Что относят к микроорганизмам
Микроорганизм – определение, типы, примеры и викторины
Определение микроорганизмов
Микроорганизм – это живое существо, слишком маленькое, чтобы его можно было увидеть невооруженным глазом. Примеры микроорганизмов включают бактерии, археи, водоросли, простейшие одноклеточные организмы и микроскопические животные, такие как пылевой клещ.
Эти микроорганизмы часто недооценивают и недостаточно изучают. Действительно, пока Антон фон Левенхук не изобрел микроскоп, мы не знали, что они существуют! До этого времени считалось, что такие явления, как болезнь и порча пищи, были вызваны “парами” или “спонтанное поколение «.
Теперь мы знаем, что микроорганизмы ответственны за многие вещи, которые происходят в мире вокруг нас.
Микроорганизмы встречаются практически повсюду, за исключением среды, искусственно созданной людьми. Даже они должны быть постоянно стерилизованы и тщательно защищены, чтобы микроорганизмы не могли быть обнаружены из внешнего мира.
Микроорганизмы живут в воде, в почве и на кожа и в пищеварительных трактах животных. Вот почему все живые существа должны иметь иммунную систему – хотя многие микроорганизмы могут быть им полезны, некоторые могут быть вредными и вызывать болезни.
Как и все организмы, микроорганизмы играют важную роль в экосистемах, в которых они обитают. Вот несколько их ролей.
Типы микроорганизмов
бактерии
Бактерии – теперь их иногда называют «эубактерий »Или« настоящие бактерии », чтобы отличить их от архебактерии – это тот тип микроорганизма, о котором вы, вероятно, слышали чаще всего.
Это потому, что именно они, скорее всего, сделают тебя больным. Бактерии являются причиной большинства кожных инфекций, а также могут вызывать пищевые отравления, пневмонию, воспаление горла и многие другие заболевания.
Тем не менее, бактерии также очень полезны для людей. «Хорошие бактерии» в нашем пищеварительном тракте помогают нам извлекать питательные вещества из нашей пищи и помогают бороться с патогенными микроорганизмами, которые могут причинить нам вред.
Archaea
Археи, или архебактерии, когда-то считались частью семейства бактерий. Однако недавние исследования показали, что они сильно отличаются от эубактерий и даже могут быть более тесно связаны с нами, чем с современными бактериями.
Археи можно найти во многих местах бактерий – в воде, в почве и в наших пищеварительных трактах, где они помогают нам оставаться здоровыми.
Однако архебактерии также можно найти в некоторых необычных местах – многие могут жить в очень жаркой, очень холодной, очень кислой или очень соленой среде.
Это делает их обычным явлением в горячих источниках и других местах, где другие организмы не могут легко выжить.
животные
Несколько видов животных входят в микроскопические разновидности, в том числе:
протозоа
Простейшие являются разнообразной группой одноклеточный эукариотические организмы. Как бактерии и археи, они одноклеточные; но их клетки напоминают клетки животных и растений больше, чем клетки бактерий или архей.
Несколько опасных заболеваний человека, включая малярию, токсоплазмоз, гиардию, африканскую «сонную болезнь» и болезнь Шагаса, вызваны простейшими.
Грибы
Дрожжи – это гриб, который отвечает за рост выпечки; и для производства алкогольных напитков, таких как пиво, вино и ликер.
Дрожжи питаются сахарами, содержащимися в продуктах, и превращают их в углекислый газ – и, да, в этиловый спирт. Углекислый газ может сделать наш хлеб и пирожные пушистыми; и алкоголь может накапливаться до опьяняющего уровня, если дрожжи разливаются в бутылки с высокой концентрацией сахара.
Пресс-формы
Плесень – это микроорганизмы, которые обладают некоторыми свойствами грибов, но не являются настоящими грибами.
К ним относятся патогенные плесени, которые заражают растения и вызвали опустошительные неурожаи, такие как Великий ирландский голод 1840-х годов.
Они также включают фантастически странный класс плесени слизи – одноклеточные организмы, способные к сотрудничеству, настолько впечатляющие, что на одной стадии жизненного цикла многие клетки слизи собираются вместе и действуют как единое целое. организм.
Межклеточное сотрудничество слизистой формы настолько впечатляет, что ученые используют слизистые формы для изучения интеллекта и решения проблем!
морские водоросли
Микроскопические водоросли когда-то считались растениями, но недавние исследования показали, что водоросли не вписываются в растение семьи. Вместо этого эти одноклеточные фотосинтезирующие организмы, как полагают, являются родственниками линии, которая привела к наземным растениям.
На протяжении всей истории водоросли были важными фотосинтезаторами. Вероятно, они эволюционировали раньше, чем наземные растения, и помогали качать кислород в атмосферу Земли вместе со своими предками, цианобактериями.
Сегодня водоросли могут помочь и навредить людям – некоторые вид чистая вода и производство кислорода, в то время как другие производят опасные токсины, которые могут попасть в наши морепродукты и питьевую воду.
другие
Есть много других микроскопических организмов, которые ученые пытаются аккуратно классифицировать. Когда-то многие микроорганизмы были объединены в одну категорию под названием «протисты», но многие ученые теперь считают, что эта система была полезна только для объяснения того, что организм не вписывается ни в какие другие царство.
Царство «Протиста» служило своего рода «разным» мусорным баком для эукариотических организмов, которые ученые не могли с легкостью идентифицировать как растения, животных, грибки. Логика была понятна: когда световые микроскопы – единственный инструмент, который у вас есть, большинство микроорганизмов выглядят довольно похожими друг на друга.
Однако после генетического анализа многие члены «протисты» королевства оказались более тесно связаны с этими другими группами, чем друг с другом!
Примеры микроорганизмов
Стрептококковые бактерии
Стрептококк – это группа бактерий, вызывающих болезни у людей. Как следует из названия, бактерии стрептококка являются причиной воспаления горла и могут также вызывать скарлатину и, редко, кожу и мускул инфекции.
Стрептококк является хорошим примером «опасного» типа микроорганизмов. В этом списке мы обсудим микроорганизмы, которые опасны и полезны для человека.
Малярийный паразит (плазмодий)
Вас может удивить, что паразит Plasmodium – это не бактерия, а эукариотический микроорганизм, который размножается половым путем и проходит многостадийный жизненный цикл.
Плазмодий демонстрирует разнообразие микроорганизмов – которые могут быть бактериальными, эукариотическими или даже многоклеточный.
Lactobacillus rhamnosus
Если Streptococcus является «плохой» бактерией, то Lactobacillus является «хорошим» типом бактерии. Лактобактерии – это бактерии, которые живут в кишечнике здоровых людей и могут помочь нам бороться с такими болезнями, как желудок грипп.
Лактобактерии встречаются во многих йогуртах. Некоторые люди даже принимают высококонцентрированные дозы лактобацилл в форме «пробиотических» таблеток или капсул в надежде сохранить здоровье!
Цианобактерии
Цианобактерии были одним из первых видов жизни, которые эволюционировали на Земле. Его современный потомок продолжает играть важную экологическую роль сегодня. Цианобактерии могут превращать углекислый газ в кислород и превращать неиспользуемый неорганический азот в органические формы, которые можно использовать для производства белков и многого другого!
Поскольку цианобактерии были одними из первых организмов на планете, они, вероятно, должны были делать это для себя сами – вокруг не было других организмов, фиксирующих азот, с которыми можно было бы сотрудничать.
Цианобактерии – еще один замечательный пример «хорошего» микроорганизма, которому люди многим обязаны!
викторина
1. Что из перечисленного НЕ относится к микроорганизмам?A. Все прокариотичныB. Все эукариотC. Все микроскопическиеD. Все вредные патогены
Ответ на вопрос № 1
С верно. Единственное, что общего у всех микроорганизмов, – это правильное название – они микроскопические! Микроорганизмы включают микроскопические прокариоты, эукариоты и организмы, которые могут быть как полезными, так и вредными для человека.
2. Что из нижеперечисленного является одной из причин, почему наше понимание микроорганизмов сильно изменилось за последние 10 лет?A. В течение большей части 19 и 20 веков микроорганизмы можно было изучать только с помощью световых микроскопов.B. Появление анализа генома позволило ученым прочитать «исходные коды» организмов и увидеть, какие из них связаны друг с другом.C. Чтение ДНК микробов показало, что многие предположения, сделанные на основе исследований под световым микроскопом, были неверными.D. Все вышеперечисленное.
Ответ на вопрос № 2
D верно. Все вышеперечисленное является причиной того, что наше понимание микроорганизмов сильно изменилось за последние 10 лет и все еще меняется очень быстро!
Микроорганизмы
Содержание
Общие сведения
Повсеместная распространенность и суммарная мощность метаболического потенциала микроорганизмов определяет их важнейшую роль в круговороте веществ и поддержании динамического равновесия в биосфере Земли.
Краткое рассмотрение различных представителей микромира, занимающих определенные «этажи» размеров, показывает, что, как правило, величина объектов определенно связана с их структурной сложностью. Нижний предел размеров свободноживущего одноклеточного организма определяется пространством, требуемым для упаковки внутри клетки аппарата, необходимого для независимого существования. Ограничение верхнего предела размеров микроорганизмов определяется, по современным представлениям, соотношениями между клеточной поверхностью и объемом. При увеличении клеточных размеров поверхность возрастает в квадрате, а объем — в кубе, поэтому соотношение между этими величинами сдвигается в сторону последнего.
Среда обитания
Микроорганизмы обитают почти повсеместно, где есть вода, включая горячие источники, дно мирового океана, а также глубоко внутри земной коры. Они являются важным звеном в обмене веществ в экосистемах, в основном выполняя роль редуцентов, но в некоторых экосистемах они — единственные производители биомассы — продуценты.
Микроорганизмы, обитающие в различных средах, участвуют в круговороте серы, железа, фосфора и других элементов, осуществляют разложение органических веществ животного, растительного происхождения, а также абиогенного происхождения (метан, парафины), обеспечивают самоочищение воды в водоемах.
Впрочем, не все виды микроорганизмов приносят человеку пользу. Весьма многочисленное количество видов микроорганизмов является условно-патогенной или патогенной для человека и животных. Некоторые микроорганизмы вызывают порчу сельскохозяйственной продукции, обедняют почву азотом, вызывают загрязнение водоемов, накопление в продуктах питания ядовитых веществ (например, микробных токсинов).
В природе среда обитания с такой температурой существует под давлением в горячих вулканических источниках на дне океанов (Черные курильщики).
Известны микроорганизмы, процветающие при гибельных для многоклеточных существ уровнях ионизирующего излучения, в широком интервале значений рН, при 25 % концентрации хлорида натрия, в условиях различного содержания кислорода вплоть до полного его отсутствия (Анаэробные микроорганизмы).
В то же время, патогенные микроорганизмы вызывают болезни человека, животных и растений.
Наиболее общепризнанные теории о происхождении жизни на Земле предполагают, что протомикроорганизмы были первыми живыми организмами, появившимися в процессе эволюции.
Микроорганизмы, объекты биотехнологии
Основа микробиологии: Микроорганизмы
Вирусы
ВВЕДЕНИЕ. Вирусы не обладают собственным обменом веществ. Репликация генетического материала вирусов – ДНК или РНК – происходит с помощью клеток-хозяев. Вне клетки-хозяина вирус представляет собой нуклеиновую кислоту, одетую белковой оболочкой (капсидом). Такое состояние вируса называется нуклеокапсидом или вирионом. Вирусы могут инфицировать большинство живых организмов, однако они проявляют высокую специфичность по отношению к клеткам-хозяевам, выбирая определенные ткани или клетки в организме. Существует несколько способов классификации вирусов: по типам клеток-хозяев, по морфологическим признакам, по генетическому материалу (ДНК или РНК) или по строению капсида. Вирусы широко используются в биотехнологии для получения многокомпонентных вакцин, а также для разработки различных векторов, например, для генной терапии или для экспрессии генов в культурах клеток.
ВИРУСЫ В ЭКСПЕРИМЕНТАХ С ЖИВОТНЫМИ. Первые эксперименты по клонированию животных клеток были проведены в 1979 г. с использованием вектора на основе вируса обезьян (SV40). Вирус проникает в клетку, а затем его развитие протекает по литическому или лизогенному пути. Геном вируса (5,2 т.п.н.) содержит так называемые «ранние гены», кодирующие белки, необходимые для репликации ДНК, и «поздние гены», продукты которых участвуют в синтезе капсида. Векторы на основе SV40 содержат вирусные регуляторные элементы: точку начала репликации, промоторный участок, а также терминатор транскрипции (сайт полиаденилирования). Для трансфекции клеток мышей используют конструкции на основе папилломавируса крупного рогатого скота (BPV). При инфекции они ведут себя как высококопийные плазмиды, и ДНК-копии передаются при клеточном делении дочерним клеткам. Ослабленные ретровирусы, аденовирусы, а также вирус герпеса применяются для генной терапии. Геном ретровирусов (например, ВИЧ) представляет собой РНК. Ретровирусы инфицируют делящиеся клетки, при этом обратная транскриптаза, кодированная в вирусном геноме, обеспечивает синтез кДНК-копии вирусного РНК-генома. Эта кДНК встраивается в геном хозяина и использует его сильные промоторы для синтеза белков капсида и вирусной мРНК. В экспериментальной генной терапии успешно используются ретровирусы с дефектами репликации, однако размер ДНК, доставляемой с помощью вируса, невелик. В отличие от ретровирусов аденовирусы могут быть использованы для упаковки крупных молекул ДНК (до 28 т.п.н.). Аденовирусы инфицируют как делящиеся, так и неделящиеся клетки, однако их ДНК не встраивается в геном хозяина. Известен случай, когда использование аденовирусов вызвало неожиданную иммунную реакцию и привело к смерти 18-летнего пациента. С тех пор использование аденовирусов в медицине практически прекращено. В настоящее время изучается возможность использования векторов на основе вируса простого герпеса Нerpes simplex для генной терапии таких нервных расстройств, как болезни Паркинсона или Альцгеймера. Вирус Нerpes simplex обладает большим ДНК-геномом (152 т.п.н.), следовательно, в него можно встраивать крупные фрагменты ДНК.
ВИРУСЫ В ЭКСПЕРИМЕНТАХ С РАСТЕНИЯМИ. Большинство вирусов растений имеют РНК-геном.Известны лишь две группы ДНК-содержащих вирусов, которые могут инфицировать высшие растения.У каулимовирусов (или колимовирусов) спектр клеток-хозяев очень узкий:они поражают только представителей семейства крестоцветных – свеклу и некоторые сорта капусты. Каулимовирусы имеют очень маленький капсид, поэтому их собственный геном и чужеродная упакованнаяДНК очень невелики. Геминивирусы инфицируют такие важные сельскохозяйственные культуры, как кукуруза и пшеница, поэтому их использование сопряжено с высокой степенью риска. Кроме того, приинфекции в геноме геминивирусов происходят множественные перестройки, в том числе и делецииДНК, поэтому часто возникают проблемы с экспрессией встроенных фрагментов ДНК.
БАКУЛОВИРУСЫ. Эти вирусы заражают насекомых, но безопасны для позвоночных. В результате вирусной инфекции в клетке начинается синтез кристаллического белка полигедрина (полиэдрина), а синтез более половины белков клетки-хозяина подавляется. Промотор полигедрина используется при создании векторов для гетерологичной экспрессии в клеточной культуре Spodoptera (род бабочек). Премущество заключается в том, что посттрансляционное гликозилирование в такой системе аналогично таковому у позвоночных. В настоящее время перечисленные системы экспрессии используются только в лабораторных исследованиях.
Бактериофаги
ВВЕДЕНИЕ. Бактериофагами (фагами) называются вирусы, которые инфицируют бактерии. Устойчивость к фаговой инфекции – один из важных критериев при получении штаммов-суперпродуцентов. В генетической инженерии бактериофаги используются для получения век торов и промоторов для клонирования, для секвенирования и для создания геномных или белковых библиотек. Чаще всего в качестве клеток-хозяев для клонирования используют клетки E. coli, поэтому бактериофаги (фаги λ, М13, Qβ, Т-фаг), заражающие эти бактерии, вызывают наибольший интерес.
ФАГ λ инфицирует клетки E. coli. Как и другие представители умеренных фагов, после заражения фаг λ может развиваться по одному из двух путей: литическому или лизогенному. При литическом росте геном фага, который представлен линейной двунитевой ДНК размером 48,5 т.п.н., многократно реплицируется вне хромосомы хозяина, а затем фаговые частицы высвобождаются из клетки, лизируя ее. Если реализуется лизогенный путь развития фага, его ДНК (размером
1% хромосомной ДНК E. coli) встраивается в геном хозяина и реплицируется вместе с ним. Бактерии, содержащие интегрированный геном фага (профага), называются лизогенными. Повышение температуры, УФ-облучение или другой стресс приводит к высвобождению профага из генома E. coli и лизису клетки. В ДНК фага λ имеются так называемые cos-сайты – одноцепочечные 5′-концевые участки длиной 12 нуклеотидов, способные к комплементарному взаимодействию. После проникновения фага в клетку cos-сайты замыкаются, и образуется кольцевая молекула ДНК, репликация которой происходит по принципу «катящегося кольца». При этом образуются конкатемеры – последовательно соединенные копии фагового генома. Эндонуклеаза А – продукт гена А – расщепляет такую длинную молекулу по cos-сайтам, а затем отдельные молекулы фаговой ДНК пакуются в капсиды. На основе фага λ сконструировано множество векторов: например, космиды, используемые при создании геномных библиотек, или семейство λ-векторов, в которое входит вектор λEMBL4, индукция генов которого происходит при повышении температуры.
ФАГ М13 также инфицирует клетки E. coli, однако по строению этот вирус значительно отличается от фага λ. Геном фага М13 представляет собой одну молекулу одноцепочечной ДНК размером 6,4 т.п.н. После проникновения ДНК фага в клетку E. coli происходит синтез комплементарной цепи ДНК, и образовавшаяся двухцепочечная фаговая ДНК не встраивается в геном хозяина, а реплицируется в цитоплазме. Затем зрелые одноцепочечные молекулы ДНК фага М13 выходят из клетки, покрываясь капсидом (
1000 фаговых частиц на клетку). Инфицированные клетки при этом не погибают и при делении передают фаговую ДНК дочерним клеткам (
100 молекул на клетку). Особенности жизненного цикла бактериофага М13 используются при получении исследуемых генов в виде одноцепочечной ДНК, например для секвенирования ДНК, а также при сайт-направленном мутагенезе с применением ПЦР.
Т-ФАГИ разделены на семь типов. В генетической инженерии широко используются два фермента, кодированные в геноме Т-фагов: ДНК-лигаза фага Т4 – фермент, соединяющий «липкие» и «тупые» концы двух фрагментов ДНК, и ДНК-полимераза фага Т7, применяющаяся для секвенирования ДНК по методу Сэнгера–Коулсона. Промотор РНК-полимеразы фага Т7 часто встраивают в векторы для экспрессии белков в клетках E. coli.
ФАГИ ДРУГИХ БАКТЕРИЙ. Среди более чем тысячи охарактеризованных фагов более 300 инфицируют энтеробактерии, 230 заражают бактериококки, а 150 – актиномицеты и бациллы. Для представителей рода Pseudomonas описаны более 100, а для бактерий рода Lactobacillus – 40 фагов. По строению и физиологии эти вирусы отличаются от фагов, специфических для E. coli. При производстве молочных продуктов особенно важна защита от фагов, инфицирующих бактерии рода Lactobacillus, так как они могут присутствовать в стартовых культурах. Как правило, стартовые культуры представлены генетически модифицированными штаммами, устойчивыми к фаговой инфекции. Такая устойчивость обусловлена экспрессией белковых продуктов, кодированных в плазмиде. В результате действия этих белков могут нарушаться процессы внедрения вируса в клетку или его репликации. Среди пяти изученных групп вирусов бактерий рода Bacillus фаги Æ105 и SPO2 широко используется для трансформации, а фаг PBS1 – при построении карты генома Bacillus subtilis. Фаг М3112 часто служит для трансформации бактерий рода Pseudomonas, а фаги SV1 и ÆC31 – для введения ДНК в клетки Streptomyces.
Микроорганизмы
ВВЕДЕНИЕ. Многие ключевые реакции круговорота веществ в природе осуществляются только микроорганизмами. В частности, микроорганизмам принадлежит ведущая роль в осуществлении процессов распада. Эти процессы особенно важны для высших организмов, поэтому в природе часто имеют место симбиотические отношения между высшими организмами и микроорганизмами. В качестве примеров можно привести лишайники (симбиоз между грибами и водорослями), бактерии в рубце у крупного рогатого скота или кишечную флору млекопитающих. В то же время некоторые микроорганизмы являются возбудителями различных заболеваний. Непатогенные микроорганизмы широко используются в биотехнологии: при получения таких важных продуктов, как лимонная кислота, антибиотики, ксантановые смолы и применяемые в научных и производственных целях ферменты, а также при аэробной или анаэробной очистке сточных вод, воздуха и почвы и в синтезе рекомбинантных белков. В силу своего относительно простого строения микроорганизмы часто служат в качестве модельных организмов при изучении биохимических, генетических и физиологических процессов. Разработано много методик проведения мутагенеза, и преимущество микроорганизмов для таких экспериментов заключается в их сравнительно коротком жизненном цикле. Раньше классификация микроорганизмов была основана на клеточном строении: их делили на прокариотические и эукариотические; однако согласно современным представлениям, среди прокариот выделены также археи и эубактерии (около 6000 полностью охарактеризованных штаммов).
ЭУБАКТЕРИИ, или истинные бактерии, – это одноклеточные организмы размером около 1 мкм, размножающиеся делением. Как и все прокариоты, эубактерии не имеют клеточного ядра. ДНК эубактерии называется нуклеоидом. Эубактерии часто содержат нехромосомные ДНК, например плазмиды, в которых хранится часть генетического материала. Плазмиды могут распространяться в результате горизонтального обмена генами – чрезвычайно важного процесса, обеспечивающего естественную эволюцию метаболизма бактерий, в том числе образование штаммов, устойчивых к антибиотикам. В зависимости от строения клеточной стенки бактерии делятся на грамположительные и грамотрицательные, при этом грамотрицательные бактерии имеют более сложно устроенную клеточную стенку, чем бактерии, окрашивающиеся по методу Грама (грамположительные). Клетки многих бактерий покрыты слизистой оболочкой, а также имеют выросты, позволяющие им передвигаться. В цитоплазме бактериальных клеток могу накапливаться запасные вещества, например полигидроксимасляная кислота или полифосфаты. Благодаря разнообразию обмена веществ представители группы эубактерий встречаются в любой природной среде, этому также способствуют своеобразные пути эволюционирования белков и кофакторов эубактерий. Например, пурпурная мембрана галобактерий обладает некоторыми функциональными свойствами (в том числе способностью к фотосинтезу), позволяющими считать этих бактерий древнейшими предшественниками высших организмов.
Бактерии
ВВЕДЕНИЕ. Бактерии – группа микроорганизмов, различающихся по множеству морфологических, биохимических и генетических признаков. В связи с этим возможны различные способы классификации бактерий. В настоящее время по коду международной номенклатуры бактерий (ICNB) зарегистрировано около 6 000 штаммов микроорганизмов. Молекулярно-генетический анализ рибосомной РНК из природных сред позволяет предположить, что количество еще не изученных бактерий значительно превышает количество зарегистрированных.
ЭУБАКТЕРИИ. Классическое определение бактерий основывалось на морфологических признаках: даже с помощью светового микроскопа можно различать палочки, кокки, спириллы, объединенные между собой клетки (колонии, филаменты), а также структурные особенности спор и гиф. Для дальнейшей классификации бактерий используется специфическое окрашивание клеток. Реакция клеток на окрашивание по Граму отражает особенности строения клеточной стенки: грамположительные бактерии имеют массивную многослойную клеточную стенку, построенную из муреина, под которой располагается плазматическая мембрана. Клеточное содержимое грамотрицательных бактерий одето внутренней и внешней клеточными мембранами, между которыми находится периплазматическое пространство. Поверх внешней мембраны располагается однослойная клеточная стенка, построенная из муреина и сложных липополисахаридов. Более детальная классификация бактерий возможна при изучении их физиологических и биохимических особенностей. Можно выделить несколько основных критериев для классификации.
Отношение к кислороду: рост бактерий может происходить в аэробных (в присутствии кислорода) или анаэробных (без кислорода) условиях.
Источник энергии: бактерии-фототрофы могут осуществлять фотосинтез, перерабатывая энергию солнечного света, а бактерии-хемотрофы используют в качестве источника энергии различные органические или неорганические соединения, осуществляя дыхание или брожение.
Природа окисляемого соединения. В соответствии с этим критерием выделяются органотрофы (для которых источником энергии служат органические соединения) и литотрофы, получающие энергию за счет окисления таких неорганических веществ, как H2, NH3, H2S, S, CO, Fe 2+ и т. д.
Источник углерода. Автотрофные бактерии фиксируют СО2, а гетеротрофные для получения углерода используют органические соединения.
Тип взаимоотношений с другими организмами. По типу взаимоотношений с другими организмамивыделяют сапрофитный (автономный) или паразитический (зависящий от организма-хозяина) образ жизни бактерий. Подверженность фаговой инфекции определенного типа также может служитьв качестве признака для классификации бактерий(phage typing).
Приспособленность к условиям среды обитания. В то время как мезофильные бактерии обитаютв умеренных условиях, другие бактерии (экстремофилы) приспособились к существованию в экстремальных условиях (температура, давление, рН, концентрация солей и т. д.). Признаки для дальнейшейклассификации бактерий можно обнаружить при изучении пигментации, анализе химических компонентов клеточной стенки и клеточной мембраны (составжирных кислот), данных иммунологического анализаповерхностных антигенов (серология) или устойчивости к действию антибиотиков. В последнее время особенно широко применяется анализ генетическихпризнаков. Первичные данные для классификацииможно получить из анализа состава ДНК (содержание G + C). Число бактерий, геном которых полностью секвенирован, постоянно увеличивается, и полученная информация используется при объяснениирезультатов анализа генетических признаков.С 1972 г. для классификации и установления эволюционных связей между различными бактериями используют результаты секвенирования рибосомныхРНК, прежде всего 16S- и 23S-рРНК. В этих молекулах выделяются высококонсервативные участки, сохранившиеся в процессе эволюции. В соответствиисо структурой рРНК все живые организмы делятся на три основных надцарства: археи, эубактерии (прокариоты) и эукариоты.
ХАРАКТЕРИСТИКА И ТАКСОНОМИЯ БАКТЕРИЙ. Быстрая и достоверная идентификация микроорганизмов имеет большое значение в клинической медицине, ветеринарной практике, пищевой промышленности и лабораторных исследованиях. Наряду с визуальным (с помощью микро скопа) и биохимическим анализом микроорганизма, изучают его способность расти на различных питательных средах, а также проводят анализ ДНК, например, используя ДНК-зонды, специфичные для определенных так со нов. Не всегда по полученным результатам можно отнести исследуемый штамм к тому или иному таксону, и в таких случаях требуется тщательный анализ более широкого набора признаков.
Некоторые бактерии, важные для биотехнологии
ВВЕДЕНИЕ. В качестве примеров бактерий, имеющих особенно важное биотехнологическое применение, мы рассмотрим следующие: Escherichia coli, Pseudomonas putida, Bacillus subtilis, Streptomyces coelicolor и Corynebacterium glutamicum.
ESCHERICHIA COLI – представитель кишечной флоры млекопитающих и принадлежит к группе энтеробактерий. Палочкообразные клетки имеют жгутики. E. coli – грамотрицательная бактерия, следовательно, под клеточной стенкой располагаются внешняя и внутренняя клеточные мембраны, разделенные периплазматическим пространством. В анаэробных условиях E. coli получает энергию в процессе брожения, а при наличии кислорода – с помощью дыхания. В оптимальных аэробных условиях продолжительность жизненного цикла (время между образованием клетки и ее делением) составляет около 20 мин. Геном E. coli имеет размер 4,6 млн п.н., и содержание GC-пар 51%. Нес мо тря на то что геном E. coli полностью секвенирован, и эта бактерия является одним из наиболее хорошо изученных микроорганизмов, в настоящее время известны функции лишь двух третей ее белков. В биотехнологии клетки E. coli используют для экспрессии негликозилированных белков, например инсулина, гормонов роста и фрагментов антител. Дикие штаммы E. coli относятся к «условно патогенным», так как обитают в кишечнике человека, поэтому в лабораторных экспериментах обычно используют ослабленные штаммы E. coli (например, E. coli К12), не представляющие угрозы для исследователей. Эти штаммы соответствуют группе безопасности S1, и их можно культивировать при соблюдении техники безопасности при обычных микробиологических экспериментах. Для клонирования чужеродной ДНК в E. coli используют различные векторы. В качестве примера мы выбрали ВАС-вектор, который наиболее часто применяют при создании генных библиотек (см. рисунок).
PSEUDOMONAS PUTIDA. Клетки P. putida – прямые палочки с полярными жгутиками. Это аэробные бактерии, обитающие в воде. Клетки не окрашиваются по Граму, т. е. под клеточной стенкой находятся две мембраны, а между ними – периплазматическое пространство. Размер генома P. putida составляет 6,1 млн п.н., содержание GC-пар – 61%. Бактерии P. putida имеют особенно важное значение при биотехнологической очистке окружающей среды, так как они способны разлагать трудноразлагающиеся вещества, в том числе ароматические соединения. Такое свойство обусловлено наличием в клетках бактерии так называемых плазмид деградации.
BACILLUS SUBTILIS (сенная палочка) – аэробная почвенная бактерия. Клетки имеют форму палочек без жгутиков. При неблагоприятных условиях в клетках B. subtilis формируются споры, устойчивые к изменениям температуры. B. subtilis относится к грамположительным бактериям, следовательно, под клеточной стенкой находится одна клеточная мембрана. Энергию бактерии получают в результате дыхания. В оптимальных условиях продолжительность жизненного цикла составляет около 20 мин. Геном B. subtilis имеет размер 4,2 млн п.н. и к настоящему времени он полностью секвенирован. Содержание оснований G + C составляет 44%. В биотехнологии штаммы B. Subtilis используют прежде всего для получения секретируемых ферментов, например протеаз и амилаз.
STREPTOMYCES COELICOLOR – почвенная бактерия, которая относится к группе актиномицетов. Все представители этой группы имеют хорошо развитый мицелий. На поверхности колоний образуется воздушный мицелий (гифы), а на концах гиф формируются споры (конидии). Актиномицеты относятся к грамположительным бактериям, т. е. под клеточной стенкой находится одна клеточная мембрана. Как и другие представители актиномицетов, S. coelicolor разрушает такие сложные органические соединения, как целлюлоза и хитин. Геном S. coelicolor почти вдвое больше, чем геном E. coli, – 8,7 млн п.н., и для него характерно высокое содержание оснований G + C (72%). Секвенирование генома S. coelicolor завершено. В результате выявлено почти 8000 структурных генов. Вероятно, такой большой геном содержит информацию для осуществления вторичного обмена веществ, например биосинтеза антибиотиков.
CORYNEBACTERIUM GLUTAMICUM принадлежит к группе коринебактерий. Представители этой группы обитают в самых разнообразных средах, и некоторые являются возбудителями болезней (например, C. diphteriae – возбудитель дифтерии). C. glutamicum – аэробные грамположительные бактерии. Клетки имеют булавовидную форму. Геном C. glutamicum размером 3,1 млн п.н. полностью секвенирован, содержание оснований G + C составляет 56%. Мутантные штаммы C. glutamicum являются важными продуцентами L-глутаминовой кислоты и L-лизина.
СЕКВЕНИРОВАНИЕ БАКТЕРИАЛЬНЫХ ГЕНОМОВ. К 2005 г. было завершено секвенирование геномов более200 бактерий. Среди них – многие патогенные бактерии, а также археи.
Грибы
PENICILLUM NOTATUM растет как мицелий. Он образует плодовые тела с конидиями, из которых высвобождаются споры. Внутри асков созревают споры, прорастающие в новый мицелий. Как и другие представители несовершенных грибов, P. notatum размножается исключительно бесполым путем, поэтому для осуществления рекомбинации в лабораторных условиях проводят слияние протопластов с различными типами ядер (гетерокариоз, парасексуальный процесс). P. notatum и родственный гриб Cephalosporium acremonium – продуценты важнейших лактамных антибиотиков. Другим примером биотехнологического применения грибов рода Penicillium является использование Penicillium camamberti при изготовлении сыров. Геном P. notatum имеет размер 32 млн п.н., и к настоящему времени секвенирована лишь небольшая его часть.
ASPERGILLUS NIDULANS – другой представитель аскомицетов, морфологически отличающийся от Penicillium по форме конидий. Размер генома составляет 31 млн п.н. и его структура пока полностью не расшифрована (2005 г.). В биотехнологии штаммы Aspergillus находят широкое применение: A. oryzae часто служит в качестве организма-хозяина для экспрессии рекомбинантных белков, A. niger является промышленным продуцентом лимонной и глюконовой кислот. Другие штаммы Aspergillus используются для синтеза внеклеточных ферментов (амилаз и протеиназ), а также в пищевой промышленности (например, в азиатском регионе для приготовления соевого соуса и мисо). Как и в случае Penicillium, для усовершенствования штаммов Aspergillus проводят слияние протопластов с последующим отбором.
RHIZOPUS ORYZAE И R. NIGRICANS – представители фикомицетов, растущие на рисе и хлебе соответственно. Гифы этих грибов растут чрезвычайно быстро и буквально пронизывают питательную среду. Бесполое размножение фикомицетов происходит с образованием спор в специализированном мицелии – спорангиях. Представители родов Rhizopus и Mucor находят широкое применение в биотехнологии, так как в процессе разложения органического субстрата они выделяют в среду разнообразные внеклеточные ферменты. Геном R. oryzae составляет около 39 млн п.н., его нуклеотидная последовательность будет определена в ближайшее время (2005 г.).
Дрожжи
ВВЕДЕНИЕ. Дрожжи – это группа грибов, не имеющих типичного мицелия и размножающихся почкованием. К дрожжам относят представителей различных классов грибов. Дрожжи – гетеротрофные организмы, предпочитающие для роста кислые среды (рН 3,5–5,0). Клеточная стенка этих организмов содержит хитин. В биотехнологии наиболее важные следующие дрожжи: Saccharomyces cerevisiae, Candida utilis, Candida albicans, Schizosaccharomyces pombe, Hansenula polymorpha и Pichia pastoris.
PICHIAPASTORIS И HANSENULA POLYMORPHA – представители метилотрофных дрожжей, использующих в качестве единственного источника углерода метанол. Метилотрофные дрожжи активно изучаются с целью использования для экспрессии эукариотических генов. Так, в клетках Pichia pastoris удалось осуществить очень эффективный синтез различных белков: липаз, β-интерферона и фрагментов антител (до 12 г рекомбинантного белка на литр культуры).
SCHIZOSACCHAROMYCES POMBE впервые были выделены из восточно-африканского пива (пиво на язык суахили – pombe). Геном S. pombe, распределенный всего между тремя хромосомами, полностью расшифрован: его размер составляет 12,6 млн п.н., что сравнимо с размером генома S. cerevisiae, но всего по трем хромосомам, несущим почти по 5000 генов.
Микроорганизмы: выделение и хранение штамма. Техника безопасности
ВВЕДЕНИЕ. В научных исследованиях, как правило, используют чистые культуры микроорганизмов. Для биотехнологического применения штаммы усовершенствуют в соответствии с поставленными задачами, осуществляя мутагенез и последующий отбор мутантов. Для сохранения чистых штаммов микроорганизмов создают специальные коллекции. Пересев клеток микроорганизмов на жидкие или твердые питательные среды проводится в стерильных условиях. Большинство используемых в биотехнологии микроорганизмов являются гетеротрофами и культивируются в аэробных условиях. Анаэробные организмы выращивают в бескислородной среде, а для культивирования фотосинтезирующих микроорганизмов подбирают специальные условия освещенности.
ЧИСТЫЕ МИКРОБНЫЕ КУЛЬТУРЫ хранятся в коллекциях штаммов. Чтобы получить чистую культуру из природной среды обитания (почвы, воды, пищевых продуктов, других организмов), проводят посев штрихом (метод истощающего штриха) на стерильную агаризованную питательную среду (агар – сложный полисахарид, получаемый из морских водорослей). Условия культивирования выбирают так, чтобы выделяемый микроорганизм имел преимущество роста по сравнению с другими микроорганизмами, обитающими в той же природной среде. Например, цианобактерии культивируют в анаэробных условиях на свету, в качестве источника углерода пропускают СО2, а в качестве источника азота – N2. Для выращивания грибов используют слабокислую, обогащенную сахарами среду, для отбора термофильных микроорганизмов повышают температуру культивирования, а для выделения микроорганизмов продуцентов протеаз в качестве единственного органического источника азота в среду добавляют казеин. По данным 16S-рРНК-анализа удается выделить лишь 1% всех микроорганизмов, обитающих в воде или почве.
КОЛЛЕКЦИИ МИКРООРГАНИЗМОВ служат для хранения чистых штаммов, обладающих определенными свойствами. Для поддержания штамма в лабораторных условиях его пересевают на агаризованную среду: в пробирку со скошенной средой или на чашку Петри, однако в результате многократного пересева может произойти вырождение. По этой причине для сохранения особенно важных штаммов предпочтительнее использовать один из следующих методов: 1) хранение под химически инертной жидкостью, на- пример парафином (рекомендуется для сохранения штаммов гифообразующих грибов); 2) замораживание при –196°С и последующее хранение в жидком азоте или при температуре –70 °С. Замораживание и размораживание в этом случае должны происходить очень быстро и в присутствии глицерина, чтобы предотвратить разрушение клеточной стенки образующимися кристаллами льда. Метод широко применяется для сохранения бактериальных и дрожжевых штаммов; 3) высушивание клеточной суспензии на носителе (силикагеле, песке) в вакууме. Эту операцию проводят в присутствии эмульгаторов (обезжиренное молоко, сыворотка), а полученные препараты хранят при температуре –70 °С. Перед помещением в коллекцию необходимо убедиться в том, что клетки не потеряли способности к росту. В настоящее время в большинстве стран созданы богатые коллекции штаммов микроорганизмов, из которых можно получать чистые культуры. Существуют как универсальные коллекции штаммов, например ATCC – американская коллекция штаммов (American Type Culture Collection) или DSMZ – коллекция микроорганизмов и клеток Германии, так и коллекции, специализирующиеся на определенных группах микроорганизмов, например CBS – центральная коллекция плесневых грибов. Многие промышленные предприятия имеют собственные коллекции важных штаммов микроорганизмов.
ТЕХНИКА БЕЗОПАСНОСТИ. Почти в любом роде микроорганизмов есть представители, патогенные для человека: например, в биотехнологии Bacillus subtilis – непатогенный продуцент ферментов, а вот Bacillus anthracis – возбудитель сибирской язвы; Aspergillus oryzae используется для приготовления соевого соуса, а Aspergillus flavus продуцирует токсичное вещество (афлатоксин), обладающее канцерогенными свойствами. По этой причине при любых операциях с микроорганизмами необходимо строго соблюдать правила техники безопасности при работе с биологическими объектами. В соответствии со степенью риска для пользователя все микроорганизмы разделены на четыре группы. Оборудование лаборатории и правила работы должны соответствовать правилам техники безопасности при работе с микроорганизмами каждой группы. К первой группе риска относятся микроорганизмы, которые традиционно используются для приготовления пищевых продуктов (например, пекарские дрожжи). Подавляющее большинство микроорганизмов, использующихся в биотехнологии, также относятся к первой группе.
Усовершенствование штаммов микроорганизмов
ВВЕДЕНИЕ. Микроорганизмы, выделенные из природной среды обитания, редко полностью отвечают требованиям биотехнологического производства. Поэтому необходимым подготовительным этапом является многократное повторение мутагенеза и последующего отбора мутантов, обладающих искомыми свойствами. Наиболее часто задачей таких экспериментов является получение штаммов, продуцирующих больше целевого вещества и меньше побочных продуктов или обладающих лучшими технологическими характеристиками (сокращение времени ферментации, отсутствие нежелательной пигментации, устойчивость к бактериофагам и др.). Одним из преимуществ микроорганизмов является их короткий жизненный цикл (часто менее 1 ч). Это позволяет достаточно быстро получать и анализировать большое количество мутантов. При работе с эукариотическими микроорганизмами (например, грибами) необходимо принимать во внимание процесс рекомбинации. Знание обмена веществ, его регуляции и структуры ДНК, кодирующей ферменты, позволяет модифицировать геном микроорганизмов, целенаправленно «выключая» или «активируя» те или иные стадии обмена веществ (metabolic engineering).
МУТАГЕНЕЗ. Вероятность спонтанной мутации в нормальном гене (под действием естественных мутагенов или при репликации) составляет 10–6–10–7. Как правило, такие мутации остаются «молчащими» из-за генетической или функциональной супрессии или становятся мишенью системы репарации ДНК. Для усовершенствования штаммов осуществляют более эффективный искусственный мутагенез: например, при ультрафиолетовом облучении или при введении мутагенных веществ. Путем изменения длительности мутагенного воздействия и путем подбора мутагенных веществ удается варьировать частоту мутаций в клетках. В результате действия мутагенных факторов, как правило, 90–99% клеток погибают, а затем из оставшихся клеток отбирают мутантов, которые обладают желаемыми фенотипическими признаками.
ОТБОР МУТАНТОВ В ПОВЕРХНОСТНЫХ КУЛЬТУРАХ.
Основным фенотипическим признаком, рассматриваемым при усовершенствовании штаммов микроорганизмов, является их способность образовывать большое количество продукта. Для отбора мутантов, удовлетворяющих этому требованию, разрабатывают систему отбора. В качестве признака для отбора может служить устойчивость к антибиотику, ядовитым веществам или фаговой инфекции. Полученные после проведения мутагенеза клетки высевают в чашки Петри на твердые селективные среды, где вырастают лишь те колонии, которые обладают необходимой устойчивостью. Для отбора ауксотрофных мутантов реплики колоний помещают на питательную среду без антибиотика и с антибиотиком (например, с пенициллином). Основными преимуществами такого метода является возможность проводить одновременный анализ большого количества полученных мутантов (несколько сотен на одной чашке). В результате действия сильных мутагенных факторов часто происходят изменения в нескольких генах, поэтому необходимо проверить не только способность мутантов образовывать необходимый продукт, но и сохранность свойств, характерных для дикого штамма. Для этого отобранные клетки выращивают в качалочных колбах в условиях, максимально приближенных к таковым в производственном процессе, и отбирают клетки, обладающие улучшенными свойствами. Повторение нескольких раундов мутагенеза с последующим отбором позволяет отобрать штаммы, которые наилучшим образом удовлетворяют всем требованиям технологического процесса. Для устранения ненужных приобретенных свойств полученные штаммы скрещивают с дикими штаммами.
СЕЛЕКЦИЯ В НЕПРЕРЫВНОЙ КУЛЬТУРЕ. Отбор мутантов можно проводить в непрерывной культуре в ферментере: для этого клетки микроорганизмов выращивают в среде с мутагеном и осуществляют при этом селективное воздействие, например постепенно заменяют один источник углерода на другой. В таких условиях выживают лишь те микроорганизмы, которые в результате мутагенеза приобрели способность утилизировать новый источник углерода. Описанный способ, однако, не позволяет проводить отбор мутантов с повышенным выходом продукта.