Что относят к факторам роста бактерий
Что относят к факторам роста бактерий
Кроме состава питательных сред, на которых развиваются бактерии, большое значение име ют условия культивирования и, прежде всего, температура, аэрация и концентрация водородных ионов в среде.
Культуральные среды для роста бактерий
Культуральные среды обычно компонуют, предварительно зная, рост каких именно физиологических групп микроорганизмов хотят обеспечить. Вначале целесообразно составить минеральную основу, содержащую все необходимые питательные вещества в неорганической форме. Затем в эту основу вводят источники углерода, энергии, азота и необходимые ростовые факторы.
В количественном отношении придерживаются простого правила: соотношение важнейших элементов, вводимых в воду, должно быть примерно таким же, как в бактериальной клетке (например, среднее соотношение углерод:азот:фосфор:сера:калий:кальций:магний:железо = 5:1:0,3:0,1:0,1:0,05:0,05:0,02. В граммах эти величины дают примерное содержание элементов на 1 л среды).
• Для культивирования некоторых бактерий применяют простые синтетические среды, то есть среды, содержащие только определённые химические соединения: источник углерода (например, глюкозу), аммонийный азот, а также фосфаты, хлориды и сульфаты, в то время как другим необходима комплексная, или сложная среда, дополненная различными веществами, химический состав которых полностью не определён (например, среда с экстрактами тканей сердца и мозга).
• По консистенции микробиологические среды разделяют на жидкие (бульон) и твердые (плотные), содержащие около 2% «уплотнителя» — агара (полисахарида, получаемого из морских водорослей). В некоторых случаях в качестве «уплотнителя» можно использовать желатину. Среды с небольшим содержанием агара (0,6%) обозначают как полужидкие.
Для промышленного выращивания и автоматизированной диагностики предпочтительна жидкая среда. Выращивание на агаризованных средах необходимо для выделения и дальнейшей оценки отдельных колоний бактерий.
• Элективные среды применяют для выделения определённых типов бактерий. Многие микроорганизмы легко обнаруживаются, так как вызывают заметные изменения в окружающей среде. Выделение этих микроорганизмов в чистой культуре (клоне) не представляет особые трудностей. Однако есть много других микроорганизмов, относящихся к разным физиологическим группам, выделение которых стало доступным лишь после разработки С.Н. Виноградским и М. Бейеринком метода накопительных культур, который подразумевает создание условий (источники энергии, углерода и азота, акцептор электронов, свет, температура, pH и т.п.), обеспечивающих преимущественный рост одного микроорганизма в сравнении с остальными.
В подобной элективной (селективной) среде наиболее приспособленные бактерии бурно растут, вытесняя контаминирующую микрофлору. Многократный пересев на предпочтительную для данного вида жидкую среду обеспечивает «обогащение» исходной пробы, часто контаминированной другими микроорганизмами. Последующий высев на плотную среда позволяет выделить необходимый штамм. Например, для выделения патогенных энтеробактерий используют элективные плотные среды, к которым добавляют соли висмута, а для обнаружения возбудителя дифтерии — среды с теллуритом. Выросшие на этих средах колонии патогенов, обладающих способностью восстанавливать ионы редких металлов, имеют металлический блеск.
• Некоторые бактерии практически не способны к росту in vitro (например, Mycobacterium leprae, хламидии), что считается проявлением крайней степени паразитизма и связано с утратой ряда важнейших ферментов, необходимых для самостоятельного роста и развития.
Особенности питания бактерий: типы и механизмы питания, факторы роста, ферменты бактерий
Особенности питания бактерий
Типы питания микроорганизмов
Чтобы бактерии могли осуществлять нормальные процессы жизнедеятельности, им нужны определенные химические вещества. Среди них — калий, фосфор, углевод, азот, сера и др. Поэтому тема питания бактерий в микробиологии крайне важна.
Тип питания бактерий зависит от источника получения ими углерода. Бактерии по типу питания делятся на:
Еще одна классификации бактерий по типу питания основана на виде окисляемого субстрата, который является донором водорода или электронов. Выделяют:
Также деление бактерий по способам питания зависит от источника энергии. Выделяют:
Факторы роста
Микроорганизмы нуждаются в дополнительных компонентах, чтобы они могли расти на питательных средах. Такие компоненты называются факторами роста.
Факторы роста — соединения, которые нужны микроорганизмам для роста, и которые они не могут самостоятельно вырабатывать.
Факторы роста добавляются в питательные среды.
Соединения, относящиеся к факторам роста:
В зависимости от того, как микроорганизмы относятся к факторам роста, они делятся на прототрофы и ауксотрофы:
Ауксотрофы нуждаются в одном или нескольких факторах роста.
Прототрофы синтезируют необходимые для роста соединения самостоятельно. Их особенность в том, что они способны создавать компоненты из солей глюкозы и аммония.
Механизмы питания бактерий
Есть целый ряд факторов, обуславливающих поступление веществ в бактериальную клетку. Это:
Цитоплазматическая мембрана — основной регулятор поступления в клетку различных соединений.
Существуют (условно) 4 механизма поступления в клетку веществ:
К примеру, пермеазы выступают как белки-переносчики. Пермеазы синтезируются в цитоплазматической мембране.
Мы рассмотрели типы и механизмы питания бактерий. Теперь обратимся к ферментам.
Ферменты бактерий
Ферменты — белковые соединения, которые принимают участие в таких процессах как анаболизм и катаболизм, а также распознают нужные субстраты, взаимодействуют с ними и ускоряют химические процессы.
Выделяют эндоферменты — они катализируют метаболизм, который протекает внутри клетки.
Есть еще экзоферменты — это ферменты, выделяемые бактериальной клеткой в окружающую среду. Они расщепляют макромолекулы питательных сред до простых веществ, которые клетка легко усваивает.
Отдельные экзоферменты, к примеру, пенициллиназа, инактивируют антибиотики, выполняя тем самым защитную функцию.
Конститутивные ферменты синтезируются клеткой непрерывно. Этот процесс не зависит от наличия субстратов в питательной среде.
Индуцибельные или адаптивные ферменты могут синтезироваться клеткой только в том случае, если в среде есть субстрат этого фермента.
Ферменты агрессии призваны разрушать клетки и ткани. Благодаря этому бактерии и их токсины получают возможность широкого распространения. К таким ферментам относятся коллагеназа, дезоксирибонуклеаза, гиалуронидаза, лецитовителлаза, нейраминидаза и др.
Ферменты бактерий делятся на классы:
Микробиология: конспект лекций
Данная книга предназначена студентам медицинских образовательных учреждений. Это краткое пособие поможет при подготовке и сдаче экзамена по микробиологии. Материал изложен в очень удобной и запоминающейся форме и поможет студентам за сжатый срок детально освоить основные концепции и понятия курса, а также конкретизировать и систематизировать знания.
Оглавление
Приведённый ознакомительный фрагмент книги Микробиология: конспект лекций предоставлен нашим книжным партнёром — компанией ЛитРес.
ЛЕКЦИЯ № 3. Физиология бактерий
1. Рост и размножение бактерий
Рост бактерий — увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.
Размножение бактерий — процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.
Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.
Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала — сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.
Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.
На плотных питательных средах бактерии образуют скопления клеток — колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.
Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.
Фазы размножение бактериальной клетки на жидкой питательной среде:
1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;
2) лаг-фаза (фаза покоя); продолжительность — 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;
3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;
4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;
5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.
2. Питание бактерий
Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.
Среди необходимых питательных веществ выделяют органогены — это восемь химических элементов, концентрация которых в бактериальной клетке превосходит 10—4 моль. К ним относят углерод, кислород, водород, азот, фосфор, калий, магний, кальций.
Кроме органогенов, необходимы микроэлементы. Они обеспечивают активность ферментов. Это цинк, марганец, молибден, кобальт, медь, никель, вольфрам, натрий, хлор.
Для бактерий характерно многообразие источников получения питательных веществ.
В зависимости от источника получения углерода бактерии делят на:
1) аутотрофы (используют неорганические вещества — СО2);
3) метатрофы (используют органические вещества неживой природы);
4) паратрофы (используют органические вещества живой природы).
Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.
По источникам энергии микроорганизмы делят на:
1) фототрофы (способны использовать солнечную энергию);
2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);
3) хемолитотрофы (используют неорганические соединения);
4) хемоорганотрофы (используют органические вещества).
Факторами роста бактерий являются витамины, аминокислоты, пуриновые и пиримидиновые основания, присутствие которых ускоряет рост.
Среди бактерий выделяют:
1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);
2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ — витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).
Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.
Метаболиты и ионы поступают в микробную клетку различными путями.
Пути поступления метаболитов и ионов в микробную клетку.
1. Пассивный транспорт (без энергетических затрат):
1) простая диффузия;
2) облегченная диффузия (по градиенту концентрации, с помощью белков-переносчиков).
2. Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).
Встречаются модифицированные варианты активного транспорта — перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией.
3. Метаболизм бактериальной клетки
Особенности метаболизма у бактерий:
1) многообразие используемых субстратов;
2) интенсивность процессов метаболизма;
3) направленность всех процессов метаболизма на обеспечение процессов размножения;
4) преобладание процессов распада над процессами синтеза;
5) наличие экзо — и эндоферментов метаболизма.
В процессе метаболизма выделяют два вида обмена:
1) пластический (конструктивный):
а) анаболизм (с затратами энергии);
б) катаболизм (с выделением энергии);
2) энергетический обмен (протекает в дыхательных мезосомах):
В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных — брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.
Ответ на 21 вопрос
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
21. Питание бактерий. Типы питания. Механизмы переноса веществ в клетку. Факторы роста микроорганизмов.
Обмен веществ у микроорганизмов имеет свои особенности.
Быстрота и интенсивность обменных процессов. За сутки микробная клетка может переработать такое количество питательных веществ, которое превышает ее собственный вес в 30-40 раз.
Выраженная приспособляемость к изменяющимся условиям внешней среды.
Питание осуществляется через всю поверхность клетки. Прокариоты не проглатывают питательные вещества, не переваривают их внутри клетки, а расщепляют их вне клетки с помощью экзоферментов до более простых соединений, которые транспортируются в клетку.
Для роста и жизнедеятельности микроорганизмов обязательно наличие в среде обитания питательных материалов для построения компонентов клетки и источники энергии. Для микробов необходимы вода, источники углерода, кислорода, азота, водорода, фосфора, калия, натрия и других элементов. Требуются также микроэлементы: железо, марганец, цинк, медь для синтеза ферментов. Различные виды микробов нуждаются в тех или иных факторах роста, таких, как витамины, аминокислоты, пуриновые и пиримидиновые основания.
В зависимости от источников энергии и природы доноров микроорганизмы подразделяют на фототрофы (фотосинтезирующие), способные использовать солнечную энергию, и хемотрофы (хемосинтезирующие), получающие энергию за счет окислительно – восстановительных реакций. К фототрофам относятся исключительно сапрофитные микроорганизмы. В патологии человека ведущую роль играют хемосинтезирующие микроорганизмы.
В зависимости от природы доноров электронов хемотрофы подразделяются на хемолитотрофы (хемоавтотрофы) и хемоорганотрофы (хемогетеротрофы).
В зависимости от источников азота – прототрофы – микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, АК и др.) из глюкозы и солей аммония. Ауксотрофы – микроорганизмы, не способные синтезировать какое – либо из указанных соединений. Они ассимилируют эти соединения и другие факторы роста в готовом виде из окружающей среды или организма хозяина.
Транспорт питательных веществ
Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и другие биополимеры вначале расщепляются экзоферементами до более простых соединений, которые транспортируются внутрь клетки.
Проникновение питательных веществ в клетку происходит с помощью различных механизмов.
Эти два механизма переноса не требуют энергетических затрат.
Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышающих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.
Выход веществ из бактериальной клетки происходит путем пассивной диффузии или путем облегченной диффузии с участием пермеаз.
Факторы роста микроорганизмов:
К факторам роста относят аминокислоты, пуриновые и пиримидиновые основания, липиды, витамины, железопорфирины (гем) и другие соединениями. Некоторые микроорганизмы самостоятельно синтезируют необходимые им ростовые факторы, другие получают их в готовом виде из окружающей среды. Потребность того или другого микроорганизма в определенных ростовых факторах является стабильным признаком, который используется для дифференциации и идентификации бактерий, а также при изготовлении питательных сред для лабораторных и биотехнологических целей.
Аминокислоты. Многие микроорганизмы, особенно бактерии, нуждаются в тех или других аминокислотах (одной или нескольких), поскольку они не могут их самостоятельно синтезировать, например клостридии — в лейцине, тирозине, стрептококки — в лейцине, аргинине и др. Такого рода микроорганизмы называются ауксотрофными по тем аминокислотам или другим соединениям, которые они не способны синтезировать.
Пуриновые и пиримидиновые основания и их производные (аденин, гуанин, цитозин, урацил, тимин и др.) являются факторами роста для разных видов стрептококков, некоторые азотистые основания нужны для роста стафилококков и других бактерий. В нуклеотидах нуждаются некоторые виды микоплазм.
Липиды, в частности компоненты фосфолипидов — жирные кислоты, нужны для роста некоторых стрептококков, микоплазм. Все виды микоплазм ауксотрофны по холестерину и другим сте-ринам, что отличает их от других прокариот. Эти соединения входят в состав их цитоплазматической мембраны.
Витамины, главным образом группы В, входят в состав ко-ферментов или их простетических групп. Многие бактерии ауксотрофны по определенным витаминам. Например, коринебактерии дифтерии, шигеллы нуждаются в никотиновой кислоте или ее амиде, который входит в состав НАД и НАДФ, золотистый стафилококк, пневмококк, бруцеллы — тиамине (ВО, входящем в состав пирофосфата, некоторые виды стрептококков, бациллы столбняка — в пантотеновой кислоте, являющейся составной частью кофермента КоА и т. д. Кроме того, факторами роста для многих бактерий являются фолиевая кислота, биотин, а также темы — компоненты цитохромов. Последние необходимы гемофильным бактериям, микобактериям туберкулеза и др.
Биологическое окисление (энергетический метаболизм)
Процесс биологического окисления дает энергию, необходимую для жизни клетки. Сущность процесса заключается в последовательном окислении субстратов с постепенным освобождением энергии. Энергия запасается в молекулах АТФ.
Окислению подвергаются углеводы, спирты, органические кислоты, жиры и другие вещества. Но для большинства микроорганизмов источником энергии служат гексозы, в частности, глюкоза.
У микроорганизмов существует два типа биологического окисления: аэробный и анаэробный. При аэробном типе участвует кислород, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называется брожением.
Начальный этап анаэробного расщепления глюкозы с образованием пировиноградной кислоты (ПВК) происходит одинаково. Эта
кислота является тем центральным пунктом, от которого расходятся пути дыхания и многих видов брожений.
Микробную природу брожений впервые открыл и доказал Пастер. Изучая маслянокислое брожение, Пастер впервые столкнулся с возможностью жизни без кислорода, то есть с анаэробиозом. Он также установил явление, которое впоследствии было названо «эффектом Пастера»: прекращение процесса брожения при широком доступе кислорода.
Анаэробиоз существует только среди прокариотов. Все микроорганизмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы.
Микроаэрофилы размножаются в присутствии небольших количеств кислорода. Например, кампилобактеры могут размножаться при 3-6% кислорода.
Рост и размножение микроорганизмов
Бактерии размножаются путем бинарного деления пополам, реже путем почкования. У грамположительных бактерий из клеточной стенки и цитоплазматической мембраны образуется перегородка, врастающая внутрь. У грамотрицательных бактерий образуется перетяжка, и затем происходит разделение клетки на две особи.
Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу. При этом двуспиральная цепь ДНК раскручивается, каждая нить достраивается комплиментарной нитью и в результате каждая дочерняя клетка получает одну материнскую нить и одну вновь образованную.
Если посеять бактерии в жидкую питательную среду определенного объема и затем каждый час брать пробу и определять количество живых бактерий в такой замкнутой среде и составить график, на котором по оси абсцисс откладывать время в часах, а по оси ординат логарифм количества живых бактерий, то получим кривую роста бактерий. Рост бактерий подразделяют на несколько фаз (рис. 5):
фаза отмирания, когда число отмирающих клеток начинает преобладать над числом жизнеспособных бактерий вследствие накопления продуктов метаболизма и истощения среды.
Культура бактерий в такой замкнутой несменяющейся среде называется периодической. Если же в засеянный объем непрерывно подают свежую питательную среду и удаляют такое же количество жидкости, то такую культуру называют непрерывной. Количество живых бактерий в такой культуре будет постоянно в М-концентрации. Непрерывное культивирование применяют в микробиологической промышленности.
Бактерии. Питание, дыхание, размножение, рост и морфология.
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
Бактерии. Питание, дыхание и морфология бактерий.
Бактерии. Положение в системе живого мира
Микроорганизмы.
Многочисленные микроорганизмы строго систематизированы в определенном порядке по их сходству, различиям и взаимоотношениям между собой. Этим занимается специальная наука, называемая систематикой микроорганизмов.
Таксономия – раздел систематики, изучающий как классифицируются микроорганизмы.
Таксон – группа организмов, объединенная по определенным однородным свойствам в рамках той или иной таксоном-кой категории.
Самой крупной таксономической категорией является царство, более мелкими – подцарство, отдел, класс, порядок, семейство, род, вид, подвид. Образование названий микроорганизмов регламентируется международным кодексом номенклатуры. Микроорганизмы систематизируются по различным свойствам. В основу положены их морфологические, физиологические, биохимические, молекулярно – биологические свойства. Одной из основных таксономических категорий является вид (species).
Вид – совокупность особей, объединенных по близким свойствам, но отличающиеся от других представителей рода.
Штамм – микроорганизмы чистой культуры, выделенные из определенного источника и отличающиеся от других представителей вида. Штамм – более узкое понятие, чем вид или подвид. Близким к штамму является понятие клона.
Клон – представляет совокупность потомков, выращенных из единой микробной клетки. Для обозначения некоторых совокупностей микроорганизмов, отличающихся по тем или иным свойствам, употребляется суффикс var (разновидность) вместо ранее употребляемого type.
Поэтому микроорганизмы в зависимости от характера различий обозначают:
Бактерии. Физиология
Физиология бактерий изучает процессы питания, дыхания, роста и размножения. Обмен веществ бактериальной клетки с окружающей средой и превращения одних веществ в другие внутри микробной клетки называют метаболизмом.
Все реакции метаболизма делятся на 2 класса:
Физиология бактерий включает процесс анаболизма, когда из простых молекул синтезируются структурные элементы бактериальной клетки, этот процесс идет с использованием энергии. В результате реакций катаболизма происходит расщепление сложных веществ на простые с выделением энергии. Сложнейшая цепь биохимиескмх реакций анаболизма и катаболизма, вкотором участвуют белки, жиры, углеводы, витамины обслуживает одну главную реакцию – реакцию удвоения ДНК, в результате чего из 1 клетки образуется 2.
При благоприятных условиях процесс удвоения ДНК в бактериальной клетке идет непрерывно. Реакции метаболизма относятся к биохимическим реакциям, т.е. с помощью биологических катализаторов – специальных белковых молекул-ферментов. Биохимические реакции характеризуются: высокой скоростью, специфичесностью: каждый фермент способен реагировать только с обним определенным веществом (субстрат) и превращать его во вполне определенное вещство (продукт или продукты).
1 фермент + 1 субстрат = 1 продукт
ДНК бактерий содержит около 1тыс. генов. Почти все они кодируют набор ферментов, характерных для определенного вида бактерий. Таким образом набор ферментов, закодированных в ДНК бактерий, является постоянным, используется для идентификации, т.е. определения вида бактерий.
В качестве примеров ферментов агрессии можно привести гиалуронидазу – расщепляет гиалуроновую кислоту соелинительной ткани, коллагеназу – расщепляет коллагеновые волокна, лецитиназу, РНК-азу, ДНК-азу, лейкоцидины, гемолизины.
Ферменты бактерий подразделяются не конститутивные и индуцибельные. Конститутивные ферменты постоянно присутствуют в клетке в определенных количествах. Индуцибельные начинают синтезироваться только при наличии потребности в них, т.е. при наличии потребности в них т.е. при наличии в среде субстрата с которым он реагирует. Пример бета-галактозидаза – синтезируется только, когда в среде присутствует сахар лактоза.
Бактерии. Питание бактерий.
Питание бактерий осуществляется за счет поступления питательных субстратов внутрь через всю поверхность клетки, кроме того бактериальная клетка имеет высокую скорость процессов метаболизма и адаптации к меняющимся условиям окружающей среды.
Бактерии. Типы питание бактерий.
Широкому распространению бактерий способствует разнообразие типов питания. В зависимости от источников углерода они делятся на
Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве, серобактерии, обитающие в воде с сероводородом, железобактерии и прочие.
Сапрофиты – свободноживущие микроорганизмы, в качестве питательных веществ используют органические соединения погибших организмов или продукты их жизнедеятельности. Средой обитания бактерий-паразитов является живой организм. Бактерии паразиты являются патогенными, т.е. болезнетворными.
Бактерии-симбионты обитают в кишечнике человека и животных и выполняют жизненно-важные функции для организма хозяина.
Бактерии. Факторы роста.
Микроорганизмам для роста на питательных средах необходимы определённые дополнительные компоненты, которые получили название факторов роста.
Факторы роста — необходимые для микроорганизмов соединения, которые они сами синтезировать не могут, поэтому их необходимо добавлять в питательные среды. Среди факторов роста различают: аминокислоты, необходимые для построения белков, пурины и пиримидины, которые требуются для образования НК, витамины, входящие в состав некоторых ферментов.
Для обозначения отношения микроорганизмов к фактором роста используют термины ауксотрофы и прототрофы.
Ауксотрофы нуждаются в одном или нескольких факторах роста, прототрофы способны сами синтезировать необходимые для роста соединения.
Они способны синтезировать компоненты из глюкозы и солей аммония.
Бактерии. Химический состав.
Вода – 70%, Сухое вещество – 30%. Белки – 52, полисахариды – 16. Липиды – 9,4, РНК – 16, ДНК – 3.2, неорганические соединения – 0,4.
Потребность бактерий в химических элементах:
Макроэлементы (органогены). 60% в сумме. С50, N14, Н8, О20, микроэлементы – К, Ca, Mg, Na, S, P, Cl, и ультрамикроэлементы: B, Wa, Fe, Co, Cu, Zn.
Источники получения питательных веществ.
Бактерии, способные расти на простых питательных средах, все необходимые элементы получающие на средах, содержащих 1 органическое вещество, 1 углевод (глюкозу), а остальные вещества в виде неорганических соединений, называются прототрофами.
Бактерии, нуждающиеся в дополнительных органических веществах, называются ауксотрофами.
Для культивирования ауксотрофоов необходима добавка в питательную среду специальных факторов роста: аминокислот, витаминов, пуринов, пиримидинов, липидов, гексозы, пептидов.
Многие патогенные микроорганизмы являются ауксотрофами, т.е. для их культивирования необходима добавка в питательную среду факторов роста.
Бактерии. Механизмы питания.
Поступления различных веществ в бактериальную клетку зависит от величины и растворимости их молекул в липидах или воде. pHсреды, концентрации веществ, различных факторов проницаемости мембран и др.
Клеточная стенка пропускает небольшие молекулы и ионы, задерживая макромолекулы массой более 600Д. Основным регулятором поступления веществ в клетку является цитоплазматическая мембрана.
Питание бактерий и проникновение питательных веществ в клетку осуществляется такими механизмами:
Наиболее простой механизм поступления веществ в клетку — простая диффузия.
Бактерии. Дыхание бактерий
Дыхание бактерий (биологическое окисление) основано на окислительно-восстановительных реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии. Энергия необходима микробной клетке для ее жизнедеятельности.
Дыхание бактерий включает процессы окисления и восстановления:
Дыхание бактерий подразделяется на виды:
Анаэробиоз (от греч. аег – воздух + bios – жизнь) – жизнедеятельность, протекающая при отсутствии свободного кислорода. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органических соединений, преимущественно углеводов, в анаэробных условиях. С учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое и другие виды брожения.
По отношению к молекулярному кислороду бактерии можно разделить на три основные группы: облигатные, т.е. обязательные, аэробы, облигатные анаэробы и факультативные анаэробы.
Облигатные аэробы могут расти только при наличии кислорода. Облигатные анаэробы (клостридии ботулизма, газовой гангрены, столбняка, бактероиды и др.) растут только на среде без кислорода, который для них токсичен. При наличии кислорода бактерии образуют перекисные радикалы кислорода, в том числе перекись водорода и супероксид-анион кислорода, токсичные для облигатных анаробных бактерий, поскольку они не образуют соответствующие инактивирующие ферменты.
Аэробные бактерии инактивируют перекись водорода и супероксид-анион соответствующими ферментами (каталазой, пероксидазой и супероксиддисмутазой). Факультативные анаэробы могут расти как при наличии, так и при отсутствии кислорода, поскольку они способны переключаться с дыхания в присутствии молекулярного кислорода на брожение в его отсутствие. Факультативные анаэробы способны осуществлять анаэробное дыхание, называемое нитратным: нитрат, являющийся акцептором водорода, восстанавливается до молекулярного азота и аммиака.
Среди облигатных анаэробов различают аэротолерантные бактерии, которые сохраняются при наличии молекулярного кислорода, но не используют его.
Для выращивания анаэробов в бактериологических лабораториях применяют анаэростаты – специальные емкости, в которых воздух заменяется смесью газов, не содержащих кислорода. Воздух можно удалять из питательных сред путем кипячения, с помощью химических адсорбентов кислорода, помещаемых в анаэростаты или другие емкости с посевами.
Дыхание бактерий относится к реакциям катаболизма. В результате дыхания происходит расщепление сложных молекул до простых с выделением энергии, которая запасается в молекулах АТФ (КПД около 40%).
Процесс дыхания – это реакция окисления углеводов, которая может происходить в бескислородных условиях – анаэробный тип дыхания или гликолиз, и в присутствии кислорода – аэробный тип дыхания или окислительное фосфорилирование.
По типу дыхания бактерии делятся на аэробные и анаэробные. Существуеют бактерии облигатные ааэробы – растут только в присутствии кислорода (например микобактерии туберкулеза). Облигатные анаэробы растут только в бескислородных условиях (например возбудитель ботулизма). Факультативные анаэробы могут расти как в кислородной, так и бескислородной среде (кишечная палочка).
Микроаэрофилы – им требуется для своего роста низкая концентрация кислорода (гемофильная палочка).
Брожение не является в полном смысле дыханием – это субстратное фосфорилирование углеводов или гликолиз с образованием пирувата и последующим превращением его в конечные продукты брожения – органические кислоты и спирты. В результате гликолиза из 1 молекулы глюкозы образуется 2 молекулы АТФ.
Аэробный тип дыхания или окислительное фосфорилирование. Глюкоза- окислительное фисфирилирование- 38АТФ + 6СО2 + 6Н2О
Анаэробный тип дыхания. Схема та же, что при аэробном, но акцептором электронов служат нитриты, либо нитраты, либо фосфаты.
Факультативные анаэробы при отсутствии кислорода получают АТФ с помощью брожения.
Молекулы образовавшегося АТФ участвуют в синтезе органических соединений, отдавая свою энергию и првращаясь в АДФ. А + В + АТФсинтез АВ + АДФ + Ф
Факультативные анаэробы могут размножаться как в присутствии, так и в отсутствие молекулярного кислорода (большинство патогенных и сапрофитных микробов).
Облигатные анаэробы — бактерии, для которых наличие молекулярного кислорода является вредным, задерживающим рост фактором (кл остри дни столбняка, анаэробной инфекции, ботулизма и др.).
Бактерии. Размножение и рост.
Размножение бактерий– самовоспроизведние бактерий.
Рост бактерий – формирование структкрно-функциональных компонентов клетки и увеличение самой бактериальной клетки
Грам+ бактерии делятся путем врастания синтезирующихся перегородок деления внутрь клетки
Грам- путем перетяжки, в рез-те образования гантелевидных фигур, из кот. Образуются 2 одинаковые клетки.
Делению клеток предшествует репликация бактериальной хромосомы (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной нитью), приводящая к удвоению ДНК бактериального ядра-нуклеоида.
Репликация ДНК происходит в 3 этапа:
Размножение бактерий в жидкой питательной среде происходит в несколько фаз:
Лаг-фаза: период между посевом бактерии и началом размножения, составляет 4-5 часов. Бактерии увеличиваются в размерах и готовятся к делению, нарастает количество нуклеиновых кислот, белка.
Фаза логарифмического роста: период интенсивного деления бактерий, составляет 5-6 часов.
Фаза стационарного роста: количество жизнеспособных клеток максимально.
Фаза гибели: завершает процесс роста бактерий, происходит их отмирание в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий, составляет от 10 часов до несколько недель.
Размножение и рост бактерий зависят от многих факторов:
Размножения бактерий на плотной питательной среде.
Бактерии образуют изолированные колонии округлой формы, различной консистенции, цвета. Пигменты, растворимые в воде, диффундируют в питательную среду и окрашивают ее. Пигменты не растворимые в воде, растворяются в органических соединениях.
Бактерии. Морфология бактерий
Морфология бактерий (греч. bakterion — палочка) — микроорганизмы с прокариотным типом строения. Преимущественно этоодноклеточные организмы, однако существует немало форм, состоящих из многих клеток.
Бактерии. Виды бактерий по форме клеток:
Бактерии. Виды бактерий по расположению клеток:
Бактерии. Методы изучения морфологии бактерий.
Методы. В цитологической практике нередко возникает необходимость в окраске и исследовании бактерий. Это чаще всего касается различного рода экссудатов, мазков из различных органов и тканей. Мазки готовят различно.
Методы работы с различными видами материалов:
Можно готовить мазки-отпечатки, для чего чистое предметное стекло прикладывают непосредственно к серозному покрову, слизистой оболочке или к свежей поверхности разреза какого-либо органа (ткани). При наличии жидкого содержимого (экссудат, моча и пр.) рекомендуется центрифугировать и из осадка готовить мазки. Полученные по одному из вышеуказанных способов мазки тщательно высушивают и затем фиксируют сухим жаром.
Фиксация достигается посредством несильного нагревания (примерно до 70°С) предметного стекла, которое для этого трижды проводят над пламенем спиртовки мазком вверх. Можно фиксировать мазки и в 96°спирте (10—15 минут). Фиксированные мазки сохраняются в течение какого угодно времени.
Окрашенные мазки исследуют в масле, с иммерсионным объективом; при желании заключают в бальзам, в таком случае на окрашенный и хорошо высушенный мазок кладут каплю бальзама и покрывают покровным стеклом. В настоящее время классическую бактериоскопию с окрашиванием микробов различными красителями дополняют получившие широкое распространение иммуноцитохимические методы с применением меченых антител.
Во многих случаях (особенно если применяют моноклональные антитела против поверхностных антигенов возбудителя) они позволяют провести высокоспецифичный экспресс-анализ. Нередко наиболее доступными для исследования с целью идентификации возбудителя являются обработанные в центрифуге экссудаты, выделения, а также – кровь, пунктаты паренхиматозных органов, мазки и отпечатки тканей.
Бактериоскопический (микроскопический) метод — совокупность способов обнаружения и изучения свойств бактерий в патологическом материале или в пробах из внешней среды с помощью микроскопии. Применяют для установления диагноза инфекционного заболевания или при идентификации выделенной чистой культуры.
Ценность бактериоскопического метода состоит в простоте, доступности методик и быстроте получения результатов (30—60 минут и менее). Однако чувствительность ограничена; информация, полученная с помощью бактериоскопического метода обычно может быть использована как ориентировочная.
Ценность бактериоскопического метода резко возрастает при исследовании простейших, грибов и обработке препарата люминесцирую-щими сыворотками. Позволяет определить количество лейкоцитов и эпителия, микрофлору в месте забора материала, а также выявить возбудителей: гонореи, трихомонадоза, гарднереллеза, кандидоза.
Для обнаружения возбудителей используют следующие методы:
1. Методы выявления кислых гликозаминогликанов (ГАГ) с помощью ШИК-реакции. Наилучшие результаты получают при выявлении простейших, в частности пневмоцист и токсоплазм, микоплазм, хламидий, некоторых грибов (особенно рода Candida) и капсулообразующих бактерий.
2. Методы с использованием основного фуксина, азура, тионина и метиленового синего (окраски по Пфейферу, Леффлеру, Николя и др.), которые в небольших концентрациях позволяют выявить разную, в основном бактериальную флору- Наиболее эффективны способы окраски по Цилю-Нильсену для выявления спирто- и кислотоустойчивых бактерий, в частности семейства Mycobacteriaceae (микобактерий туберкулеза, лепры и др.) и некоторых простейших (криптоспоридий). Используемые при этом основной фуксин и метиленовый синий позволяют выявить, помимо бактериальной флоры, фуксинофильные внутриклеточные включения, характерные для некоторых вирусных, особенно респираторных, инфекций. Азур и эозин эффективны для выявления различной бактериальной микрофлоры, особенно грамположительной, и некоторых простейших, в частности плазмодия малярии.
4. Методы, основанные на импрегнации нитратом серебра кусочков тканей, срезов или мазков, направлены на выявление разной, в основном бактериальной, флоры, поиски которой облегчаются в связи с тем, что импрегнированные серебром микроорганизмы немного увеличиваются в размерах.
Бактерии. Устойчивость к антибиотикам
Устойчивость (приобретенная) – формируется у бактерий при лечении антибиотиками микроорганизма. Антибиотикоустойчивые бактерии появляются вне зависимости от применения данного антибиотика; возможно существование антибиотикорезистентных особей к тем препаратам, которые еще не созданы.
Генетические аспекты приобретенной устойчивости: возникновение устойчивости может быть связана с изменениями в самой бактериальной хромосоме, возникающими в результате мутаций-хромосомная устойчивость. Обычно в результате мутации у бактерий возникает резистентность к одному антибиотику.
Внехромосомная устойчивость связана с наличием R-плазмид-фактора множественной лекарственной устойчивости. R-плазмида несет сразу несколько генов, ответственных за устойчивость к нескольким антибиотикам. Бактериальная клетка может иметь несколько разных R-плазмид. Они могут передаваться от бактерии к бактерии с помощью конъюгации или трансдукции.
Устойчивость приобретенная. Биохимические механизмы:
1. Может изменяться проницаемость клеточных мембран для антибиотиков.
2. Происходят изменения мишени (структура, выполняющая важную для жизнедеятельности бактерий функцию).
Так, устойчивость к стрептомицину возникает вследствие изменения рибосомального белка, к которому обычно присоединяется стрептомицин. В том и другом случае формирование резиснентности связано с передачей маркеров, находящихся в бактериальной хромосоме.
Основной биохимический механизм, при котором возникает устойчивость к антибиотикам – появление ферментов, превращающих активную форму антибиотика в неактивную. Самая важная роль в процессе образования устойчивости принадлежит пептидазам-ферменты, вызывающие гидролиз антибиотиков (например, β-лактамаза разрушает β-лактамное кольцо).
Циркулирующие в среде возбудители инфекций постепенно формируют так называемые госпитальные штаммы, т. е. штаммы наиболее эффективно адаптированные к местным особенностям той или иной среды.
Главной особенностью госпитальных штаммов является повышенная вирулентность (во всех случаях это первая и главная особенность госпитального штамма), а также специфическая адаптация к используемым лечебным препаратам (антибиотики, антисептики и т. п.).