417 МГц. Для сравнения в протоколе 100Base-T (100 Mбит/с) полоса пропускания до 31,25 МГц, а в протоколе 1GBase-T (1000 Mбит/с) полоса пропускания расширена до 62,5 МГц. В таблице 1 для наглядности приведены данные по скорости передачи и полосе пропускания.
В результате разработки протокола 10GBase-T, значительно возросло требование к повышению уровня защищенности витопарного кабеля к воздействию внешних шумов. Сравнив помехоустойчивость приложений Fast Ethernet и 10 Гигабит Ethernet для витой пары, можно увидеть, что чувствительность к воздействию помехи в последнем случае возрастает в 100 раз. Публикация IEEE стандарта 10GBase-T стала движущей силой для обновления стандартов в области кабельных систем (далее по тексту кабельных стандартов).
Обновление кабельных стандартов
В то время, как базовые характеристики кабельных линий и пассивных элементов были описаны в международных, европейских и американских стандартах на СКС и уже давно успешно использовались при проектировании и тестировании информационных систем, вопросы ЭМС длительное время практически не затрагивались стандартами. После выхода стандарта 10GBase-T была проведена большая работа экспертами в области стандартизации кабельных систем и были опубликованы ряд документов, поправок и дополнений к кабельным стандартам, описывающих требования и рекомендации по определению новых параметров, с помощью которых можно описать и определить уровень ЭМС кабельной системы. Новые параметры, рекомендации и требования к ним были сформулированы в американском стандарте ANSI/TIA/EIA-568-B.2 и в ISO 11801 2-й редакции стандарта. В американском дополнении ANSI/TIA/EIA-568-B.2-10 были добавлены новые технические параметры и была введена расширенная категория 6 — категория 6А. У категории 6А был в два раза увеличен частотный диапазон с 250 МГц (для категории 6) до 500 МГц. Чуть позже была разработана и принята международным стандартом Поправка 1 к ISO/IEC 11801:2002 — в этом документе появились новые параметры и добавились два новых класса: • класс EA — на экранированных и неэкранированных кабельных линий, частота до 500 МГц; • класс FA — только для экранированных кабельных линий, частота до 1000 МГц.
В стандартах были описаны новые технические параметры и требования к ним, связанные с межкабельными наводками и асимметрией витой пары, которые мы рассмотрим ниже.
Параметры витопарных кабелей, связанные с ЭМС
Высокая чувствительность витопарного кабеля к помехам, насыщенность современных офисов и объектов радиоэлектронным, цифровым оборудованием, создающим помехи, приводит к необходимости анализа параметров электромагнитной совместимости (ЭМС), характеризующих помехоустойчивость витопарных линий и кабелей витая пара. Для оценки ЭМС используются два основных параметра: затухание излучения и межкабельные наводки. Затухание излучения (coupling attenuation)
Затухание излучения характеризует защищенность кабельной линии от внешних электромагнитных помех, а также уровень внешнего излучения линии в окружающую среду. Затухание излучения определяется как отношение внешнего уровня помех к результирующему уровню помех внутри информационной системы. Величина затухания излучения выражается в децибелах (рис. 2).
Параметр затухание излучения позволяет оценить характеристики ЭМС кабельной линии. Читатель может спросить, а откуда возникает излучение у витой пары при использовании сбалансированной системы? Идеальная симметричная система является отличной средой передачи, но на практике не бывает идеально сбалансированных систем. Нарушение симметрии скрутки пар присутствует практически во всех кабелях. Это приводит к возникновению паразитного электромагнитного поля вокруг пары проводников. Качество скрутки проводников очень важно, так как скрутка проводников непосредственно влияет на электромагнитные характеристики кабельной системы (генерируемые шумы и воздействие внешних помех). Система с нарушением симметрии сохраняет свою работоспособность до определенного уровня внешних помех. Нарушение симметрии в информационных системах может быть вызвано следующими причинами и факторами: • конструкцией кабеля и компонентов; • технологией изготовления витой пары; • процедурой монтажа системы (растягивающие усилия, раздавливающие нагрузки, радиусы изгиба и скручивание, приводящие к изменениям в симметричной системы); • подключением активных устройств с нарушением симметрии (сетевые карты, коммутаторы и т.д).
В экранированных системах эффект нарушения симметрии пар, приводящий к возникновению, компенсируется за счет наличия экрана. Значение сoupling attenuation (ac) экранированной кабельной системы равно сумме затухания экранирования (as) и затухания асимметрии (au). Для различных типов кабельных систем значение параметра сoupling attenuation (ac) определяется для экранированных и неэкранированных кабелей по следующим формулам: • для экранированного витопарного кабеля: ac= as + au • для неэкранированного витопарного кабеля: ac = au (так как as = 0)
На рисунке 3 схематично показано изменение затухания излучения для экранированных и неэкранированных систем.
Параметр ac является универсальным параметром, позволяющим определить уровень ЭМС различных типов информационных кабельных систем: неэкранированных, экранированных и коаксиальных.
В 1-й поправке к международному стандарту ISO 11801 приводится формула для расчета и оценки минимально допустимого значения ac (таблица 2).
В случае если значение затухания излучения для кабельных каналов класса EA или F выше на 10 дБ и для каналов класса FA выше на 25 дБ минимально допустимого значения, указанного в таблице 2, то значением параметра межкабельных наводок можно будет пренебречь, так как отсутствие межкабельных помех гарантируется конструкцией кабеля — экраном. Значение затухания излучения экранированной кабельной линии превышает значение 70 дБ. Для неэкранированной системы это значение, как правило, составляет около 40 дБ, что указывает на низкий уровень ЭМС неэкранированных систем. А если монтаж кабельной линии будет выполнен с ошибками, то значение параметра затухания излучения будет меньше 40 дБ (рис. 4).
Межкабельные наводки (alien crosstalk)
Внешние помехи на витую пару могут создаваться не только сторонними источниками излучения, такими как мобильные телефоны, радиоустройства, силовые кабели, люминесцентные лампы, выключатели, реле, а и генерироваться слаботочными кабелями, которые проложены рядом и по которым передаются данные — такие кабели еще называют «соседними» кабелями. В телекоммуникационном помещении или в одном кабельном канале прокладывается по соседству свыше нескольких десятков, а иногда и свыше сотни телекоммуникационных кабелей. На рисунке 5 показано воздействие шести соседних кабелей, окружающих кабель «жертву».
Хотя и на рисунке показано воздействие соседних кабелей на один кабель, однако, надо понимать, что все кабели, находящиеся рядом, при передаче сигналов излучают и оказывают влияние друг на друга. То есть все кабели также являются «жертвами» своих соседей. Межкабельные наводки описывают электромагнитное взаимодействие, возникающее между проложенными рядом телекоммуникационными кабелями. Межкабельные наводки не могут быть скомпенсированы цифровым сигнальным процессором в отличие от таких внутренних помех, как переходное затухание на ближнем конце (NEXT) или переходное затухание дальнем конце (FEXT). Различные технические параметры, связанные с межкабельными наводками, приводятся в стандартах, приведем некоторые их них: • alien near end crosstalk (ANEXT, межкабельное переходное затухание на ближнем конце); • alien far end crosstalk (AFEXT, межкабельное переходное затухание на дальнем конце); • power sum alien near end crosstalk (PSANEXT, суммарное межкабельное переходное затухание на ближнем конце); • power sum alien far end crosstalk (PSAFEXT, суммарное межкабельное переходное затухание на дальнем конце). При наличии вышеупомянутых требуемых характеристик стандартом 10Base-T (меньший уровень между логическими уровнями сигналов и большая частота), значение межкабельных наводок приобретает большое значение при передаче 10 Гигабит в секунду. Экранированная система отлично справляется с межкабельными наводками. Для некэранированных кабельных систем требуется применять специальные способы и методы снижения межкабельных наводок.
Способы снижения уровня межкабельных наводок в неэкранированных кабельных системах
В неэкранированной кабельной системе необходимо снижать уровень межкабельных наводок. Существуют следующие рекомендации для снижения уровня межкабельных наводок в неэкранированных кабельных системах: изменение конструкции UTP-кабелей и разнесение кабелей, шнуров в пространстве, которые мы рассмотрим далее в этой статье.
Изменение конструкции неэкранированных кабелей категории 6А
С учетом отрицательного влияния межкабельных наводок, в конструкцию неэкранированных кабелей, предназначенных для реализации 10 Гигабит Ethernet, производителями кабелей вносятся различные конструктивные изменения и дополнения, направленные на увеличение расстояния между парами соседних кабелей. На рисунке 6 показана конструкция неэкранированного кабеля категории 6А. Внутри кабеля расположен пластиковый разделитель (сепаратор), предназначенный для разнесения витых пар. Внешняя оболочка кабеля делается утолщенной, чтобы увеличить расстояние между соседними кабелями и, следовательно, увеличить расстояние между парами соседних кабелей.
Альтернативной конструкцией, обеспечивающей разнесение пар в пространстве, является применение вместо традиционной круглой формы кабеля — кабелей овальной формы (рис. 7). При применении кабелей овальной конструкции можно увеличить расстояния между парами проводников в соседних кабелях. Оба варианта модернизированной конструкции неэкранированных кабелей позволяют уменьшить межкабельные наводки, но приводят к увеличению площади сечения кабеля. Площадь сечения UTP-кабеля категории 6A может быть больше на 60% по сравнению с экранированными кабелями (рис. 8).
Увеличение сечения кабельных каналов, кабельного ввода
Следствием увеличения внешнего диаметра UTP-кабеля является увеличение размера или количества кабельных каналов. Кабельные каналы заполняются меньшим количеством неэкранированных кабелей категории 6A, тогда как экранированных кабелей в кабельный канал такого же сечения будет размещаться больше. Возникают сложности при организации кабельного ввода в телекоммуникационное помещение и распределении кабельных каналов в телекоммуникационных помещениях, так как требуется большее сечение для ввода и распределения неэкранированных кабелей внутри помещения. Также не надо забывать о том, что кабели могут быть распределены и внутри телекоммуникационного шкафа. Поэтому увеличение сечения неэкранированных кабелей может привести к покупке и установке дополнительных монтажных конструктивов или установке шкафов, имеющих большие габариты. На рисунке 9 показан пример размещения неэкранированных и экранированных кабелей в лотке.
Снижение уровня межкабельных наводок — разнесение неэкранированных кабелей и шнуров
Обычно витопарные кабели прокладываются на объекте пучками или укладываются чаще всего в один и тот же кабельный канал, где и размещаются вместе. Объединение кабелей в пучки при монтаже СКС существенно увеличивают вероятность возникновения межкабельных наводок в неэкранированных кабельных системах. На рисунке 10 показан пример прокладка кабелей витая пара. Основное воздействие межкабельных наводок осуществляется на расстоянии до 20-ти метров. После 20-ти метров уровень межкабельных наводок практически не влияет на кабель жертву, так как сигнал в соседних кабелях ослабевает из-за вносимых потерь. Межкабельные наводки на расстоянии до 20- ти метров могут образоваться и от других соседних кабелей, которые могут оказаться рядом не только в кабельном канале, а например, в одном кабельном вводе в кроссовую или серверную, при распределении и заделке кабелей сзади коммутационной панели (рис. 11).
Сильное внешнее воздействие могут оказать коммутационные шнуры, размещаемые в одном кабельном организаторе. Чтобы снизить влияние межкабельных наводок, неэкранированные кабели и шнуры необходимо разносить в пространстве, что на практике на реальном объекте не всегда реализуемо и крайне затруднено. Проблема расширения установленных неэкранированных кабельных сетей
В ходе разработки нового приложения 10Base-T была обнаружена и еще одна проблема. При одновременной параллельной передаче приложений Гигабит Ethernet по кабелям UTP категории 5e или категории 6, конструкция которых не предназначена для противодействия межкабельным наводкам, и 10 Гигабит Ethernet по кабелям категории 6A, возникает явление интерференции (наложения) сигналов (рис. 12). В случае расширении существующей СКС, неэкранированные кабели категории 6А будут подвержены межкабельным наводкам от уже установленных линий, по которым будут передаваться сигналы протокола 1GBase-T. Поэтому не рекомендуется неэкранированные кабели категории 6А, которые планируется использовать для передачи 10 Гигабит EtherNet, прокладывать совместно с существующими неэкранированными слаботочными кабелями категории 5e и категории 6.
Увеличение затрат инсталлятора при использовании неэкранированной проводки по сравнению с экранированной
С учетом возрастания вероятности межкабельных наводок в каждом UTP-кабеле при прокладке неэкранированных кабелей в пучках и распределении кабелей в кроссах придется инсталляторам структурированной кабельной системы выполнять несколько кабельных вводов и разделять пучки неэкранированных кабелей на несколько параллельных потоков. Это неизбежно приводит к увеличению времени монтажа СКС на объекте. По завершению монтажных работ неэкранированные кабельные линии необходимо будет обязательно протестировать не только на соответствие категории или класса, а провести полевые испытания неэкранированных кабелей и оценить уровень межкабельных наводок. Процедура тестирования межкабельных наводок требует закупки дополнительного оборудования и занимает много времени. При этом не будет 100% гарантии на приемлемый уровень межкабельных наводок, так как нереально провести тестирование межкабельных наводок во всех возможных комбинациях неэкранированных кабелей.
Устойчивость к внешним помехам достигается за счет использования экранированных кабелей
Необходимая устойчивость информационной кабельной системы к внешним помехам в соответствии с требованиями международных стандартов достигается применением экранированных кабельных систем. Именно такие системы успешно прошли тестирование на устойчивость к электромагнитным воздействиям по международной классификации MICE (Mechanical, In-gress, Chemical and Electromagnetic) по уровню E1. Более того, экранированные системы прошли тестирование на работоспособность при условиях окружающей среды по уровню E2 and E3 по классификации MICE, что соответствует функционированию в условиях электромагнитной обстановки вне офиса, например, на промышленном предприятии. Были проведены исследования экранированных и неэкранированных систем независимой лабораторией GHMT AG (www.ghmt.de). Результаты испытаний показали, что кабельная система, благодаря экрану, успешно нейтрализует межкабельные наводки в соответствии с требованиями кабельных стандартов. Поэтому многие производители СКС для экранированных систем не требуют проведения полевого тестирования кабельных линий на наличие межкабельных наводок.
Заключение
Установка в современных офисах большого количества цифровой аппаратуры, появление во внешней среде большого количества излучающих устройств средств связи, ужесточение требований к уровню надежности работы телекоммуникационных систем, увеличение скорости передачи данных до 10 Гигабит приводит к тому, что электромагнитной совместимости (ЭМС) необходимо уделять внимание при проектировании СКС. Использование неэкранированных витопарных кабельных линий для передачи 10 Гигабит Ethernet возможно, и это подтверждено теоретическими расчетами и испытаниями, проведенными в лабораториях. Однако высокая чувствительность к различным электромагнитным наводкам, присутствующим в реальной среде, привела к необходимости изменения конструкции неэкранированных кабелей и соблюдению трудновыполнимых на практике правил монтажа неэкранированной проводки на объекте. С экономической точки зрения, реализация 10-гигабитной сети с использованием неэкранированной проводки связана с рядом ограничивающих факторов. Большее сечение неэкранированных витопарных кабелей увеличивает общие расходы на кабельную систему, увеличивает время монтажа кабельной системы. Как правило, подобные расходы и временные затраты редко принимаются во внимание при сравнении плюсов и минусов экранированных и неэкранированных систем. К тому же, при проведении любых перемещений, дополнений и изменений (так называемой процедуры Move Add Change) в неэкранированной системе потребуется обязательное повторное тестирование на межкабельные наводки. Кабельная система должна обладать хорошими показателями по соотношению сигнал-шум и защите от межкабельных наводок. Чем большим запасом по характеристикам обладает витопарная кабельная линия, тем менее она восприимчива к любым внешним помехам. Применение экранированных систем позволяет решать проблемы, связанные с ЭМС, что в будущем позволит не только реализовать передачу 10 Гигабит в секунду, но и гарантировать функционирование в различных условиях электромагнитной обстановки, соответствующей международной классификации MICE.
В статье использованы материалы и рисунки компании AMP/Tyco Electronics, исследование экранированных и неэкранированных систем, проведенных независимой лабораторией GHMT AG (www.ghmt.de).