Что относится к ядру

Особенности строения и функции ядра клетки

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Что относится к ядру

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

Что относится к ядру

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Источник

Биология. 11 класс

§ 14. Ядро клетки

Ядро — это обязательный компонент любой эукариотической клетки. В большинстве клеток имеется одно ядро, но существуют также двуядерные и многоядерные клетки. Например, у инфузории туфельки два ядра, а в клетках некоторых водорослей и грибов, в поперечнополосатых мышечных волокнах — несколько. Зрелые клетки ситовидных трубок покрытосеменных растений и эритроциты млекопитающих лишены ядер. Такие клетки утрачивают ядро в процессе развития, теряя способность к размножению.

Строение ядра. Обычно ядро имеет шаровидную или яйцевидную форму, однако в некоторых клетках форма ядра может быть иной: веретеновидной, линзовидной, подковообразной и др. Размеры клеточных ядер также отличаются. Тем не менее, несмотря на эти различия, все ядра устроены одинаково. Ядро клетки состоит из ядерной оболочки, ядерного сока, хроматина и одного или нескольких ядрышек (рис. 14.1).

Ядерная оболочка отделяет содержимое ядра от гиалоплазмы. Она состоит из двух мембран — наружной и внутренней, между которыми находится межмембранное пространство. Наружная мембрана ядра непосредственно переходит в мембрану эндоплазматической сети, на ее поверхности располагаются рибосомы. На внутренней мембране рибосомы отсутствуют.

В некоторых местах ядерной оболочки имеются круглые сквозные отверстия — ядерные поры (см. рис. 14.1). Благодаря им происходит обмен различными материалами между ядром и гиалоплазмой. *Ядерные поры образованы сложно организованными белковыми структурами, регулирующими транспорт веществ. Количество пор в одном ядре обычно составляет от нескольких сотен до нескольких тысяч и может меняться в зависимости от метаболической активности клетки.* Через ядерные поры из ядра в гиалоплазму выходят молекулы мРНК, тРНК, субъединицы рибосом. Из гиалоплазмы в ядро поступают АТФ, нуклеотиды, различные ионы, белки и другие вещества. *Небольшие молекулы и ионы проходят через ядерные поры за счет диффузии. Крупные молекулы транспортируются избирательно, путем активного транспорта.*

Хроматин — это нитевидные структуры ядра, образованные линейными молекулами ДНК и специальными белками. Белки обеспечивают упаковку длинных молекул ДНК в более компактные структуры. В неделящейся клетке хроматин может равномерно распределяться в объеме ядра или располагаться отдельными сгустками.

Ядрышко представляет собой плотное округлое образование, не ограниченное собственной мембраной. *Оно состоит из белков, РНК, ДНК и формируется в области расположения так называемых ядрышковых организаторов — участков ДНК, содержащих информацию о структуре рРНК.* В ядре может быть одно или несколько ядрышек, они могут появляться и исчезать. В ядрышке осуществляется синтез рРНК. Здесь они приобретают определенную пространственную конфигурацию и соединяются с особыми белками, поступающими из цитоплазмы. Таким образом в ядрышке происходит сборка отдельных субъединиц рибосом.

Функции ядра. Клеточное ядро содержит молекулы ДНК. Следовательно, оно осуществляет хранение наследственной информации клетки. В ядре информация о первичной структуре белков переписывается с молекул ДНК на молекулы мРНК, которые переносят ее в цитоплазму к месту синтеза белков. Субъединицы рибосом, в которых происходит синтез белков, и молекулы тРНК, участвующие в этом процессе, также образуются в ядре. Таким образом, ядро обеспечивает не только хранение, но и реализацию наследственной информации. Оно управляет всеми процессами жизнедеятельности клетки, определяя (путем синтеза молекул мРНК), какие белки и в какое время должны синтезироваться в рибосомах.

Источник

Клеточное ядро

Что относится к ядру

Что относится к ядру

Ядро (лат. nucleus ) — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка. Ядро состоит из хромати́на, я́дрышка, кариопла́змы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация (или редуплика́ция) — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Синтезированные в ядре молекулы РНК модифицируются, после чего выходят в цитоплазму. Образование обеих субъединиц рибосом происходит в специальных образованиях клеточного ядра — ядрышках. Таким образом, ядро клетки является не только вместилищем генетической информации, но и местом, где этот материал функционирует и воспроизводится.

Содержание

Тонкая структура клеточного ядра

Что относится к ядру

Что относится к ядру

Хроматин

Что относится к ядру

Что относится к ядру

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине, не транскрибируется, обычно это состояние характерно для незначимых или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированием.

Считается, что в ядре существуют так называемые функциональные домены хроматина(ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». К сожалению, вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.

От цитоплазмы ядро отделено ядерной оболочкой, образованной за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жёсткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. Ламины прикрепляются к внутренней мембране ядерной оболочки при помощи заякоренных в ней трансмембранных белков — рецепторов ламинов. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой. Пора не является дыркой в ядре, а имеет сложную структуру, организованную несколькими десятками специализированных белков — нуклеопоринов. Под электронным микроскопом она видна как восемь связанных между собой белковых гранул с внешней и столько же с внутренней стороны ядерной оболочки.

Что относится к ядру

Что относится к ядру

Ядрышко

Ядрышко находится внутри ядра, и не имеет собственной мембранной оболочки, однако хорошо различимо под световым и электронным микроскопом. Основной функцией ядрышка является синтез рибосом. В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки, принимающие участие в этих процессах. Некоторые из этих белков имеют специальную последовательность — сигнал ядрышковой локализации (NoLS, от англ. Nucleolus Localization Signal). Следует отметить, самая высокая концентрация белка в клетке наблюдается именно в ядрышке. В этих структурах было локализовано около 600 видов различных белков, причем считается, что лишь небольшая их часть действительно необходима для осуществления ядрышковых функций, а остальные попадают туда неспецифически.

Под электронным микроскопом в ядрышке выделяют несколько субкомпартментов. Так называемые Фибриллярные центры окружены участками плотного фибриллярного компонента, где и происходит синтез рРНК. Снаружи от плотного фибриллярного компонента расположен гранулярный компонент, представляющий собой скопление созревающих рибосомных субчастиц.

Ядерный матрикс

Что относится к ядру

Что относится к ядру

Эволюционное значение клеточного ядра

Основное функциональное отличие клеток эукариот от клеток прокариот заключается в пространственном разграничении процессов транскрипции (синтеза матричной РНК) и трансляции (синтеза белка рибосомой), что дает в распоряжение эукариотической клетки новые инструменты регуляции биосинтеза и контроля качества мРНК.

В то время, как у прокариот мРНК начинает транслироваться еще до завершения ее синтеза РНК-полимеразой, мРНК эукариот претерпевает значительные модификации (так называемый процессинг), после чего экспортируется через ядерные поры в цитоплазму, и только после этого может вступить в трансляцию. Процессинг мРНК включает несколько элементов.

Из предшественника мРНК (пре-мРНК) в ходе процесса, называемого сплайсингом вырезаются интроны — незначащие участки, а значащие участки — экзоны соединяются друг с другом. Причем экзоны одной и той же пре-мРНК могут быть соединены несколькими разными способами (альтернативный сплайсинг), так что один предшественник может превращаться в зрелые мРНК нескольких разных видов. Таким образом, один ген может кодировать сразу несколько белков.

Кроме того, интрон-экзонная структура генома, практически невозможная у прокариот (так как рибосомы смогут транслировать незрелые мРНК), дает эукариотам определенную эволюционную мобильность. Учитывая протяженность интронных участков, рекомбинация между двумя генами зачастую сводится к обмену экзонами. Благодаря тому, что экзоны часто соответствуют функциональным доменам белка, участки получившегося в результате рекомбинации «гибрида», зачастую сохраняют свои функции. В то же время у прокариот рекомбинация между генами невозможна без разрыва в значащей части, что безусловно уменьшает шансы на то, что получившийся белок будет функционален.

Процессинг мРНК тесно сопряжен с синтезом этих молекул и необходим для контроля качества. Непроцессированная или не полностью процессированная мРНК не сможет выйти из ядра в цитоплазму или будет нестабильна и быстро деградирует. У прокариот нет таких механизмов контроля качества, и из-за этого прокариотические мРНК имеют меньший срок жизни — нельзя допустить, чтобы неправильно синтезированная молекула мРНК, если такая появится, транслировалась в течение долгого времени.

Происхождение ядра

Клеточное ядро является важнейшей чертой эукариотических организмов, отличающей их от прокариот и архей. Несмотря на значительный прогресс в цитологии и молекулярной биологии, происхождение ядра не выяснено и является предметом научных споров. Выдвинуто 4 основных гипотезы происхождения клеточного ядра, но ни одна из них не получила широкой поддержки. [1]

Гипотеза, известная как «синтропная модель», предполагает что ядро возникло в результате симбиотических взаимоотношений между археей и бактерией (ни археи, ни бактерии не имеют оформленных клеточных ядер). По этой гипотезе, симбиоз возник, когда древняя архея (сходная с современными метаногенными археями), проникла в бактерию (сходную с современными Миксобактериями). Впоследствии архея редуцировалась до клеточного ядра современных эукариот. Эта гипотеза аналогична практически доказанным теориям происхождения митохондрий и хлоропластов, которые возникли в результате эндосимбиоза прото-эукариот и аэробных бактерий. [2] Доказательством гипотезы является наличие одинаковых генов у эукариот и архей, в частности генов гистонов. Также миксобактерии быстро передвигаются, могут образовывать многоклеточные структуры и имеют киназы и G-белки, близкие к эукариотическим. [3]

Согласно второй гипотезе, прото-эукариотическая клетка эволюционировала из бактерии без стадии эндосимбиоза. Доказательством модели является существование современных бактерий из отряда Planctomycetes, которые имеют ядерные структуры с примитивными порами и другие клеточные компартменты, ограниченные мембранами (ничего похожего у других прокариот не обнаружено). [4]

Согласно гипотезе вирусного эукариогенеза, окруженное мембраной ядро, как и другие эукариотические элементы, произошли вследствие инфекции прокариотической клетки вирусом. Это предположение основывается на наличии общих черт у эукариот и некоторых вирусов, а именно геноме из линейных цепей ДНК, кэпировании мРНК и тесном связывании генома с белками (гистоны эукариот принимаются аналогами вирусных ДНК-связывающих белков). По одной версии, ядро возникло при фагоцитировании (поглощении) клеткой большого ДНК-содержащего вируса. [5] По другой версии, эукариоты произошли от древних архей, инфицированных поксвирусами. Это гипотеза основана на сходстве ДНК-полимеразы современных поксвирусов и эукариот. [6] [7] Также предполагается, что нерешенный вопрос о происхождении пола и полового размножения может быть связан с вирусным эукариогенезом. [8]

Наиболее новая гипотеза, названная экзомембранной гипотезой, утверждает, что ядро произошло от одиночной клетки, которая в процессе эволюции выработала вторую внешнюю клеточную мембрану; первичная клеточная мембрана после этого превратилась в ядерную мембрану, и в ней образовалась сложная система поровых структур (ядерных пор) для транспорта клеточных компонентов, синтезированных внутри ядра. [9]

Источник

Что относится к ядру

Что относится к ядру

Что относится к ядру

Что относится к ядру

Что относится к ядру

Что относится к ядру

Что относится к ядру

Что относится к ядру

Что относится к ядру

Полезное

Смотреть что такое «Ядро» в других словарях:

Ядро — атомное ядро положительно заряженная массивная центральная часть атома, состоящая из протонов и нейтронов (нуклонов). дочернее ядро ядро, образующееся в результате распада материнского ядра. материнское ядро атомное ядро, испытывающее… … Термины атомной энергетики

ядро — сущ., с., употр. сравн. часто Морфология: (нет) чего? ядра, чему? ядру, (вижу) что? ядро, чем? ядром, о чём? о ядре; мн. что? ядра, (нет) чего? ядер, чему? ядрам, (вижу) что? ядра, чем? ядрами, о чём? о ядрах 1. Ядром называют внутреннюю,… … Толковый словарь Дмитриева

ЯДРО — ЯДРО, ядра, мн. ядра, ядер, ядрам, ср. 1. Внутренняя часть плода в твердой оболочке. Ядро ореха. 2. только ед. Внутренняя, средняя, центральная часть чего нибудь (спец.). Ядро древесины. Ядро земли (геол.). Ядро семяпочки (бот.). Ядро кометы… … Толковый словарь Ушакова

ЯДРО — ср. ядрышко, ядрище, недро, самая середка, внутри вещи, нутро ее или серединная глубь; сосредоточенная суть, сущность, основанье; твердое, крепкое, или самое главное, важное, сущное; | круглое тело, шар. Из сих двух значений выводятся прочие: Сын … Толковый словарь Даля

ЯДРО — (nucleus), обязательная часть клетки у мн. одноклеточных и всех многоклеточных организмов. По наличию или отсутствию в клетках оформленного Я. все организмы делят соответственно на эукариот и прокариот. Осн. отличия заключаются в степени… … Биологический энциклопедический словарь

ядро — ЯДРО1, а, мн ядра, ядер, ядрам. Внутренняя часть плода, заключенная в твердую оболочку. Ядро грецкого ореха внешне очень похоже на головной мозг млекопитающего. ЯДРО2, а, мн ядра, ядер,ср Внутренняя центральная часть предмета (состоящего из… … Толковый словарь русских существительных

ядро — См … Словарь синонимов

ядро — а; мн. ядра, ядер, ядрам; ср. 1. Внутренняя часть плода (обычно ореха), заключённая в твёрдую оболочку. * А орешки не простые: Всё скорлупки золотые, Ядра чистый изумруд (Пушкин). Не разгрызть ореха, не съесть и ядра (Посл.). 2. Внутренняя,… … Энциклопедический словарь

ЯДРО — • ЯДРО, в биологии, ограниченная мембраной часть большинства КЛЕТОК. Содержит ХРОМОСОМЫ. Т. к. ядро содержит генетический материал, оно является необходимым для поддержания клеточных процессов. В ядре производятся РНК, которые используются для… … Научно-технический энциклопедический словарь

ЯДРО — (биологическое), обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. От окружающей цитоплазмы ядро отделено оболочкой. Размеры от 1 мкм (у некоторых простейших) до 1 мм (в яйцах некоторых рыб и земноводных). В ядре… … Современная энциклопедия

ЯДРО — в биологии обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Типичное ядро отделено от окружающей цитоплазмы оболочкой, содержит ядрышко, хромосомы и кариоплазму. Размеры от 1 мкм (у некоторых простейших) до 1 мм… … Большой Энциклопедический словарь

Источник

Строение и функции ядра

Ядро строение функция

Что относится к ядру

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро, но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра|ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра|ядра — обычно от 3 до 10 мкм.

Строение ядра|ядра: 1 — наруж­ная мембрана; 2 — внут­ренняя мемб­рана; 3 — поры|поры; 4 — ядрышко; 5 — гетеро­хроматин; 6 — эухро­матин.

Кариоплазма (ядерный сок, нуклеоплазма) — внутреннее содержимое ядра|ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки|белки (в том числе ферменты ядра|ядра), свободные нуклеотиды.

Хроматин — внутренние нуклеопротеидные структуры ядра|ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки|белки (30–50%), 3) негистоновые белки|белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин — генетически активные, гетерохроматин — генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо|слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотнённые) участки хроматина. Хроматин — форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра|ядра: 1) хранение наследственной информации и передача её дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путём регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Хромосомы

Хромосомы — это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин — различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки|белки (30–50%), 3) негистоновые белки|белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины|длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определённую трёхмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но ещё петли|петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 — метацентрическая; 2 — субметацентрическая; 3, 4 — акроцентрические. Строение хромосомы: 5 — центромера; 6 — вторичная перетяжка; 7 — спутник; 8 — хроматиды; 9 — теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник — участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной — 2n) набор хромосом, половые клетки — гаплоидный (одинарный — n). Диплоидный набор аскариды равен 2, дрозофилы — 8, шимпанзе — 48, речного рака — 196. Хромосомы диплоидного набора разбиваются на пары|пары; хромосомы одной пары|пары имеют одинаковое строение, размеры, набор генов и называются гомологичными.

Кариотип — совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма — графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида — одинаковые. Аутосомы — хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы — хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары|пары аутосом и 1 пару|пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

Половые хромосомы не относятся ни к одной из групп и не имеют номера|номера. Половые хромосомы женщины — ХХ, мужчины — ХУ. Х-хромосома — средняя субметацентрическая, У-хромосома — мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими.

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

Ядро строение функция

Что относится к ядру

Клетка как элементарная единица живого организма имеет сложную структуру. Всё|Все её органеллы взаимодействуют и работают слаженно. Причём регулирует их функции клеточное ядро. Благодаря ему клетка способна делиться и сохранять постоянство в каждом поколении. Из-за этого строение ядра|ядра клетки настолько сложное.

Строение ядра|ядра клетки реализовано таким образом, чтобы оно могло выполнять основные функции. Среди них сохранение и воспроизведение информации, заложенной в нуклеиновых кислотах. Также ядро синтезирует рибосомы, информационную РНК и отвечает за клеточное деление. Однако это лишь обобщённые задачи, которые нужно рассматривать детальнее в частном порядке. Итак, функции ядра|ядра клетки следующие:

Данный список более полный и детальный. При этом любая эукариотическая клетка играет важнейшую роль в реализации данных задач. Потому строение ядра|ядра эукариотической клетки настолько сложное. У прокариотических организмов упомянутый структурный элемент заменяется плазмидой, которая не всегда способна осуществлять всё|все указанные выше процессы.

Особенности строения ядра|ядра клетки

Ядро эукариотов представляет собой пространство, в котором осуществляются всё|все указанные выше процессы. Это участок изменённой цитоплазмы, где содержатся хромосомы или хроматин (в зависимости от фазы существования клетки), ядрышко и кариоматрикс. При этом ядро – это мембранная структура, которая содержит двуслойную билипидную кариолемму, имеющую поры|поры. Посредством последних из него выходят рибосомы, попадающие на шероховатый ретикулум клеточной эндоплазмы. Также через поры|поры ядро покидает информационная РНК.

Нуклеоплазма – это среда, на основе которой выполнено строение ядра|ядра клетки. Она по консистенции очень похожа на цитоплазму, но имеет другой показатель кислотности. В ядре присутствуют в основном кислые белки|белки, тогда как в цитоплазме – основные. Всю толщу|толщу нуклеоплазмы пронизывает кариоматрикс — структура трёхмерного типа, созданная из фибриллярных белков. Они играют роль опоры и поддерживают постоянную форму ядра|ядра. Это препятствует деформации последнего в результате многочисленных механических воздействий.

Основная особенность, согласно закономерностям которой заложено строение ядра|ядра клетки, заключается в наличии механического и химического барьера, отделяющего нуклеус от цитоплазмы. Это необходимо для разграничения сред с разной реакцией (кислой и основной).

Кариолемма – это двухслойная мембрана, наружная сторона которой прикреплена к шероховатой эндоплазматической сети. К внутренней же прикреплены фибриллярные белки|белки ядерного матрикса. При этом между мембранами ядра|ядра существует перинуклеарное пространство. Функциональная его роль не выяснена. Предполагается, что оно возникло в результате отталкивания глицериновых остатков, имеющих одинаковый заряд. И главное: в кариолемме существует система пор, позволяющих рибосомам и информационной РНК попадать|попадать в эндоплазматическую сеть, а лигандам внутриядерных рецепторов передавать сигналы о необходимости синтеза определённых белков.

Существует компетентное, научно обоснованное мнение, объясняющее строение клетки: клеточная мембрана, ядро, эндоплазматическая сеть (гладкая и шероховатая) – это цельная структура. Она образована извитием мембраны и не имеет структурных разграничений. То есть одна и та же мембрана покрывает одновременно клетку снаружи, а за счёт выпячиваний формирует место для ядра|ядра и эндоплазматической сети.

Лишь наличие митохондрий и хлоропластов объясняется другим образом. Принято считать, что митохондрия в филогенезе была отдельной клеткой, которая была захвачена эукариотами (или прокариотами). Частичное доказательство теории получено после открытия митохондриальной ДНК и нуклеиновой кислоты|кислоты хлоропластов. Очевидно, что ранее эти органеллы были отдельными бактериями.

При электронном микроскопировании строение ядра|ядра эукариотической клетки выглядит более детальным, чем при рассмотрении под световым микроскопом. В частности, становятся заметны нити конденсированного и деспирализованного хроматина и ядрышко. Роль последнего заключается в синтезе рибосомальных субъединиц – комплексов белка|белка и рибосомальных РНК.

Структура ядрышка двойственная. В его центре располагается фибриллярный компонент. Он представляет собой совокупность нитевидных молекул РНК, которые будут использованы для образования рибосом. К ним транспортируются белки|белки, синтезированные на шероховатом ретикулуме эндоплазмы. Взаимодействуя, они образуют гранулярный компонент ядрышка – готовые субъединицы рибосом. Одна малая и одна большая|большая субъединицы соединяются в цельную рибосому, которая выводится через поры|поры кариолеммы в эндоплазматическую сеть. Там она будет синтезировать белки|белки.

Важно, что строение и функции ядра|ядра клетки взаимосвязаны. Это значит, что в структуре реализованы те элементы, которые играют важную роль в жизнедеятельности клетки. При этом не следует рассматривать ядро отдельно от остальных клеточных структур, потому как оно получает от них информацию и посредством экспрессии генов регулирует их функции. Это одно из важнейших свойств данного элемента.

Всё|Все гены – это строгая|строгая последовательность соединённых нуклеотидов двуспиральной ДНК. Это огромная молекула, которая располагается по всему объёму ядра|ядра. А для удобства и сохранения целостности молекулярных связей она организована в строгой последовательности. Во-первых, соединена с гистонами для образования кластерной структуры. Во-вторых, она затем конденсируется с образованием двух видов хроматина (гетерохроматина и эухроматина).

Гетерохроматин – это плотно укомплектованная наследственная информация. Она не может считываться и воспроизводиться, а когда это потребуется, то сначала нужный участок должен освободиться от гистонов. Эухроматин – менее плотный тип нуклеопротеида. Он может реплицироваться и транскрибироваться.

Существует и более плотная компоновка наследственного материала – хромосомная. Сами хромосомы можно заметить только при делении клетки. Они представляют собой максимально плотно организованный хроматин. Выглядит он так, будто ядро собирает всё|все важное в одном месте и осуществляет «переезд». По сути, так и случается, но немного по-другому. Хромосомы удваиваются, а потом распределяются так, чтобы у каждой клетки, которая получится после деления, оказался такой же набор генетического материала. После этого в «новом» ядре хромосомы снова деспирализуются в гетерохроматин и в эухроматин.

Таблица морфофункциональных особенностей ядра|ядра

Для удобства изучения вопроса весь вышеизложенный материал следует представить в систематизированном виде. Итак, что же собой представляет строение ядра|ядра клетки? Таблица, расположенная ниже, состоит из трёх блоков, в которых содержится вся основная информация.

ЭлементСтроениеФункции

При оценке всех биохимических процессов, протекающих в ядре, любой|любой учёный поражается их сложности. И очевидно, что из-за этого была создана такая сложная морфология нуклеуса. Однако строение и функции ядра|ядра клетки сбалансированы. То есть максимально простая структура обеспечивает протекание необходимых биохимических реакций. Лишних составляющих здесь нет, а задействованы только те элементы, которые могут быть полезны клетке.

Видео по теме : Ядро строение функция

Ядро строение функция

Что относится к ядру

Ядро клетки — важнейшая её органелла, место хранения и воспроизведения наследственной информации. Это мембранная структура, занимающая 10-40 % клетки, функции которой очень важны для жизнедеятельности эукариотов. Однако даже без наличия ядра|ядра реализация наследственной информации возможна. Примером данного процесса является жизнедеятельность бактериальных клеток. Тем не менее особенности строения ядра|ядра и его предназначение очень важны для многоклеточного организма.

Расположение ядра|ядра в клетке и его структура

Ядро располагается в толще цитоплазмы и непосредственно контактирует с шероховатой и гладкой эндоплазматической сетью. Оно окружено двумя мембранами, между которыми находится перинуклеарное пространство. Внутри ядра|ядра присутствует матрикс, хроматин и некоторое количество ядрышек.

Для удобства изучения клетки ядра|ядра, последнее следует воспринимать как пузырьки, ограниченные оболочками от других пузырьков. Ядро — это пузырёк с наследственной информацией, находящийся в толще клетки. От её цитоплазмы он ограждается бислойной липидной оболочкой. Строение оболочки ядра|ядра похожее на клеточную мембрану. В действительности их отличает только название и количество слоёв. Без всего этого они являются одинаковыми по строению и функциям.

Строение кариолеммы (ядерной мембраны) двуслойное: она состоит из двух липидных слоёв. Наружный билипидный слой кариолеммы непосредственно контактирует с шероховатым ретикулумом эндоплазмы клетки. Внутренняя кариолемма — с содержимым ядра|ядра. Между наружной и внутренней кариомембраной существует перинуклеарное пространство. Видимо, оно образовалось из-за электростатических явления — отталкивания участков глицериновых остатков.

Функцией ядерной мембраны является создание механического барьера, разделяющего ядро и цитоплазму. Внутренняя мембрана ядра|ядра служит местом фиксации ядерного матрикса — цепи белковых молекул, которые поддерживают объёмную структуру. В двух ядерных мембранах существуют специальные поры|поры: через них в цитоплазму к рибосомам выходит информационная РНК. В самой|самой толще ядра|ядра находятся несколько ядрышек и хроматин.

Внутреннее строение нуклеоплазмы

Особенности строения ядра|ядра позволяют сравнить его с самой|самой клеткой. Внутри ядра|ядра также присутствует особая среда (нуклеоплазма), представленная гель-золем, коллоидным раствором белков. Внутри неё есть нуклеоскелет (матрикс), представленный фибриллярными белками|белками. Основное отличие состоит только в том, что в ядре присутствуют преимущественно кислые белки|белки. Видимо, такая реакция среды|среды нужна для сохранения химических свойств нуклеиновых кислот и протекания биохимических реакций.

Строение клеточного ядра|ядра не может быть завершённым без ядрышка. Им является спирализованная рибосомальная РНК, которая находится в стадии созревания. Позднее|Позднее из неё получится рибосома — органелла, необходимая для белкового синтеза. В структуре ядрышка выделяют два компонента: фибриллярный и глобулярный. Они различаются только при электронной микроскопии и не имеют своих мембран.

Фибриллярный компонент находится в центре ядрышка. Он представляет собой нити РНК рибосомального типа, из которых будут собираться рибосомные субъединицы. Если рассматривать ядро (строение и функции), то очевидно, что из них впоследствии будет образован гранулярный компонент. Это те же созревающие рибосомальные субъединицы, которые находятся на более поздних стадиях своего развития. Из них вскоре образуются рибосомы. Они удаляются из нуклеоплазмы через ядерные поры|поры кариолеммы и попадают|попадают на мембрану шероховатой эндоплазматической сети.

Хроматин и хромосомы

Строение и функции ядра|ядра клетки органично связаны: здесь присутствует только те структуры, которые нужны для хранения и воспроизведения наследственной информации. Также существует кариоскелет (матрикс ядра|ядра), функцией которого является поддержание формы органеллы. Однако самой|самой важной составляющей ядра|ядра является хроматин. Это хромосомы, играющие роль картотек различных групп генов.

Хроматин представляет собой сложный белок|белок, который состоит из полипетида четвертичной структуры, соединённого с нуклеиновой кислотой (РНК или ДНК). В плазмидах бактерий хроматин также присутствует. Почти четверть от всего веса|веса хроматина составляют гистоны — белки|белки, ответственные за «упаковку» наследственной информации. Эту особенность структуры изучает биохимия и биология. Строение ядра|ядра сложное как раз из-за хроматина и наличия процессов, чередующих его спирализацию и деспирализацию.

Наличие гистонов даёт возможность уплотнять и укомплектовать нить ДНК в небольшом месте — в ядре клетки. Это происходит следующим образом: гистоны образуют нуклеосомы, которые представляю собой структуру наподобие бус. Н2В, Н3, Н2А и Н4 — это главные гистоновые белки|белки. Нуклеосома образована четырьмя парами|парами каждого из представленных гистонов. При этом гистон Н1 является линкерным: он связан с ДНК в месте е входа в нуклеосому. Упаковка ДНК происходит в результате «наматывания» линейной молекулы на 8 белков гистоновой структуры.

Строение ядра|ядра, схема которого представлена выше, предполагает наличие соленоидподобной структуры ДНК, укомплектованной на гистонах. Толщина данного конгломерата составляет порядка 30 нм. При этом структура может уплотняться и далее, чтобы занимать меньше места|места и менее подвергаться механическим повреждениям, неизбежно возникающим в процессе жизни клетки.

Структура, строение и функции ядра|ядра клетки зациклены на том, чтобы поддерживать динамические процессы спирализации и деспирализации хроматина. Потому существует две главные его фракции: сильно спирализованная (гетерохроматин) и малоспирализованная (эухроматин). Они разделены как структурно, так и функционально. В гетерохроматине ДНК хорошо защищена от любых воздействий и не может транскрибироваться. Эухроматин защищён слабее, однако гены могут удваиваться для синтеза белка|белка. Чаще всего участки гетерохроматина и эухроматина чередуются на протяжении длины|длины всей хромосомы.

Клеточное ядро, строение и функции которого описываются в данной публикации, содержит хромосомы. Это сложный и компактно упакованный хроматин, увидеть который можно при световой микроскопии. Однако это возможно только в случае, если на предметном стекле расположена клетка в стадии митотического или мейотического деления. Одним их этапов является спирализация хроматина с образованием хромосом. Их структура предельно проста: хромосома имеет теломеру и два плеча. У каждого многоклеточного организма одного вида одинаковое строение ядра|ядра. Таблица хромосомного набора у него также аналогичная.

Реализация функций ядра|ядра

Основные особенности строения ядра|ядра связаны с выполнением некоторых функций и необходимостью их контроля. Ядро играет роль хранилища наследственной информации, то есть это своего рода|рода картотека с записанными последовательностями аминокислот всех белков, которые могут синтезироваться в клетке. Значит, для выполнения какой-либо функции клетка должна синтезировать белок|белок, структура которого закодирована в гене.

Чтобы ядро «понимало», какой конкретно белок|белок нужно синтезировать в нужный час, существует система наружных (мембранных) и внутренних рецепторов. Информация от них поступает к ядру посредством молекулярных передатчиков. Наиболее часто это реализуется посредством аденилатциклазного механизма. Так на клетку воздействуют гормоны (адреналин, норадреналин) и некоторые лекарства с гидрофильной структурой.

Вторым механизмом передачи информации является внутренний. Он свойственен липофильным молекулам — кортикостероидам. Это вещество проникает через билипидную мембрану клетки и направляется к ядру, где взаимодействует с его рецептором. В результате активации рецепторных комплексов, расположенных на клеточной мембране (аденилатциклазный механизм) или на кариолемме, запускается реакция активации определённого гена. Он реплицируется, на его основании строится информационная РНК. Позднее|Позднее по структуре последней синтезируется белок|белок, выполняющий некоторую функцию.

Ядро многоклеточных организмов

В многоклеточном организме особенности строения ядра|ядра такие же, как и в одноклеточном. Хотя существуют некоторые нюансы. Во-первых, многоклеточность подразумевает, что у ряда клеток будет выделена своя специфическая функция (или несколько). Это значит, что некоторые гены постоянно будут деспирализованы, тогда как другие находятся в неактивном состоянии.

К примеру, в клетках жировой ткани синтез белков будет идти малоактивно, а потому большая|большая часть хроматина спирализована. А в клетках, к примеру, экзокринной части поджелудочной железы, процессы биосинтеза белка|белка идут постоянно. Потому их хроматин деспирализован. На тех участках, гены которых реплицируются чаще всего. При этом важна ключевая особенность: хромосомный набор всех клеток одного организма одинаков. Только из-за дифференциации функций в тканях некоторые из них выключаются из работы, а другие деспирализуются чаще прочих.

Безъядерные клетки организма

Существуют клетки, особенности строения ядра|ядра которых могут не рассматриваться, потому как они в результате своей жизнедеятельности либо угнетают его функцию, либо вовсе избавляются от него. Простейший пример — эритроциты. Это кровяные клетки, ядро у которых присутствует только на ранних стадиях развития, когда синтезируется гемоглобин. Как только его количества достаточно для переноса кислорода, ядро удаляется из клетки, дабы облегчить её не мешать транспорту кислорода.

В общем виде эритроцит представляет собой цитоплазматический мешок, наполненный гемоглобином. Похожая структура характерна|характерна и для жировых клеток. Строение клеточного ядра|ядра адипоцитов предельно упрощено, оно уменьшается и смещается к мембране, а процессы белкового синтеза максимально угнетаются. Эти клетки также напоминают «мешки», наполненные жиром, хотя, разумеется, разнообразие биохимических реакций в них чуть большее, чем в эритроцитах. Тромбоциты также не имеют ядра|ядра, однако их не стоит|стоит считать полноценными клетками. Это осколки клеток, необходимые для реализации процессов гемостаза.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *