Что отвечает за деление клетки в клетке
Делим на два
Митоз, мейоз и другие клеточные красоты
Фотография: ZEISS Microscopy / Flickr.com
Вчера биологи отмечали день рождения основателя цитогенетики Вальтера Флемминга. Он впервые обнаружил в клетке интенсивно окрашивающиеся структуры и назвал их хроматином. Позднее он обнаружил связь хроматина с хромосомами, которые получили свое современное название благодаря немецкому анатому и гистологу Генриху Вильгельму Вальдейеру. Особую известность Флеммингу принесли его исследования строения и деления клетки. Флемминг впервые ввел термин «митоз», обозначающий непрямое деление клетки.
Мы подготовили иллюстрированный обзор главных объектов исследования Флемминга.
Электронная микроскопия клетки
Фотография: Itayba / Wikimedia Commons
У эукариотических клеток существет два способа деления: митоз и мейоз. Первый из них встречается гораздо чаще второго, но второй имеет ключевое значение для полового размножения.
Митоз — он же кариокинез или непрямое деление — это деление ядра эукариотической клетки с сохранением числа хромосом. У многоклеточных животных это единственный способ деления любых клеток за исключением половых. Для удобства изучения биологи делят митотический процесс на четыре стадии в зависимости от того, как выглядят в это время хромосомы в световом микроскопе. В митозе выделяют профазу, метафазу, анафазу и телофазу.
Размножение клеток путем бинарного деления
Значение митоза
Митотическое деление ядра – это способ поддержания постоянного набора хромосом. Дочерние клетки имеют такой же набор генов, как и материнская, и все характеристики, ей присущие. Митоз необходим для:
— роста и развития многоклеточного организма (из слияния половых клеток);
— перемещения клеток из нижних слоев в более верхние, а также замены клеток крови (эритроцитов, лейкоцитов, тромбоцитов);
— восстановления поврежденных тканей (у некоторых животных способности к регенерации являются необходимым условием для выживания, например, у морских звезд или ящериц);
— бесполого размножения растений и некоторых животных (беспозвоночных).
Мейоз — прямое деление
Мейоз — прямое деление
Существует особый процесс репродукции, встречающийся только в половых клетках (гаметах) – это мейоз (прямое деление). Отличительной чертой для него является отсутствие интерфазы. Мейоз из одной исходной клетки дает четыре, с гаплоидным набором хромосом. Весь процесс прямого деления включает два последовательных этапа, которые состоят из профазы, метафазы, анафазы и телофазы.
Перед началом профазы у половых клетках происходит удвоение исходного материала, таким образом, она становится тетраплоидной.
Профаза заканчивается разрушением нуклеолемы и формированием веретена деления.
Метафаза 1: биваленты расположены посередине клетки.
Анафаза 1:к противоположным полюсам движутся удвоенные хромосомы.
Телофаза 1:завершается процесс деления, клетки получают по 23 бивалента.
Без последующего удвоения материала клетка вступает во второй этап деления.
Профаза 2: снова повторяются все процессы, которые были в профазе 1,а именно конденсация хромосом, что хаотично располагаются между органеллами.
Метафаза 2: две хроматиды, соединенные в месте перекреста (униваленты), располагаются в экваториальной плоскости, создавая пластинку, названную метафазной.
Анафаза 2: — унивалент разделяется на отдельные хроматиды или монады, и они направляются к разным полюсам клетки.
Мейоз – важный механизм в жизни всех организмов. В результате такого деления мы получаем 4 гаплоидные клетки, которые имеют половину нужного набора хроматид. Во время оплодотворения две гаметы образуют полноценную диплоидную клетку, сохраняя присущей ей кариотип.
Сложно представить наше существования без мейотического деления, иначе все организмы с каждым последующим поколение получали бы удвоенные наборы хромосом.
Митоз
Это непрямое деление ядра. Чаще всего встречается в эукариотических клетках. Главное отличие этот процесса заключается в том, что дочерние клетки и материнская содержат одинаковое число хромосом. Благодаря этому в организме поддерживается необходимое количество клеток, а также возможны процессы регенерации и роста. Первым митоз в животной клетке описал Флемминг.
Процесс деления ядра в данном случае разделяется на интерфазу и непосредственно митоз. Интерфаза – это состояние покоя клетки в промежутке между делениями. В ней можно выделить несколько фаз:
1. Пресинтетический период — клетка растет, в ней накапливаются белки и углеводы, активно синтезируется АТФ (аденозинтрифосфат).
2. Синтетический период – генетический материал увеличивается вдвое.
3. Постсинтетический период – клеточные элементы удваиваются, появляются белки, из которых состоит веретено деления.
Фазы митоза:
Препрофаза (в клетках растений)
Изменения, которые происходят в препрофазе:
Профаза
Изменения, которые происходят в профазе:
Прометафаза
Прометафаза — фаза митоза после профазы и предшествующая метафазе в эукариотических соматических клетках. Некоторые источники относят процессы протекающие в прометафазе к поздней профазе и начальной стадии метафазы.
Изменения, которые происходят в прометафазе:
Метафаза
В метафазе полностью развиваются волокна деления, а хромосомы выравниваются на метафазной (экваториальной) пластине (плоскость, которая одинаково удалена от двух полюсов).
Изменения, которые происходят в метафазе:
Анафаза
В анафазе парные хромосомы (сестринские хроматиды) отделяются и начинают двигаться к противоположным концам (полюсам) клетки. Волокна веретена, не связанные с хроматидами, вытягиваются и удлиняют клетку. В конце анафазы каждый полюс содержит полную компиляцию хромосом.
Изменения, которые происходят в анафазе:
Телофаза
В телофазе хромосомы достигают ядер новых дочерних клеток.
Изменения, которые происходят в телофазе:
Цитокинез — это разделение цитоплазмы клетки. Он начинается до конца митоза в анафазе и заканчивается вскоре после телофазы. В конце цитокинеза образуются две генетически идентичные дочерние клетки.
Эндомитоз
Увеличение генетического материала, которое не предусматривает деление ядра, называется эндомитозом. Он обнаружен в клетках растений и животных. В данном случае не происходит разрушения цитоплазмы и оболочки ядра, но хроматин превращается в хромосомы, а затем снова деспирализуется.
Этот процесс позволяет получить полиплоидные ядра, в которых увеличено содержание ДНК. Подобное встречается в колониеобразующих клетках красного костного мозга. Кроме того, наблюдаются случаи, когда молекулы ДНК увеличиваются в два раза, а число хромосом остается прежним. Они носят название политенных, и их можно обнаружить в клетках насекомых.
Мейоз
Механизм деления ядер половых клеток несколько отличается от соматических. В результате него получаются клетки, которые имеют в два раза меньше генетической информации, чем их предшественники. Это необходимо для того, чтобы поддерживать постоянное количество хромосом в каждой клетке организма.
Мейоз проходит в два этапа:
Правильное течение данного процесса возможно только в клетках с четным набором хромосом (диплоидным, тетраплоидным, гексапроидным и т. д.). Конечно, остается возможность прохождения мейоза и в клетках с нечетным набором хромосом, но тогда потомство может оказаться нежизнеспособным.
Именно этот механизм обеспечивает стерильность в межвидовых браках. Так как в половых клетках находятся различные наборы хромосом, это затрудняет их слияние и появление жизнеспособного или фертильного потомства.
Второе деление мейоза
Этот процесс еще иначе называют «митозом мейоза». В момент между двумя фазами удвоения ДНК не происходит, и во вторую профазу клетка вступает с тем же набором хромосом, который у нее остался после телофазы 1.
1. Профаза: хромосомы конденсируются, проходит разделение клеточного центра (его остатки расходятся к полюсам клетки), разрушается оболочка ядра и формируется веретено деления, расположенное перпендикулярно к веретену из первого деления.
2. Метафаза: хромосомы располагаются на экваторе, образуется метафазная пластинка.
3. Анафаза: хромосомы делятся на хроматиды, которые расходятся в разные стороны.
4. Телофаза: в дочерних клетках образуется ядро, хроматиды деспирализуются в хроматин.
В конце второй фазы из одной материнской клетки мы имеем четыре дочерних с половинным набором хромосом. Если мейоз происходит совместно с гаметогенезом (то есть образованием половых клеток), то деление проходят резко, неравномерно, и формируется одна клетка с гаплоидным набором хромосом и три редукционных тельца, не несущих необходимой генетической информации. Они необходимы для того, чтобы в яйцеклетке и сперматозоиде сохранялась только половина генетического материала родительской клетки. Кроме того, такая форма деления ядра обеспечивает появление новых комбинаций генов, а также наследование чистых аллелей.
У простейших существует вариант мейоза, когда происходит только одно деление в первую фазу, а во вторую наблюдается кроссинговер. Ученые предполагают, что данная форма является эволюционным предшественником обычного мейоза многоклеточных организмов. Возможно, существуют и другие способы деления ядра, о которых ученые еще не знают.
Деление клеток
Деление клеток — часть процесса жизни абсолютно любого живого организма. Все новые клетки образуются из старых (материнских). Это одно из основных положений клеточной теории. Но существует несколько видов деления, которые напрямую зависят от природы этих клеток.
Деление прокариотических клеток
Чем отличается прокариотическая клетка от эукариотической? Самое главное отличие — отсутствие ядра (собственно поэтому так и называются). Отсутствие ядра означает, что ДНК просто находится в цитоплазме.
Процесс выглядит следующим образом:
репликация (удвоение) ДНК —> клетка удлиняется —> образуется поперечная перегородка —> клетки разделяются и расходятся
Деление эукариотических клеток
Жизнь любой клетки состоит из 3 этапов: рост, подготовка к делению и, собственно, деление.
Как происходит подготовка к делению?
Этот период подготовки к делению называется ИНТЕРФАЗА.
Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.
Прямое или бинарное деление клеток
Это самый экономичный (с точки зрения энергии) метод деления клеток.
При таком «неаккуратном» делении могут возникнуть многоядерные клетки. Логично, что при таком делении главное — количество новых клеток и скорость их образования, а не их «качество».
Поэтому логично, что оно характерно либо для простейших одноклеточных организмов, либо для специализированных клеток — либо тех, которые потом должны погибнуть — кора у растений, при злокачественных процессах и т.д.
Непрямоеделение клеток, не половое деление
Это основной способ деления эукариотических соматических (клеток тела) клеток.
Выделяют 4 фазы митоза:
(под каждой фазой указана формула, где n — число хромосом, С — ДНК)
(именно в этой фазе хромосомы лучше всего видны в световой микроскоп)
Обратите внимание, что митотическое деление клеток характерно для соматических клеток (неполовых, клеток тела) — у них изначально двойной — ДИПЛОИДНЫЙ набор хромосом. И в результате митоза образуются 2 новые клетки, каждая с таким же диплоидным набором
Очень часто в заданиях ЕГЭ просят указать количество хромосом и ДНК в каждой фазе.
Жизненный цикл клетки. Митоз. Мейоз
теория по биологии 🌿 размножение и онтогенез
Жизненный цикл клетки
Клеточная смерть
Существует два пути конца существования клетки:
Хроматин — нуклеопротеид, составляющий основу хромосомы.
Интерфаза
1.G1 – период (постмитотический или пресинтетический период)
Начинается сразу после образования клетки в результате
В эту фазу клетка принимает решение: вступать в
2.S – период (синтетический период)
В ядре удваивается
В цитоплазме удваиваются центриоли.
К концу S – фазы клетка тетраплоидна (4n) по ДНК.
3.G2 – период (постсинтетический или премитотический период)
Происходит синтез других белков, необходимых для митоза, в том числе, тубулина, из которого формируются трубочки
Все деление клетки, включая митоз, занимает примерно один сутки, притом на пресинтетическую фазу (G1) около 9 часов, а синтетическую (S) — 10 часов, постсинтетическую (G2) – 4,5 часа, а непосредственно на
Митоз
В ядре конденсируются хромосомы, каждая из них содержит по 2 хроматиды, что является результатом репликации в S – периоде.
Пары центриолей постепенно расходятся к полюсам клетки, начинает формироваться
Хромосомы достигают максимальной степени конденсации и выстраиваются на экваторе клетки, то есть по центру, образуя
Завершается формирование веретена деления.
Хроматиды сохраняют максимальную степень конденсации, но теряют связь друг с другом. Они начинают расходиться к полюсам клетки.
Хроматиды каждой хромосомы расходятся к противоположным полюсам.
Дочерние хромосомы деспирализуются (раскручиваются) у полюсов клетки. Начинается
Формируются ядрышки и
Начинается цитокинез: по центру клетки образуется перетяжка, клетка разделяется на две, так между дочерними клетками распределяется цитоплазма.
После цитокинеза в клетках восстанавливается аппарат Гольджи и ЭПС.
Мейоз
Мейоз напоминает два митоза, но с некоторыми правками:
Конъюгация — сближение хромосом при мейозе.
Конъюгация — половой процесс, заключающийся в частичном обмене наследственной информации, например у инфузорий.
Кроссинговер — обмен участками гомологичных хромосом.
Зигота — оплодотворённая яйцеклетка.
pазбирался: Надежда | обсудить разбор | оценить
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Задание EB0518D Установите соответствие между процессами и стадиями клеточного деления: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца