Что отражают динамические модели
Динамическая модель
Примечания
Ссылки
Полезное
Смотреть что такое «Динамическая модель» в других словарях:
Динамическая модель — – см. Динамические модели экономики, Динамические модели межотраслевого баланса, Солоу модель роста, Неймана модель, Харрода Домара модель … Экономико-математический словарь
динамическая модель — Модель, находящаяся в отношении динамического подобия к моделируемому объекту. [Сборник рекомендуемых терминов. Выпуск 88. Основы теории подобия и моделирования. Академия наук СССР. Комитет научно технической терминологии. 1973 г.] Тематики… … Справочник технического переводчика
динамическая модель — dinaminis modelis statusas T sritis automatika atitikmenys: angl. behavior model; dynamic model vok. dynamisches Modell, n rus. динамическая модель, f pranc. modèle dynamique, m … Automatikos terminų žodynas
динамическая модель — Модель, находящаяся в отношении динамического подобия к моделируемому объекту … Политехнический терминологический толковый словарь
Динамическая модель — математическая модель, описывающая развитие процесса во времени … Социологический словарь Socium
Динамическая модель — теоретическое описание процесса изменения какого либо явления … Словарь экономических терминов и иностранных слов
динамическая модель электронного датчика [преобразователя физической величины] по влияющей физической величине — Математическая модель, описывающая электронный датчик [преобразователь физической величины] как динамическую систему в виде дифференциального уравнения, передаточной функции или характеристики, связывающей значения влияющей физической величины и… … Справочник технического переводчика
динамическая модель электронного датчика [преобразователя физической величины] по измеряемой [контролируемой] физической величине — Математическая модель, описывающая электронный датчик [преобразователь физической величины] как динамическую систему в виде дифференциального уравнения, передаточной функции или характеристики, связывающей значения входного и выходного сигналов… … Справочник технического переводчика
динамическая модель в агрометеорологии — Математическое описание влияния агрометеорологических факторов на рост, развитие и продуктивность агрофитоценоза. Примечание Формирование продуктивности рассматривается как развивающийся во времени процесс, описываемый системой различных… … Справочник технического переводчика
динамическая модель электронного датчика — 40 динамическая модель электронного датчика [преобразователя физической величины] по влияющей физической величине: Математическая модель, описывающая электронный датчик [преобразователь физической величины] как динамическую систему в виде… … Словарь-справочник терминов нормативно-технической документации
Динамическая модель
Динамическая модель описывает систему с различными аккумуляторами энергии, представляемыми в форме математических операций суммирования, интегрирования и дифференцирования. Например, потенциальная и кинетическая энергия механического движения массивного объекта. Такие модели в теории автоматического управления строятся в виде передаточных функций.
Математическая модель, в которой в той или иной форме раскрываются причинно-следственные связи, определяющие процесс перехода системы из одного состояния в другое, называется динамической моделью.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Методы прогнозирования в экономике — это совокупность научных методик, которые используются специалистами для разработки оптимальных алгоритмов дальнейшего развития различных сфер экономики каждого конкретного государства или мировой экономики в целом.
Распределённые системы в физике — термин, обычно применяемый к колебательным системам, также сплошные колебательные системы — физические системы, динамические характеристики которых (например, масса и упругость в механических системах, индуктивность и ёмкость в электрических) не сосредоточены (только) в точечных элементах (не приложены только к точечным элементам), а распределены тем или иным образом непрерывно по пространству (конечным или бесконечным областям пространства), поверхностям, линиям.
Компьютерная модель (англ. computer model), или численная модель (англ. computational model) — компьютерная программа, работающая на отдельном компьютере, суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая представление объекта, системы или понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию, включающей и набор данных, характеризующих свойства системы и динамику их изменения со временем.
Динамическое моделирование
Динамическое моделирование — методология бизнес-анализа при использовании методов которой деятельность компании описывается в виде математической модели, в которой все бизнес-задачи и процессы представляются как система взаимосвязанных вычисляемых показателей
Содержание
В настоящее время задача реализации стратегического планирования и управления является необходимым условием успешного развития почти всех сфер бизнеса. В то же время широкий круг управленческого персонала сталкивается с проблемой невозможности автоматизации целого класса бизнес-процессов, связанных с системами поддержки принятия решений. Основная причина этого зачастую связана с невозможностью учета в традиционных системах многовариантности решений управленческих задач.
Особый класс систем стратегического управления и поддержки принятия решений представляют собой системы, позволяющие осуществлять динамическое моделирование процессов. При использовании методов динамического моделирования деятельность компании описывается в виде математической модели, в которой все бизнес-задачи и процессы представляются как система взаимосвязанных вычисляемых показателей.
Задачи
Создание подобной визуализированной модели позволяет анализировать возможные направления развития тех или иных процессов в организации, выявлять и отражать в модели взаимозависимость этих процессов. К примеру, с помощью системы динамического моделирования можно:
Интеграция
Системы динамического моделирования, интегрированные с системами стратегического планирования, позволяют строить отдельные приложения, решающие конкретные задачи моделирования с учетом построенных моделей процессов в системе и отображающие результаты моделирования на специальных инструментальных панелях, использующихся в процессе поддержки принятия решений руководством.
Успех создания эффективной системы управления напрямую зависит от методологической составляющей, от качества проведения начального этапа по выявлению и формализации стратегических целей и задач, поставленных руководством, выделению приоритетных процессов и направлений деятельности, тщательной проработке причинно-следственных связей между процессами и показателями; от опыта и квалификации компании-партнера по внедрению, умеющей не только реализовывать проекты внедрения информационных систем, но и обеспечивать высокий уровень управленческого консалтинга.
При выполнении всех вышеперечисленных условий наибольшего эффекта от использования системы поддержки принятия управленческих решений можно достичь, построив комплексное решение, объединяющее в себе:
Моделирование динамических систем: введение
Трудно переоценить значение компьютерного моделирования в современном мире. Давным давно канули в Лету времена, когда траектории выведения спутников на околоземную орбиту вычислялись толпой девушек-расчетчиц с «Феликсами» наперевес (была такая вычислительная машина). Сегодня скромных размеров ящик около вашего рабочего стола решает все мыслимые и немыслимые задачи. Но есть одно «но».
У меня давно зрела мысль написать цикл, в котором будет разобрано по полочкам всё то, что мы называем современным математическим моделированием. Но сделать это просто и доступно для тех, кто только начинает познавать эту необъятную дисциплину современной науки. Что из этого выйдет, неизвестно, но тех кому стало интересно я приглашаю под кат.
1. Математические начала натуральной философии
Да, начнем мы с механики. Наука доньютоновской эпохи, в современном смысле, была неполноценна. В ней отсутствовал четкая, универсальная методика научного исследования. Но это не значит, что науки не существовало. Был накоплен огромный пласт экспериментальных данных из разных сфер человеческой деятельности. Ученые решали сложнейшие задачи, зачастую применяя методы, гениальность которых поражает до сих пор. Но гениальные открытия носили эпизодический характер. Пока не появился человек, написавший труд, давший в руки ученым четкий математический аппарат, ставший на столетия вперед основным инструментом научного познания.
Именно «Начала. » Ньютона, заложившие основы дифференциального исчисления с практическим выходом в сторону механики сделали последнюю первой в истории настоящей научной теорией. Законами механики, где-то успешно, где-то не очень, стали пытаться объяснять все явления, происходящие в природе, от оптики до электричества, от термодинамики до строения вещества. Время расставила точки над «i», на смену механистическим принципам пришли другие теории, да и сама механика изрядно эволюционировала. Но вместе с тем, механика, как никакая другая дисциплина наглядно и подробно иллюстрирует всё то, о чём мы будем говорить ниже. Большинство примеров данного цикла будет так или иначе связано с моделированием механических систем, по крайней мере в первых его статьях.
Прежде чем мы начнем, должен дать несколько поясняющих замечаний:
2. Количественные параметры, описывающие движение
Механика — это наука, изучающая движение материальных тел. Под механическим движением понимают перемещение тела в пространстве с течением времени. Это определение должно навести вас на следующие вопросы:
Земля имеет диаметр порядка 13000 километров. Солнце — почти полтора миллиона километров. Ничего себе точки! Но вот расстояние между ними 150 млн. километров, а путь проходимый Землей за год по орбите около миллиарда километров. Как видим, в таких масштабах пространства Землю и Солнце можно действительно считать точками.
А если мы хотим изучать вращение Земли вокруг своей оси?
Тогда каждая точка Земли движется по своей собственной траектории относительно оси вращения и пренебрегать её размерами никак нельзя! Здесь Землю стоит рассматривать уже как совокупность связанных точек или твердое тело.
Таким образом, механика предоставляет в наше распоряжение не само тело, а две его простые модели, используя которые можно решить большинство практических задач с нужной на практике степенью точности.
Нет смысла говорить о твердом теле, не разобравшись с тем, как описывается движение точки. Очевидно, для того чтобы определить положение точки в пространстве, необходимо выбрать начало отсчета, например другую точку. Определившись с началом отсчета нужно выбрать те параметры, количественное значение которых даст возможность оценить положение в пространстве интересующей нас движущейся точки. В зависимости от того, какие параметры выбраны, различаю три способа задания движения точки
2.1. Векторный способ задания движения
Все очень просто — из начала координат O к точке M проводят вектор. Длина и направление этого вектора позволяют нам судить о том, где расположена точка.
Точка будет двигаться в пространстве, вектор будет менять свою длину и направление, а его конец чертить в пространстве воображаемую кривую, которая называется траекторией точки. Сам вектор называют радиус-вектором точки. Если мы знаем математический закон, формулу, по которой можем вычислить этот вектор для любого момента времени, то мы знаем закон движения точки
Эта запись говорит нам о том, что радиус-вектор является функцией времени.
2.2. Координатный способ задания движения точки
Мы может провести из начала отсчета три взаимно перпендикулярных оси x, y, и z. Тогда положение точки будет определятся тройкой чисел — координатами в декартовой системе.
В этом случае закон движения точки это три функции времени
и теперь уже они являются законом движения.
2.3. Естественный (траекторный) способ задания движения точки
Мы можем вообще не использовать векторов и осей. Начало отчета выберем на траектории точки, и положение точки оценивать по длине дуги, которую она прошла по траектории
В этом случае нам придется определится с тем, в каком направлении вдоль кривой координата s отсчитывается в положительном направлении и тогда функция
так же является законом движения. Этот способ удобен тогда, когда мы точно знаем форму траектории точки.
3. Скорость и ускорение
Скорость точки — это первая производная радиус вектора точки по времени
Вектор скорости направлен по касательной к траектории точки.
Что, со многих точек зрения, является самым правильным и полным определением. Если движение точки задается координатным способом, то вектор скорости определяется своими проекциями на оси координат, вычисляемые как производные от соответствующих координат
Последнее обозначение производной — точкой над функцией, такое древнее как и сами «Начала. » и восходит к Ньютону. Именно он предложил это обозначение. Потом укоренился привычный школьникам и студентам штрих, как обозначение производной по произвольному параметру, а точка осталась как обозначение производной взятой именно по времени.
Ускорение точки — это первая производная от вектора скорости точки, или вторая производная от радиус-вектора точки
Тут двумя точками над функциями обозначена вторая производная по времени.
Таким образом, зная закон движения точки мы с легкостью можем определить её скорость и ускорение простым вычислением производной.
4. Аксиомы динамики
В школе рассказывают о законах Ньютона. При этом часто допускают фундаментальную ошибку — забывают сказать, что эти законы сформулированы и справедливы исключительно для материальной точки. И совершенно не работают для твердого тела (тише, тише, не надо гневных возгласов, я всё объясню).
В такой научной дисциплине, как теоретическая механика, законы Ньютона принято называть аксиомами, и дополненные принципом независимости действия сил, они образуют систему аксиом динамики.
Точка движется в пространстве равномерно и прямолинейно, если векторная сумма приложенных к ней сил равна нулю.
Вектор ускорения точки, умноженный на её массу равен действующей на точку силе
Две точки взаимодействуют с силами равными по модулю, противоположными по направлению и направленными вдоль одной прямой
Аксиома 4 (Принцип независимости действия сил)
Если на точку действует несколько сил, то ускорение, сообщаемое точки этими силами равно геометрической сумме ускорений, сообщаемых точке каждой силой в отдельности
Отсюда вытекает, что при действии на точку нескольких сил справедливо уравнение
которое в механике называю гордым и страшным именем — дифференциальное уравнение движения точки в векторной форме.
Именно это уравнение служит отправной точкой для математического моделирования в механике. Решая именно это уравнение мы начнем осваивать основы математического моделирования как самостоятельной научной отрасли. Посмотрите на него внимательно, покопайтесь памяти, откройте учебники. Мы ещё не раз вспомним о нем.
Теперь объясню, что я имел в виду, говоря что законы Ньютона справедливы только для материальной точки. Это действительно так, представьте себе твердое тело, движущееся в пространстве. Черт возьми, выйдите на улицу, поднимите с земли палку побольше и швырните её подальше. Видите? Каждая точка палки движется по своей траектории. А значит у каждой точки палки своё собственное ускорение. К какой из этих точек применим второй закон Ньютона? Он применим к каждой точке палки, но не к палке в целом. Понятия «ускорение палки», «траектория палки» бессмысленны. Имеют смысл ускорение и траектория конкретной точки палки, например её центра масс.
Именно поэтому, когда описывают движение твердого тела, то используют теоремы динамики для твердого тела: теорему о движении центра масс, теорему об изменении момента количества движения и теорему об изменении кинетической энергии. Да, эти теоремы выведены опираясь на вышеперечисленные аксиомы (законы Ньютона). Но непосредственно эти законы не применимы к описанию движения твердого тела. Только для точки.
5. Дифференциальные уравнения движения точки
Итак, второй закон Ньютона и принцип независимости действия сил дают нам в руки серьезный математический аппарат в виде уравнения, связывающего между собой ускорение точки и действующие на эту точку силы. Если мы заменим ускорение, по определению данному выше, второй производной по времени от радиус-вектора точки, то увидим такое выражение
Вроде бы просто, но на самом деле это чрезвычайно круто и важно. Посмотрите — слева у нас, стоит закон движения (да, продифференцированный дважды). А справа — сумма сил. Таким образом, это уравнение связывает между собой силы приложенные к точке и закон движения. А значит зная закон движения, можно вычислить силу, его вызывающую. Или наоборот, зная силы, приложенные к точке, найти закон движения.
В подавляющем большинстве случаев это уравнение не используют непосредственно, а раскладывают его на три уравнения в проекциях на оси координат
6. Задачи динамики точки
По известному закону движения точки определить действующую на точку силу
Пусть мы знаем закон движения точки, заданный в виде зависимости радиус-вектора от времени
Тогда, достаточно два раза взять производную по времени от этой функции, умножить результат на массу, и мы получим ту силу, которая вызывает движение точки по данному закону
Отмечу, что полученная сила по факту есть равнодействующая всех сил, приложенных к точке, то есть информация о силовых факторах определяющих движение является неполной. Но, однако этот принцип позволил Ньютону открыть закон всемирного тяготения. В наши дни эта задача получила обобщение на произвольные динамические системы, совершенно не связанные с механикой и известна в теории управления как метод обратных задач динамики.
По известным силам, приложенным к точке, определить закон её движения
Силы, приложенные к точке можно сложить, получив вектор равнодействующей. Причем эта равнодействующая в общем случае будет зависеть от времени, положения точки в пространстве и её скорости
Мы получили уравнение, содержащее неизвестную функцию а так же две её производные. Такое уравнение в математике называют дифференциальным. Его решение в конечном счете сводится к интегрированию — операции обратной нахождению производной. Поскольку уравнение содержит вторую производную неизвестной функции, оно является уравнением второго порядка, а значит брать интеграл придется дважды.
Операция поиска интеграла в порядки сложнее операции поиска производной. И в подавляющем большинстве случаев результат нельзя выразить через элементарные математические функции. Как говорил наш преподаватель математики в университете: «Если вы видите быка, то можете представить себе какие котлеты из него получаться. Но видя котлеты, вам никогда не удастся реконструировать по ним быка. ». По моему эта байка как нельзя лучше отражает смысл и сложность обратных операций.
Невозможность получения аналитического решения многих задач привела к появлению численных методов, бурный рост которых произошел в компьютерную эпоху. В тот день когда дифференциальное уравнение движения было впервые решено на ЭВМ, стал днём рождения новой отрасли знаний — математического моделирования.
Заключение
Не нужно упрекать меня за перепечатку учебника по механике. Данный текст является авторским и преследует целью обзор теоретических основ, без которых говорить о моделировании как практической области нет ни малейшего смысла. В следующий раз мы будет заниматься практикой, но начнем как это положено с азов.
Динамические модели
Динамическая модель как теоретическая конструкция, описывающая изменение состояний объекта. Характеристика основных подходов к построению: оптимизационный, описательный. Рассмотрение способов построения математических моделей дискретных объектов.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 31.01.2013 |
Размер файла | 769,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
динамический модель математический
Экономико-математические модели описывают экономику в развитии (в отличие от статических, характеризующих ее состояние в определенный момент). Существует два подхода к построению динамической модели:
— оптимизационный (выбор оптимальной траектории экономического развития из множества возможных)
— описательный, в центре которого понятие равновесной траектории (т. е. уравновешенного, сбалансированного роста).
Динамические межотраслевые модели, экономико-математические модели плановых расчётов, позволяющие определять по годам перспективного периода объёмы производства продукции, капитальных вложений (а также ввода в действие основных фондов и производственных мощностей) по отраслям материального производства в их взаимной связи. В динамических межотраслевых моделях на каждый год планового периода задаются объёмы и структура «чистого» конечного продукта (личного и общественного потребления, накопления оборотных фондов и государственных резервов, экспортно-импортного сальдо, капитальных вложений, не связанных с увеличением производства в рассматриваемом периоде), а также объём и структура основных фондов на начало периода. В динамических межотраслевых моделях, помимо коэффициента прямых затрат, присущих статическим межотраслевым моделям, вводят специальные коэффициенты, характеризующие материально-вещественную структуру капитальных вложений.
По типу используемого математического аппарата динамические межотраслевые модели делятся на балансовые и оптимальные. Балансовые динамические межотраслевые модели могут быть представлены как в форме системы линейных уравнений, так и в форме линейных дифференциальных или разностных уравнений. Балансовые динамические межотраслевые модели различают также по лагу (разрыв во времени между началом строительства и пуском в эксплуатацию построенного объекта). Для оптимальных динамических межотраслевых моделей характерны наличие определённого критерия оптимальности, замена системы линейных уравнений системой неравенств, введение специальных ограничений по трудовым и природным ресурсам.
Динамические физические и виртуальные объекты существуют объективно. Это значит, что эти объекты функционируют в соответствии с некоторыми законами, независимо от того, знает ли и понимает ли их человек или нет. Например, для управления автомобилем вовсе не обязательно знать, как работает двигатель, что в нем происходит и почему это приводит к движению автомобиля, если нажимать на газ или поворачивать руль. Но если человек предполагает не управлять автомобилем, а сконструировать систему управления им, то знание и понимание процессов динамики уже совершенно необходимо.
Динамические объекты и их линейные модели плотно исследовались и анализировались на протяжении более двух столетий многими учеными и инженерами. Результаты этих исследований и анализа и представляются ниже качественно в концентрированном виде, так, как это воспринимается автором. Прежде всего, это относится к линейным моделям динамических систем, их классификации, описанию их свойств и области состоятельности.
1. Динамические модели: понятие, виды
Если вчитаться и вдуматься в приведенное выше нестрогое определение, можно увидеть, что отдельно динамический объект в «чистом» виде, как вещь в себе, не существует: для описания объекта модель должна содержать еще и 4 источника воздействий (генераторы):
— среду и механизм подачи на него этих воздействий
— объект должен иметь протяженность в пространств
— функционировать во времени
— в модели должны быть измерительные устройства.
Воздействием на объект может быть некоторая физическая величина: сила, температура, давление, электрическое напряжение и другие физические величины или совокупность нескольких величин, а реакцией, откликом объекта на воздействие, может быть движение в пространстве, например смещение или скорость, изменение температуры, силы тока и др.
Для линейных моделей динамических объектов справедлив принцип суперпозиции (наложения), т.е. реакция на совокупность воздействий равна сумме реакций на каждое из них, а масштабному изменению воздействия соответствует пропорциональное изменение реакции на него. Одно воздействие может быть приложено к нескольким объектам или нескольким элементам объекта.
Понятие динамический объект содержит и выражает причинно-следственную связь между воздействием на него и его реакцией. Например, между силой, приложенной к массивному телу, и его положением и движением, между электрическим напряжением, приложенным к элементу, и током, протекающим в нем.
В общем случае динамические объекты являются нелинейными, в том числе они могут обладать и дискретностью, например, изменять быстро структуру при достижении воздействием некоторого уровня. Но обычно большую часть времени функционирования динамические объекты непрерывны во времени и при малых сигналах они линейны. Поэтому ниже основное внимание будет уделено именно линейным непрерывным динамическим объектам.
Линейность и непрерывность во времени выходной величины объекта просто удобный частный, но важный случай, позволяющий достаточно просто рассмотреть значительное число свойств динамического объекта.
С другой стороны, если объект характеризуется процессами, протекающими в разных масштабах времени, то во многих случаях допустимо и полезно заменить наибыстрейшие процессы их дискретным во времени изменением.
Состоятельность линейной модели динамического объекта определяется, в частности тем, что является ли его выходная величина достаточно гладкой, т.е. является ли она и несколько ее младших производных по времени непрерывными. Дело в том, что выходные величины реальных объектов изменяются достаточно плавно во времени. Например, самолет не может мгновенно переместиться из одной точки пространства в другую. Более того он, как и любое массивное тело, не может скачком изменить свою скорость, на это потребовалась бы бесконечная мощность. Но ускорение самолета или автомобиля может изменяться скачком.
Понятие динамический объект вовсе не всесторонне определяет физический объект. Например, описание автомобиля как динамического объекта позволяет ответить на вопросы, как быстро он разгоняется и тормозит, как плавно двигается по неровной дороге и кочкам, какие воздействия будут испытывать водитель и пассажиры машины при движении по дороге, на какую гору он может подняться и т.п. Но в такой модели безразлично, какой цвет у автомобиля, не важна его цена и др., постольку, они не влияют на разгон автомобиля. Модель должна отражать главные с точки зрения некоторого критерия или совокупности критериев свойства моделируемого объекта и пренебрегать второстепенными его свойствами. Иначе она будет чрезмерно сложной, что затруднит анализ интересующих исследователя свойств.
С дугой стороны, если исследователя интересует именно изменение во времени цвета автомобиля, вызываемое различными факторами, например солнечным светом или старением, то и для этого случая может быть составлено и решено соответствующее дифференциальное уравнение.
Реальные объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействия от некоторого источника, но и сами воздействуют на этот источник, противодействуют ему. Выходная величина объекта управления во многих случаях является входной для другого, последующего динамического объекта, которая также, в свою очередь, может влиять на режим работы объекта. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.
Часто, при решении многих задач, рассматривается поведение динамического объекта только во времени, а его пространственные характеристики, в случаях, если они непосредственно не интересуют исследователя, не рассматриваются и не учитываются, за исключением упрощенного учета задержки сигнала, которая может быть обусловлена временем распространения воздействия в пространстве от источника к приемнику.
Динамические объекты описываются дифференциальными уравнениями (системой дифференциальных уравнений). Во многих практически важных случаях это линейное, обыкновенное дифференциальное уравнение (ОДУ) или система ОДУ. Многообразие видов динамических объектов определяет высокую значимость дифференциальных уравнений как универсального математического аппарата их описания, позволяющего проводить теоретические исследования (анализ) этих объектов и на основе такого анализа конструировать модели и строить полезные для людей системы, приборы и устройства, объяснять устройство окружающего нас мира, по крайней мере, в масштабах макромира (не микро- и не мега-).
Модель динамического объекта состоятельна, если она адекватна, соответствует реальному динамическому объекту. Это соответствие ограничивается некоторой пространственно-временной областью и диапазоном воздействий.
Модель динамического объекта реализуема, если можно построить реальный объект, поведение которого под влиянием воздействий в некоторой пространственно-временной области и при некотором классе и диапазоне входных воздействий соответствует поведению модели.
Широта классов, многообразие структур динамических объектов может вызвать предположение, что все они вместе обладают неисчислимым набором свойств. Однако попытка охватить и понять эти свойства, и принципы работы динамических объектов, во всем их многообразии вовсе не столь безнадежна.
Дело в том, что если динамические объекты адекватно описываются дифференциальными уравнениями, а это именно так, то совокупность свойств, характеризующих динамический объект любого рода, определяется совокупностью свойств характеризующих его дифференциальное уравнение. Можно утверждать что, по крайней мере, для линейных объектов таких основных свойств существует довольно ограниченное и сравнительно небольшое число, а поэтому ограничен и набор основных свойств динамических объектов. Опираясь на эти свойства и комбинируя элементы, обладающие ими, можно построить динамические объекты с самыми разнообразными характеристиками.
Итак, основные свойства динамических объектов выведены теоретически из их дифференциальных уравнений и соотнесены с поведением соответствующих реальных объектов.
Воздействием на объект, как и его реакцией, являются физические, измеряемые величины, это может быть и совокупность физических величин, математически описываемая векторами.
При описании динамических объектов с помощью дифференциальных уравнений неявно предполагается, что каждый элемент динамического объекта получает и расходует столько энергии (такую мощность), сколько ему требуется для нормальной работы в соответствии с его назначением по отклику на поступающие воздействия. Часть этой энергии объект может получать от входного воздействия и это описывается дифференциальным уравнением явно, другая часть может поступать от сторонних источников и в дифференциальном уравнении не фигурировать. Такой подход существенно упрощает анализ модели, не искажая свойств элементов и всего объекта. При необходимости процесс обмена энергией с внешней средой может быть подробно описан в явной форме и это будут также дифференциальные и алгебраические уравнения.
В некоторых частных случаях источником всей энергии (мощности) для выходного сигнала объекта является входное воздействие: рычаг, разгон массивного тела силой, пассивная электрическая цепь и др.
В общем случае воздействие может рассматриваться как управляющее потоками энергии для получения необходимой мощности выходного сигнала: усилитель синусоидального сигнала, просто идеальный усилитель и др.
Динамические объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействие от его источника, но и сами воздействуют на этот источник: например в классической механике это выражается принципом, сформулированном в третьем законе Ньютона: действие равно противодействию, в электротехнике напряжение источника есть результат установления динамического равновесия между источником и нагрузкой. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.
По существу, все элементы динамического объекта являются двунаправленными, как и сам объект по отношению к внешним объектам. Это следует из обобщения третьего закона Ньютона, сформулированного им для механики: сила противодействия тела равна силе воздействия на него другим телом и направлена навстречу ей, а в химии также формулируется в виде принципа Ле Шателье. Обобщая можно сказать: воздействие одного динамического элемента на другой встречает противодействие некоторого вида. Например, электрическая нагрузка источника напряжения противодействует ему током, изменяя значение напряжения на выходе источника. В общем случае противодействие нагрузки влияет на режим работы источника, и их поведение определяется в результате, если это возможно, переходом в некоторое динамическое равновесие.
Во многих случаях мощность источника воздействия значительно больше потребной входной мощности приемника, каковым является динамический объект. В этом случае динамический объект практически не влияет на режим работы источника (генератора) и связь может рассматриваться как однонаправленная от источника к объекту. Такая однонаправленная модель элемента, основывающаяся на рациональном физическом структурировании объекта, существенно упрощает описание и анализ системы. Собственно, многие технические объекты, хотя и далеко не все же, строятся как раз по такому принципу, в частности при проектировании систем для решения задач управления. В других случаях, например при решении задачи, когда требуется получение максимального кпд двигателя, противодействием пренебречь нельзя.
Детализируя структуру динамического объекта можно придти к элементарным, условно не упрощаемым объектам. Такие объекты описываются простейшими алгебраическими и дифференциальными уравнениями. Фактически такие элементы в свою очередь могут иметь сложную структуру, однако удобнее при моделировании воспринимать их как единое целое, свойства которого определяются этими, сравнительно простыми уравнениями, связывающими реакцию с воздействием.
Так называют увеличенное или уменьшенное описание объекта или системы. Отличительная характеристика физической модели состоит в том, что в некотором смысле она выглядит как моделируемая целостность.
Наиболее известным примером физической модели является копия конструируемого самолета, выполненная с полным соблюдением пропорций, скажем 1:50. На одном из этапов разработки самолета новой конструкции возникает необходимость проверить его основные аэродинамические параметры. С этой целью подготовленную копию продувают в специальной (аэродинамической) трубе, а полученные показания затем тщательно исследуют. Выгодность такого подхода совершенно очевидна. И потому все ведущие самолетостроительные компании используют физические модели подобного рода при разработке каждого нового летательного аппарата.
Часто в аэродинамическую трубу помещают уменьшенные копии многоэтажных зданий, имитируя при этом розу ветров, характерную для той местности, где предполагается их строительство. Пользуются физическими моделями и в кораблестроении.
Так называют модели, использующие для описания свойств и характеристик объекта или события математические символы и методы. Если некоторую проблему удается перенести на язык формул, то она сильно упрощается. Математический подход прост еще и потому, что он подчиняется вполне определенным жестким правилам, которые нельзя отменить указом или иным способом. Сложность нашей жизни как раз и состоит в том, что многое, что в ней случается, нередко свободно от условностей. Математика имеет дело с упрощенным описанием явлений. По существу, любая формула (или совокупность формул) представляет собой определенный этап в построении математической модели. Опыт показывает, что построить модель (написать уравнение) довольно легко. Трудно в этой модельной и следовательно, упрощенной форме суметь передать суть изучаемого явления.
Любой функциональный элемент реального объекта имеет свою структуру, его можно, как и весь объект, мысленно или физически разделить на взаимодействующие элементы. Элементарный динамический объект это рационально выбранный элемент реального объекта, условно считающийся неделимым, обладающий, как целое некоторым фундаментальным свойством, например инерцией, и с достаточной степенью точности описываемый простейшим алгебраическим или дифференциальным уравнением.
Важнейшее, фундаментальное свойство динамических объектов это их инерционность. Физически инерционность выражается в том, что объект не сразу, а постепенно реагирует на внешние воздействия, а в отсутствие внешнего воздействия стремится сохранить свое состояние и поведение. Математически инерция выражается в том, что выходная величина реального объекта является непрерывной во времени величиной. Более того, некоторые младшие производные выходной величины тоже должны быть непрерывными, они не могут изменяться скачком при ограниченных по мощности воздействиях, в том числе и изменяющихся скачком, ступенчато во времени.
Математическое описание инерции динамического объекта, объекта, соответствующего некоторому дифференциальному уравнению, состоит в том, что воздействие сказывается на реакции объекта опосредовано, оно непосредственно влияет на ту или иную производную реакции по времени, или сразу на несколько из них. Это и приводит к тому, что реакция проявляется только с течением времени.
И действительно, такое описание соответствует поведению реальных объектов. Например, при мгновенной подаче некоторого, сравнительно малого, не меняющегося после подачи воздействия на элементарный объект второго порядка, например силы на инерционную массу, объект остается некоторое, пусть малое, время в том же состоянии, что и до подачи, имеет ту же скорость, что и ранее.
Но вторая производная, т.е. ускорение, прыгает скачком, пропорционально величине приложенной силы. И, поэтому, только с течением времени, а не сразу, наличие второй производной проявляется в изменении скорости, а следовательно, в последующем, и на положении тела в пространстве.
Так называют модели, представляющие исследуемый объект аналогом, который ведет себя как реальный объект, но не выглядит как таковой.
Приведем два достаточно характерных примера.
Пример 1. График, иллюстрирующий соотношения между затраченными усилиями и результатами, является аналоговой моделью. График на рис. 1.1 показывает, как количество времени, отведенное студентом на подготовку к экзамену, влияет на его результат.
Рис. 1.1. График, иллюстрирующий соотношения между затраченными усилиями и результатами
Пример 2. Предположим, что нужно найти наиболее экономичный способ для регулярных известных поставок товаров в три города, построив для этого только один склад. Основное требование: место для склада должно быть таким, чтобы полные транспортные расходы были наименьшими (считается, что стоимость каждой перевозки равна произведению расстояния от склада до пункта назначения на общий вес перевозимых товаров и измеряется в тонна-километрах).
Наклеим карту местности на лист фанеры. Затем в месте нахождения каждого города пропилим сквозные отверстия, пропустим через них нити и привяжем к ним грузики, пропорциональные запросам товаров в этот город (рис. 1.2). Свяжем свободные концы нитей в один узел и отпустим. Под действием силы тяжести система придет в состояние равновесия. То место на листе фанеры, которое при этом займет узел, и будет соответствовать оптимальному расположению склада (рис. 1.3).
Замечание. Стоимость дорог, которые придется построить заново, мы для простоты рассуждений в расчет не принимаем.
Рис. 1.2. Карта местности на листе фанеры
Рис. 1.3. Оптимальное расположение склада
2. Построение математических моделей дискретных объектов
Священник понимает, что срок, за который должен быть построен храм, и его размеры во многом зависят от того, как имено будет изменяться число окрестных жителей. И он решает попытаться рассчитать это. Попробуем и мы изложить возможный ход его рассуждений, пользуясь современными обозначениями и языком.
Обозначим через х количество прихожан к концу n-го года. Их численность через год, т.е. к концу (n + 1)-го года, естественно обозначить через хn+1. Тогда изменение численности за этот год можно описать разностью
Попробуем разобраться теперь с тем, что же получилось, т. е. проанализировать построенную модель. Возможны три случая:
Рис. 2.1. Задача о шахматной доске и награде магараджи
Рис. 2.2-2.3. Экспоненциальное изменение численности
Важный вывод. Предлагая построенную или выбранную вами модель, вы непременно должны указать пределы, в которых ею можно пользоваться, и предупредить о том, что нарушение этих ограничений может привести (и, скорее всего, приведет) к серьезным ошибкам. Коротко говоря, у каждой модели есть свой ресурс. Покупая блузку или рубашку, мы привыкли к наличию меток, на которых указаны максимально допустимая температура глажения, дозволенные виды стирки и т. п. Это, конечно, ни в коей мере не означает, что вам запрещается, взяв докрасна раскаленный утюг, пройтись им раз-другой по ткани. Такое вы сделать можете. Но вот захотите ли вы носить блузку или рубашку после такого глажения? Случай 2. Численность населения не изменяется (рис. 2.4). Случай 3. Население вымирает (рис. 2.5).
Рис. 2.4. График народонаселения при неизменяющейся численности
Рис. 2.5. График народонаселения при убывающей численности
Мы умышленно весьма подробно остановились на описании модели народонаселения, во-первых, потому, что она является одной из первых моделей подобного рода, и, во-вторых, чтобы на ее примере показать, через какие основные этапы проходит решение задачи построения математической модели.
Замечание 2. При больших значениях х конкурентная борьба за средства существования приводит к уменьшению д, и эта жесткая модель должна быть заменена более мягкой моделью: x’=д(x)x, в которой коэффициент д зависит от численности населения. В простейшем случае эта зависимость описывается так:
И мы приходим к более сложной, так называемой логистической модели, которая описывает динамику популяции уже достаточно хорошо. Анализ логистической кривой (рис. 2.6) весьма поучителен, и его проведение может быть любопытно читателю. Логистическая модель хорошо описывает и другие процессы, например эффективность рекламы.
Рис. 2.6. Логистическая кривая
Съеденное количество жертвы способствует размножению хищника, что можно записать так: y’=-вy+дxy, д>0.
Таким образом, мы получаем систему уравнений
Эта система получается из условия стабильности численности обеих популяций x’=0, y’=0
Рис. 2.7. Решение системы уравнений
Начало координат О(0,0) лежит в положительной полуплоскости относительно горизонтальной прямой, задаваемой уравнением (2), а относительно вертикальной прямой, задаваемой уравнением (3), в отрицательной полуплоскости (рис. 2.8). Тем самым первая четверть (а нас интересует только она, так как х>0 и у>0) разбивается на четыре области, которые удобно обозначить так: 1-(+,+), 2-(-,+), 3-(-,-), 4-(+,-).
Рис. 2.8. Разбиение области решений на квадранты
Это и есть уравнение процесса мобилизации. Модель мобилизации построена.
Последнее соотношение легко преобразуется к следующему виду:
Замечание. Вспомогательный параметр г не может быть больше 1 вследствие того, что исходные параметры б и в положительны. Полученное уравнение (4) называется линейным разностным уравнением с постоянными коэффициентами.
С уравнениями подобного рода можно сталкиваться в разных, по большей части простейших вариантах.
Один из них (при г=1) описывает правило, по которому каждый член последовательности, начиная со второго, получается из предыдущего путем сложения с некоторым постоянным числом: Mn+1=б+Mn, т. е. арифметрическую прогрессию.
Второй (при б=0) описывает правило, по которому каждый член последовательности, начиная со второго, получается из предыдущего путем умножения на некоторое постоянное число: Mn+1=гMn, т. е. геометрическую прогрессию.
Предположим, что начальная доля привлеченного населения М0 известна. Тогда уравнение (4) легко решается (для определенности считаем, что ). Имеем:
Попробуем проанализировать возможности этой (построенной на основании простейших соображений) модели.
Начнем со случая |г| * обозначена следующая величина:
Найденная величина M * не зависит от начального значения M0, выражается через исходные параметры б и в по формуле
а следовательно подчиняется условию 0 0,
из которых следует, что скорости x’ и у’ в этой точке положительны: х’>0, у’>0 и, значит, обе величины (х и у) должны возрастать (рис. 2.22).
Рис. 2.22. возрастание x и y
Таким образом, с течением времени в области I решение приходит в точку равновесия.
Возможны и другие случаи (рис. 2.23).
Рис. 2.23. другие случаи
В завершение этого раздела процитируем высказывание Т. Саати об этой модели: «Модель представляется гораздо более убедительной, если вместо вооружений провести на ней изучение проблем угрозы, поскольку люди реагируют на абсолютный уровень враждебности, проявляемый по отношению к ним другими, и испытывают чувство тревоги в степени, пропорциональной уровню враждебности, которую они испытывают сами».
В наше время наука уделяет все большое внимание вопросам организации и управления, это приводит к необходимости анализа сложных целенаправленных процессов под углом зрения их структуры и организации. Потребности практики вызвали к жизни специальные методы, которые удобно объединять под названием «исследование операций». Под этим термином понимается применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности.
Целью исследования операций является выявление наилучшего способа действия при решение той или иной задачи. Главная роль при этом отводится математическому моделированию. Для построения математической модели необходимо иметь строгое представление о цели функционирования исследуемой системы и располагать информацией об ограничениях, которые определяют область допустимых значений. Цель и ограничения должны быть представлены в виде функций.
В моделях исследования операций переменные, от которых зависят ограничения и целевая функция, могут быть дискретными (чаще всего целочисленными) и континуальными (непрерывными). В свою очередь, ограничения и целевая функция делятся на линейные и нелинейные. Существуют различные методы решения данных моделей, наиболее известными и эффективными из них являются методы линейного программирования, когда целевая функция и все ограничения линейные. Для решения математических моделей других типов предназначены методы динамического программирования (которые были рассмотрены в данном курсовом проекте), целочисленного программирования, нелинейного программирования, многокритериальной оптимизации и методы сетевых моделей. Практически все методы исследования операций порождают вычислительные алгоритмы, которые являются итерационными по своей природе. Это подразумевает, что задача решается последовательно (итерационно), когда на каждом шаге (итерации) получаем решение, постепенно сходящиеся к оптимальному решению.
Итерационная природа алгоритмов обычно приводит к объемным однотипным вычислениям. В этом и заключается причина того, что эти алгоритмы разрабатываются, в основном, для реализации с помощью вычислительной техники.
Динамическое программирование представляет собой математический аппарат, позволяющий осуществлять оптимальное планирование многошаговых процессов, зависящих от времени. Так как в задачах динамического программирования процессы зависят от времени, то находится ряд оптимальных решений для каждого этапа, обеспечивающих оптимальное развитие всего процесса в целом.
Используя поэтапное планирование, динамическое программирование позволяет не только упростить решение задач, но и решать те к которым нельзя применить методы математического анализа. Конечно, стоит отметить, что этот метод достаточно трудоёмкий при решении задач с большом количеством переменных.
Список используемой литературы
Размещено на Allbest.ru
Подобные документы
Рассмотрение основных подходов к построению математических моделей процесса. Сопряженное уравнение для простейшего уравнения диффузии и структура алгоритмов для решения задач. Использование принципа двойственности для представления линейного функционала.
курсовая работа [711,0 K], добавлен 03.08.2012
Разработка проекта системы автоматического управления тележкой, движущейся в боковой плоскости. Описание и анализ непрерывной системы, создание ее математических моделей в пространстве состояний и модели «вход-выход». Построение графиков реакций объекта.
курсовая работа [1,7 M], добавлен 25.12.2010
Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.
контрольная работа [69,9 K], добавлен 09.10.2016
Приемы построения математических моделей вычислительных систем, отображающих структуру и процессы их функционирования. Число обращений к файлам в процессе решения средней задачи. Определение возможности размещения файлов в накопителях внешней памяти.
лабораторная работа [32,1 K], добавлен 21.06.2013
Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.
реферат [28,1 K], добавлен 20.08.2015
Суть компьютерного моделирования. Система, модели и имитационное моделирование. Механизмы продвижения времени. Компоненты дискретно-событийной имитационной модели. Усиление и ослабление факторов сопутствующих активности гейзера, динамическая модель.
курсовая работа [776,2 K], добавлен 28.06.2013
Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.
задача [656,1 K], добавлен 01.06.2016