Что отражает точность средства измерений

ТОЧНОСТЬ ИЗМЕРЕНИЙ

Смотреть что такое «ТОЧНОСТЬ ИЗМЕРЕНИЙ» в других словарях:

Точность измерений — Качество измерений, отражающее близость их результатов к истинному значению измеряемой величины Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений … Словарь-справочник терминов нормативно-технической документации

точность измерений — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN accuracy of measurements … Справочник технического переводчика

Точность измерений — помощью так называемых измерительных приборов постоянно возрастает с ростом науки (Измерения; Единицы мер абсолютные системы). Она зависит теперь не только от тщательного приготовления приборов, но еще от нахождения новых принципов измерений. Так … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

точность измерений — поверка. поверять. прибор врет. см. показывать время … Идеографический словарь русского языка

ГОСТ Р ЕН 306-2011: Теплообменники. Измерения и точность измерений при определении мощности — Терминология ГОСТ Р ЕН 306 2011: Теплообменники. Измерения и точность измерений при определении мощности: 3.31 величина воздействия: Величина, не являющаяся предметом измерения, но способная влиять на получаемый результат. Определения термина из… … Словарь-справочник терминов нормативно-технической документации

точность результата измерений — точность измерений Одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность. [РМГ 29 99] Тематики метрология,… … Справочник технического переводчика

точность — 3.1.1 точность (accuracy): Степень близости результата измерений к принятому опорному значению. Примечание Термин «точность», когда он относится к серии результатов измерений, включает сочетание случайных составляющих и общей систематической… … Словарь-справочник терминов нормативно-технической документации

Точность — средства измерений степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью… … Википедия

точность — Степень близости результата измерений к принятому опорному значению. Примечание. Термин «точность», когда он относится к серии результатов измерений (испытаний), включает сочетание случайных составляющих и общей систематической… … Справочник технического переводчика

точность средства измерений — точность Характеристика качества средства измерений, отражающая близость его погрешности к нулю. Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений. [РМГ 29 99] Тематики метрология, основные понятия Синонимы точность … Справочник технического переводчика

Источник

Метрологические характеристики средств измерений

Что отражает точность средства измерений. Смотреть фото Что отражает точность средства измерений. Смотреть картинку Что отражает точность средства измерений. Картинка про Что отражает точность средства измерений. Фото Что отражает точность средства измерений Что отражает точность средства измерений. Смотреть фото Что отражает точность средства измерений. Смотреть картинку Что отражает точность средства измерений. Картинка про Что отражает точность средства измерений. Фото Что отражает точность средства измерений Что отражает точность средства измерений. Смотреть фото Что отражает точность средства измерений. Смотреть картинку Что отражает точность средства измерений. Картинка про Что отражает точность средства измерений. Фото Что отражает точность средства измерений Что отражает точность средства измерений. Смотреть фото Что отражает точность средства измерений. Смотреть картинку Что отражает точность средства измерений. Картинка про Что отражает точность средства измерений. Фото Что отражает точность средства измерений

Что отражает точность средства измерений. Смотреть фото Что отражает точность средства измерений. Смотреть картинку Что отражает точность средства измерений. Картинка про Что отражает точность средства измерений. Фото Что отражает точность средства измерений

Что отражает точность средства измерений. Смотреть фото Что отражает точность средства измерений. Смотреть картинку Что отражает точность средства измерений. Картинка про Что отражает точность средства измерений. Фото Что отражает точность средства измерений

Обозначение классов точности

Классы точности средств измерений

Понятие о точности измерений и средств измерений

Точность результата измерений– одна из характеристик качества измерений, отражающая близость к нулю погрешности результата измерений. т.е. близость результата измерений к истинному значению величины. Но если погрешность измерений можно количественно выразить в единицах измеряемой величины или в отношении погрешности к результату измерений, то точность измерений количественно непосредственно из результата измерений определить нельзя. Поэтому обычно говорят о высокой (средней, низкой) точности измерений в качественном отношении, ориентируясь на полученную при измерениях соответственно незначительную погрешность (среднюю, высокую).

Значение точности ε иногда определяют величиной, обратной модулю относительной погрешности:

где δ – относительная погрешность.

Если бы точность характеризовалась значением, обратным абсолютной погрешности, то имела бы соответствующую обратную погрешности единицу измерения, что неудобно в применении. Вот почему удобнее количественно оценивать точность измерений с помощью относительной погрешности измерений.

Точность средства измерений– характеристика качества средства измерений, отражающая близость его погрешности к нулю. Считается, что чем меньше погрешность, тем точнее средство измерений.

При многократных измерениях их точность на практике определяют следующими характеристиками:

1) равноточные измерения: сходимость результатов измерений – близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью;

2) неравноточные измерения: воспроизводимость результатов измерений – близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.).

Класс точности средств измерений– обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.

Класс точности дает возможность судить о том, в каких пределах находится погрешность средства измерений одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих средств. Это важно при выборе средств измерений в зависимости от заданной точности измерений.

Для установления классов точности средств измерений во многих странах применяются общие правила, в соответствии с которыми производится количественная оценка гарантированных границ погрешности средств измерений данного типа. В нашей стране такие правила содержатся в ГОСТ 8.401-80 «Классы точности средств измерений. Общие требования». Класс точности не устанавливается на средства измерений, у которых отдельно нормируются систематическая и случайная составляющие основной погрешности, и в тех случаях, когда динамические погрешности являются превалирующими. Кроме того, классы точности не устанавливаются на средства измерений, при использовании которых поправки в результаты измерений с целью исключения дополнительных погрешностей вносить не предусматривается.

Классы точности указываются в частных стандартах (технических условиях), содержащих конкретные технические требования к тем или иным типам средств измерений. Если средство измерения предназначено для измерений нескольких величин (например, для измерения электрических напряжения и сопротивления), то класс точности определяется для каждой из величин. Так же определяется класс точности для средств измерений, имеющих несколько диапазонов измерений: каждый диапазон имеет свой класс точности.

Присваиваются классы точности средствам измерений при их разработке (по результатам приемочных испытаний). В связи с тем, что в процессе эксплуатации средств измерений их метрологические характеристики обычно ухудшаются, то допускается понижать класс точности по результатам поверки (калибровки) средства измерения.

Что отражает точность средства измерений. Смотреть фото Что отражает точность средства измерений. Смотреть картинку Что отражает точность средства измерений. Картинка про Что отражает точность средства измерений. Фото Что отражает точность средства измерений

Класс точности измерительных приборов в большинстве случаев выражается пределами допускаемой основной приведенной или относительной погрешности. При этом основной для определения формы представления класса точности прибора является характер изменения основной абсолютной погрешности средства измерений:

1) если основная абсолютная погрешность имеет аддитивный характер (Δ = а),то класс точности представляется пределами допускаемой приведенной погрешности γ, %:

γ = ± (Δ / ХN) · 100 % = ± р, (6.2)

где р – отвлеченное положительное число;

ХN – нормирующее значение, выраженное в тех же единицах, что и Δ;

2) если основная абсолютная погрешность имеет мультипликативный характер (Δ = bх), то класс точности представляется пределами допускаемой относительной погрешности δ, %:

δ = ± (Δ / х) · 100 % = ± q, (6.3)

где х – показания средства измерений (без учета знака);

q – отвлеченное положительное число;

3) если основная абсолютная погрешность имеет и аддитивную, и мультипликативную составляющие (Δ = а + bх),то класс точности представляется пределами допускаемой относительной погрешности δ, %:

где ХК – больший (по модулю) из пределов измерений;

c и d – положительный числа.

В некоторых случаях класс точности представляется пределами допускаемой основной абсолютной погрешности Δ, определяемыми по формулам:

где а и b – положительные числа, не зависящие от х.

На практике редко случается, когда абсолютная погрешность чисто аддитивна или чисто мультипликативна. Поэтому класс точности в виде формулы (6.2) устанавливается, когда мультипликативной составляющей можно пренебречь, а в виде (6.3) – когда несущественна аддитивная составляющая.

В обоснованных случаях, если пределы допускаемой основной погрешности не могут быть приведены к формулам (6.2)…(6.6), допускается класс точности устанавливать в виде более сложных формул или в виде графика.

От формы выражения пределов допускаемой погрешности средства измерений зависит способ их определения, а также обозначение класса точности на средстве измерений и в документации. Примеры обозначений классов точности и методы определения пределов допускаемых погрешностей средств измерений приведены в таблице 6.1.

Форма выражения погрешностиОбозначение класса точностиСпособ определения пределов допускаемой основной погрешностиПределы допускаемой основной погрешности, %Пояснение
в документациина средстве измерений
Приведенная погрешность, γКласс точности 1,51,5По формуле (6.2) (нормирующее значение ХN выражено в единицах измеряемой величины)γ = ± 1,5Числовое значение погрешности в единицах измерения (Δ) равно: ± 1,5 % или
Класс точности 0,5Что отражает точность средства измерений. Смотреть фото Что отражает точность средства измерений. Смотреть картинку Что отражает точность средства измерений. Картинка про Что отражает точность средства измерений. Фото Что отражает точность средства измерений0,5По формуле (6.2) (если нормирующее значение ХN принято равным длине шкалы или ее части – существенно нелинейные шкалы)γ = ± 0,5± 0,5 % от ХN соответственно
Относительная погрешность, δКласс точности 0,5 Что отражает точность средства измерений. Смотреть фото Что отражает точность средства измерений. Смотреть картинку Что отражает точность средства измерений. Картинка про Что отражает точность средства измерений. Фото Что отражает точность средства измеренийПо формуле (6.3)δ = ± 0,5Числовое значение погрешности в единицах измерения (Δ) равно: ± 0,5 % от х (измеренного значения)

Продолжение таблицы 6.2

Класс точности 0,02/0,010,02 / 0,01По формуле (6.4)δ = ± [0,02 + +0,01(|XK /x| – – 1)]Числовое значение погрешности в единицах измерения (Δ) равно: полученное значение δ (%) от х (измеренное значение): ± δ % от х
Абсолютная погрешность, ΔКласс точности ММПо формулам (6.5) и (6.6)

Обозначение класса точности обычно не наносится на малога­баритные высокоточные меры (например, эталонные разновесы) или на те средства измерений, для которых классы точности не устанавливаются. Так, для многих типов радиоизмерительных при­боров (генераторы высокочастотных и низкочастотных колебаний, электронно-счетные частотомеры, осциллографы и др.) в техниче­ском описании, паспорте, технических условиях указываются фор­мулы, позволяющие определить систематическую, случайную или общую погрешность в соответствующем диапазоне измерений с учетом влияющих величин и др. На приборе класс точности в этих случаях не указывается (не устанавливается).

Пределы допускаемой дополнительной погрешности непосредст­венно не учитываются при установлении класса точности средства измерения, но в соответствии с ГОСТ 8.009-84 и ГОСТ 8.401-80 предусматривается их нормирование и указание в технической до­кументации:

— в виде постоянного значения влияющей величины (в пределах рабочих условий средства измерения) или в виде постоянных зна­чений по интервалам влияющей величины в рабочей области;

— путем указания отношения предела допускаемой дополнитель­ной погрешности, соответствующего интервалу значений влияющей величины в интервале рабочих условий средства измерения, к этому интервалу;

— путем указания функциональной зависимости пределов допус­каемых отклонений от номинальной функции влияния.

Пределы допускаемой дополнительной погрешности устанав­ливают обычно в виде дольного (кратного) значения допускаемой основной погрешности средства измерения.

Пределы допускаемых погрешностей разрешается выражать не более чем двумя значащими цифрами, причем округление погреш­ности при установлении пределов не должно превышать 5 %.

При использовании средств измерений принципиально важно знать степень соответствия информации об измеряемой величине, содержащейся в выходном сигнале, ее истинному значению, т.е. владеть информацией о точности средства измерений и получаемого результата измерений. С этой целью для каждого средства измерений вводятся и нормируются определенные метрологические характеристики.

Метрологические характеристики – это характеристики свойств средства измерений, оказывающие влияние на результат измерения и его погрешности.

Нормируемые метрологические характеристики средства измерений– совокупность метрологических характеристик данного типа средств измерений, устанавливаемая нормативными документами на средства измерений.

Действительные метрологические характеристики средства измерений– совокупность метрологических характеристик данного типа средств измерений, определяемые экспериментально.

Номенклатура метрологических характеристик, правила выбора комплексов нормируемых метрологических характеристик для средств измерений и способы их нормирования определяются стандартом ГОСТ 8.009-84 «ГСИ. Нормируемые метрологические характеристики средств измерений».

Метрологические характеристики средств измерений позволяют:

— определять результаты измерений и рассчитывать оценки характеристик инструментальной составляющей погрешности измерения в реальных условиях применения средств измерений;

— рассчитывать метрологические характеристики каналов измерительных систем, состоящих из ряда средств измерений с известными метрологическими характеристиками;

— производить оптимальный выбор средств измерений, обеспечивающих требуемое качество измерений при известных условиях их применения;

— сравнивать средства измерений различных типов с учетом условий применения.

К основным метрологическим характеристикам средств измерений можно отнести:

— значение Y однозначной или значение Yi многозначной меры. Для этих характеристик нормируются номинальные или индивидуальные значения. Они используются для устройств, применяемых в качестве мер;

— цена деления шкалы измерительного прибора или многозначной меры. Нормирование цены деления производится для показывающих приборов с равномерной шкалой, функция преобразования которых отображается на именованной шкале. При неравномерной шкале нормируется минимальная цена деления;

— характеристики цифрового кода, используемого в средствах измерений и их элементах.К ним относятся: вид выходного кода, число его разрядов, цена единицы младшего разряда. Эти характеристики нормируются для цифровых приборов.

Точностные характеристики средства измерений– совокупность метрологических характеристик средства измерений, влияющих на погрешность измерения. К точностным характеристикам относят погрешность средства измерении, нестабильность, порог чувствительности, дрейф нуля и др.

Рассмотрим одну из таких характеристик – чувствительность средства измерений.

Чувствительность средства измерений – свойство средства измерений, определяемое отношением изменения выходного сигнала этого средства к вызывающему его изменению измеряемой величины. Различают абсолютную и отно­сительную чувствительность. Абсолютную чувствительность определяют по формуле:

относительную чувствительность – по формуле:

где D1 – изменение сигнала на выходе;

х – измеряемая величина;

Dх – изменение измеряемой величины.

Порог чувствительности средства измерений– характеристика средства измерений в виде наименьшего значения изменения физической величины, начиная с которого может осуществляться ее измерение данным средством.

Источник

Метрология, стандартизация и сертификация

Лекция 2. Виды и методы измерений

1. Основные понятия и определения. Виды измерений.

2. Методы измерений.

3. Понятие о точности измерений.

4. Основы обеспечения единства измерений

1. Основные понятия и определения. Виды измерений

Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.

Измерения могут быть классифицированы по метрологическому назначению на три категории:

Ненормированные – измерения при ненормированных метрологических характеристиках.

Технические – измерения при помощи рабочих средств измерений.

Метрологические – измерения при помощи эталонов и образцовых средств измерений.

Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.

Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.

Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.

В дисциплине «Метрология, стандартизация и сертификация» рассматриваются технические измерения.

Можно выделить следующие виды измерений.

1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:

2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.

При прямом измерении искомое значение величины находят непо­средственно из опытных данных (например, измерение диаметра штан­генциркулем).

При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).

Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.

3) По условиям, определяющим точность результата измерения, мето­ды делятся на три класса.

Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.

Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.

Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.

4) По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.

При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).

5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.

Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).

Комплексный метод характеризуется измерением суммарного пока­зателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).

Источник

Критерии качества измерений

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью, воспроизводимостью и погрешностью измерений.

Точность – это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответсвует малым погрешностям как систематическим, так и случайным. Точность количественно оценивают обратной величиной модуля относительной погрешности. Напремер, если погрешность измерений равна 0,05%, то точность будет равна 1/0,0005 = 2000.

Достоверность измерений характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ.

Правильность измерений – качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

Сходимость – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Сходимость измерений отражает влияние случайных погрешностей.

Воспроизводимость – это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными методами и средствами).

Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму ряда составляющих, каждая из которых имеет свою причину. Можно выделить слудующие группы причин возникновения погрешностей:

Анализируя причины возникновения погрешностей, необходимо в первую очередь выявить те из них, которые оказывают существенное влияние на резульат измерения. Анализ должен проводится в определенной последовательности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *