Что относится к внутреннему участку цепи
Электрическая цепь и ее элементы
В электрической цепи должен быть источник движения электрически заряженных частиц, которое и называется электрическим током. Иными словами, электрический ток должен иметь своего возбудителя. Такой возбудитель тока, именуемый источником (генератором), является составным элементом электрической цепи.
Электрический ток может вызывать различные по характеру эффекты — так, он заставляет светиться лампочки накаливания, приводит в действие нагревательные приборы и электродвигатели. Все эти приборы и устройства принято называть приемниками электрического тока. Так как через них протекает ток, т. е. они включены в электрическую цепь, то приемники также являются элементами цепи.
Протекание тока требует, чтобы между источником и приемником существовала связь, которая и реализуется при помощи электрических проводов, представляющих со бой третий важный составной элемент электрической цепи.
Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.
Электрический ток может протекать только по замкнутой электрической цепи. Разрыв цепи в любом месте вызывает прекращение электрического тока.
Под электрическими цепями постоянного тока в электротехнике подразумевают цепи, в которых ток не меняет своего направления, т. е. полярность источников ЭДС в которых постоянна.
Под электрическими цепями переменного тока имеют ввиду цепи, в которых протекает ток, который изменяется во времени (смотрите, переменный ток).
Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др.
В качестве вспомогательного оборудования в электрическую цепь входят аппараты для включения и отключения (например, рубильники), приборы для измерения электрических величин (например, амперметры и вольтметры), аппараты защиты (например, плавкие предохранители).
Элементы электрической цепи делятся на активные и пассивные. К активным элементам электрической цепи относятся те, в которых индуцируется ЭДС (источники ЭДС, электродвигатели, аккумуляторы в процессе зарядки и т. п.). К пассивным элементам относятся электроприемники и соединительные провода.
Для условного изображения электрических цепей служат электрические схемы. На этих схемах источники, приемники, провода и все другие приборы и элементы электрической цепи обозначаются при помощи выполненных определенным образом условных знаков (графических обозначений).
Согласно ГОСТ 18311-80:
По топологическим особенностям электрические цепи подразделяют:
на простые (одноконтурные), двухузловые и сложные (многоконтурные, многоузловые, планарные (плоскостные) и объемные);
двухполюсные, имеющие два внешних вывода (двухполюсники и многополюсные, содержащие более двух внешних выводов (четырехполюсники, многополюсники).
Устройства, передающие энергию от источников к приемникам, являются четырехполюсниками, так как они должны обладать, по меньшей мере, четырьмя зажимами для передачи энергии от генератора к нагрузке. Простейшим устройством передачи энергии являются провода.
Активный и пассивный двухполюсники в электрической цепи
Обобщенная эквивалентная схема электрической цепи
Электрическая цепь, электрическое сопротивление хотя бы одного из участков которой зависит от значений или от направлений токов и напряжений в этом участке цепи, называется нелинейной электрической цепью. Такая цепь содержит хотя бы один нелинейный элемент.
При описании свойств электрических цепей устанавливается связь между величинами электродвижущей силы (ЭДС), напряжений и токов в цепи с величинами сопротивлений, индуктивностей, емкостей и способом построения цепи.
При анализе электрических схем пользуются следующими топологическими параметрами схем:
Старый учебный диафильм. Одна из 7 частей старого учебного диафильма «Электротехника с основами электроники», выпущенного в 1973 году фабрикой учебно-наглядных пособий:
Внутренняя и внешняя электрическая цепь
Вы будете перенаправлены на Автор24
Электрической цепью в физике считается определенный комплекс разного рода элементов, соединенных между собой проводниками, основным назначением которого является протекание тока.
Ассортимент элементов электрической цепи достаточно широк. Так, они бывают:
Элементы электрической цепи
Каждая электрическая цепь будет включать в себя разноплановые объекты и устройства, формирующие специальные пути для прохождения электротока. С целью детального описания электромагнитных процессов, осуществляемых в каждом из них, на практике применяют такие понятия, как:
Согласно условному распределению, все элементы электрической цепи подразделяются на три составные части. Первую представляют источники питания, вырабатывающие электроэнергию. Вторая характеризуется элементами, преобразующими электричество в иные виды энергии, больше известные в виде приемников. Третья часть составляют передающие устройства – провода и прочие установки, отвечающие за обеспечение соответствующего качества и уровня напряжения.
Внутренние и внешние части электрической цепи
Составными простейшей электрической цепи являются: источник, один или несколько приемников электроэнергии с последовательным соединением и соединительные провода.
Источник питания контролирует образование внутренней части цепи, а потребитель, в то же время, формирует ее внешнюю часть (в совокупности с измерительными приборами, коммутирующими аппаратами и соединительными проводами).
Внешний участок (иными словами, внешняя цепь) будет состоять из одного или нескольких приемников электроэнергии, а также из соединительных проводов и разных вспомогательных устройств, включенных в такую цепь. Наряду с тем, внутренний участок (называется также внутренняя цепь) — это и есть сам источник.
Готовые работы на аналогичную тему
При составлении расчетных схем элементы электроцепи, обладающие некоторым сопротивлением, (электролампы, например, или электронагревательные приборы) изображаются схематически в формате сосредоточенных в определенном месте схемы резисторов с сопротивлением. То же касается и элементов с индуктивностью (обмотки генераторов, трансформаторов и электродвигателей) и емкостью (трансформаторы).
Вспомогательным элементам электроцепей в виде включающих и выключающих аппаратов, защитных устройств, некоторых электроизмерительных приборов часто свойственно малое сопротивление, при этом они практически не оказывают воздействия на значения напряжений и токов. По этой причине они во внимание не принимаются и не указываются на схемах.
В момент образования замкнутого контура во внутренней и внешней части цепи, в ней фиксируют возникновение электрического тока. Силу тока, таким образом, определяет количество электричества (заряда), проходящего за единицу времени через поперечное сечение проводника:
Прохождение в цепи электрического тока взаимосвязано с процессами преобразования энергии в каждом ее элементе, которые происходят в непрерывном режиме. В рамках процесса преобразования иных видов энергии в электрическую мы наблюдаем возбуждение в источнике питания электродвижущей силы (ЭДС).
Обратная сопротивлению величина называется проводимостью:
Напряжение, электродвижущая сила, ток и сопротивление связывает в простейшей цепи закон Ома, который выражается формулой:
Основные законы для электрических цепей
При анализе цепей сложного и простого типа широко применимы законы Кирхгофа, Ома, Джоуля Ленца, Фарадея, Ампера. Законы Ома существуют в двух вариациях: для участка цепи и полной цепи. Ток в участке цепи будет прямо пропорциональным напряжению на таком участке и обратно пропорциональным сопротивлению на нем, то есть:
При произведении тока участка цепи на величину сопротивления возникает падение на данном участке. Ток в электроцепи будет прямо пропорционален ЭДС источника и обратно пропорциональным сумме сопротивлений, состоящим из внутреннего и внешнего типа сопротивления источника питания. Таким образом:
Закон Джоуля-Ленца позволяет определять количество тепловой энергии, которое будет выделяться на сопротивление при протекании по нему электрического тока. Согласно формуле, это записывается так:
Под эквивалентными преобразованиями понимается замена участков электрической цепи, содержащая последовательно и параллельно соединенные несколько элементов посредством одного элемента. При этом следствием такой замены становится неизменность общего тока и напряжения цепи.
В качестве основной особенности последовательного соединения выступает наличие общего тока, равного по значению для всех элементов (включая также и последовательные). Это, в свою очередь, способствует прямой пропорциональности напряжения сопротивлению участка цепи на каждом из включенных последовательно элементов.
Электрический ток и закон Ома
теория по физике 🧲 постоянный ток
Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.
Условия существования электрического тока:
Носители электрического тока в различных средах
Среда | Носители электрического тока |
Металлы | Свободные электроны |
Электролиты (вещества, проводящие ток вследствие диссоциации на ионы) | Положительные и отрицательные ионы |
Газы | Ионы и электроны |
Полупроводники | Электроны и дырки (атом, лишенный одного электрона) |
Вакуум | Электроны |
Электрическая цепь и ее схематическое изображение
Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.
Основные элементы электрической цепи:
Электрическая цепь также может содержать:
Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.
Условные обозначения некоторых элементов электрической цепи
Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:
Направление электрического тока в металлах
По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».
Действия электрического тока (преобразования энергии)
Электрический ток способен вызывать различные действия:
Основные параметры постоянного тока
Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.
Основными параметрами электрического тока являются:
Сила тока
Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:
Заряд, проходящий по проводнику за время t при силе тока, равной I:
Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?
2 минуты = 120 секунд
Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:
Сила тока и скорость движения электронов:
n — (м –3 ) — концентрация, S (м 2 ) — площадь сечения проводника, v — скорость электронов.
Внимание!
Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙10 8 м/с.
Сопротивление
Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:
Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?
Сопротивление первого и второго проводника соответственно:
Поделим электрическое сопротивление второго проводника на сопротивление первого:
Отсюда сопротивление второго проводника равно:
Напряжение
Напряжение характеризует работу электрического поля по перемещению положительного заряда:
Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.
Закон Ома для участка цепи
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:
Иллюстрация закона Ома.
Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.
Закон Ома для участка цепи с учетом формулы для расчета сопротивления:
Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:
Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.
Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:
Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.
Сначала переведем единицы измерения величин в СИ:
При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,
Замкнутая электрическая цепь
Простейшая электрическая цепь состоит из источника электрической энергии, ее потребителя и соединительных проводов (см. рис. 1).
Рисунок 1. Простейшая электрическая цепь: Б — источник электрической энергии; SA — выключатель; EL — потребитель электрической энергии (лампа).
Кроме того, в электрическую цепь обычно включаются электроизмерительные приборы и приборы для замыкания и размыкания цепи (рис. 2).
Рисунок 2. Замкнутая электрическая цепь
Любая замкнутая электрическая цепь делится на две части: внешнюю, называемую внешним участком цепи, и внутреннюю, называемую внутренним участком цепи.
Внешний участок (внешняя цепь) состоит из одного или нескольких потребителей электрической энергии, соединительных проводов и различных приборов, включенных в эту цепь. Внутренний участок (внутренняя цепь) представляет собой сам источник электрической энергии.
Соберем замкнутую электрическую цепь, взяв, например, в качестве источника электрической энергии аккумуляторную батарею (рис. 2,3), а в качестве потребителя электрической энергии — электрическую лампочку накаливания. Включим в цепь амперметр и выключатель, при помощи которого можно замыкать и размыкать цепь.
Рисунок 3. Электрическая схема простейшей цепи
Когда выключатель разомкнут, т. е. когда электрическая цепь разорвана, лампочка не горит, а стрелка амперметра стоит на нуле, т. е. электрического тока в цепи нет. Замкнув цепь, нетрудно убедиться, что лампочка загорится, а стрелка амперметра отклонится на какой-то угол, что свидетельствует о наличии в цепи электрического тока.
Из этого опыта можно сделать вывод, что электрический ток проходит только по замкнутой цепи. Следовательно, непременным условием наличия электрического тока в цепи является надежное соединение проводниками источника электрической энергии с ее потребителями.
Источниками электрической энергии для питания радиотехнической аппаратуры служат гальванические элементы, аккумуляторы, генераторы и т. д.
Вернемся вновь к простейшей замкнутой цепи. Соберем схему, показанную на рис. 4, и будем поочередно включать амперметр в разные точки цепи, заметим, что куда бы прибор ни был включен, он покажет одну и ту же величину тока.
Рисунок 4. В любой из точек такой цепи амперметр покажет одну и ту же величину тока
Исходя из этого можно сделать такой вывод: в замкнутой электрической цепи, не имеющей ответвлений, величина тока на всех участках цепи одинакова.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Что относится к внутреннему участку цепи
В предыдущем параграфе было показано, что электрическая цепь имеет две существенно различные части. Часть цепи, в которой заряды движутся по направлению действия электрических сил на рис. 16.3), называют внешней, а часть цепи, в которой заряды движутся в сторону действия сторонних сил на рис. 16.3), называют внутренней. Иначе говоря, внутренней цепью является источник электрической энергии, а внешней — вся остальная часть цепи.
Те точки, в которых внешняя цепь граничит с внутренней, называют полюсами. Во внешней цепи заряды движутся из одной точки в другую только при наличии разности потенциалов; поэтому, когда в замкнутой цепи идет ток, потенциал во внешней цепи от точки к точке уменьшается (в направлении от А к В на рис. 16.3). Таким образом, у одного из полюсов имеется самый большой потенциал, а у другого — самый маленький потенциал по сравнению с другими точками цепи. Полюс с наибольшим
потенциалом называют положительным и обозначают знаком «+», а полюс с наименьшим потенциалом называют отрицательным и обозначают знаком «-».
В схемах электрических цепей применяются условные обозначения, показанные на рис. 16.4. Принято считать, что тонкая длинная черта в обозначении источника электрической энергии является положительным полюсом, а короткая толстая — отрицательным.
Схема простой электрической цепи с включением измерительных приборов показана на рис. 16.5. Напомним, что за направление тока во внешней цепи принимают движение положительных зарядов от положительного полюса к отрицательному (§ 16.2), а во внутренней — от отрицательного полюса к положительному, хотя в металлах электроны движутся в обратную сторону.
Поскольку во внешней цепи по направлению тока потенциал от точки к точке падает, напряжение на любом участке, составляющем часть внешней цепи (рис. 16.5), меньше, чем напряжение на полюсах источника, т. е. на всей внешней цепи. Заметим, что это справедливо только при наличии тока в цепи. Если цепь разомкнуть, то потенциал всех точек проводника, соединенного с одним из полюсов, будет один и тот же. (Подумайте, существует ли при этом напряжение между полюсами.)