Что относится к токоограничивающим аппаратам

Токоограничивающие коммутационные аппараты

Токоограничивающие коммутационные аппараты ограничивают ток КЗ в течение первого полупериода его появления и далее незамедлительно отключают КЗ. При этом, если ток КЗ значителен, а ожидаемый при КЗ ток не превышает коммутационной способности аппарата, то выполняется условие Что относится к токоограничивающим аппаратам, где: Что относится к токоограничивающим аппаратам— сквозной ток цепи при КЗ; Что относится к токоограничивающим аппаратам— ожидаемый ударный ток цепи при КЗ.

Таким образом, токоограничивающие коммутационные аппараты, к которым, в частности, относятся токоограничивающие предохранители различных типов и конструкций и ограничители ударного тока взрывного действия, ограничивают ударный ток КЗ, т.е. обладают свойством безынерционности действия.

Силовые токоограничивающие предохранители внутренней и наружной установок изготовляются на напряжения 3-35 кВ (серий ПКТ и ПКН) и на 10-110 кВ (серии ПВТ), на относительно небольшие номинальные токи.

Токоограничивающие предохранители отличаются простотой конструкции и, как следствие, относительно небольшой стоимостью. Однако они имеют ряд существенных недостатков:

· нестабильные токовременные характеристики;

· недостаточная эксплуатационная надежность;

· ограниченная зона использования по значениям номинальных токов и номинальных напряжений; неуправляемость от внешних устройств, в частности от устройств релейной защиты;

С учетом этого область применения токоограничивающих предохранителей существующих конструкций весьма ограничена. Как правило, они устанавливаются в цепях менее ответственных потребителей. Предохранители могут использоваться либо в качестве основных токоограничивающих коммутационных аппаратов, включенных непосредственно в защищаемую цепь, либо в качестве вспомогательных аппаратов электроустановок.

Ограничители ударного тока взрывного действия представляют собой сверхбыстродействующие управляемые коммутационные; аппараты одноразового действия с относительно большим номинальным током.

По сравнению с токоограничивающими предохранителями ограничители ударного тока имеют ряд преимуществ: управляемость от внешних устройств; направленность действия; относительно большие номинальные токи; стабильность характеристик;

Источник

Токоограничивающие устройства

Токоограничивающие устройства, выполняя свою основную задачу – ограничение токов КЗ, не должны существенно влиять на нормальный режим работы сети, должны иметь стабильные характеристики при изменении схемы и параметров режима.

Токоограничивающие реакторы могут иметь различные конструктивные исполнения и параметры.

Реакторы с линейной характеристикой, включаемые последовательно в соответствующую линию, ограничивают ток КЗ и поддерживают относительно высокий уровень остаточного напряжения в узле подключения. Но в них в нормальном режиме теряются активная и реактивная мощности, а также возникают потери и падение напряжения. Возможные схемы включения линейных и секционных реакторов приведены на рисунке 8.3.

Что относится к токоограничивающим аппаратам

Реакторы с нелинейной характеристикой.. К этой группе относятся управляемые и насыщающиеся реакторы.

Управляемый реактор – это регулируемый реактор со сталью, изменение сопротивления которого осуществляется подмагничиванием магнитопровода полем постоянного тока. При КЗ сопротивление реактора увеличивается и происходит ограничение тока КЗ.

Насыщающий реактор – это неуправляемый реактор в нелинейной характеристикой ( со сталью), которая определяется насыщением магнитопровода полем обмотки переменного тока. Эквивалентное сопротивление реактора растет с увеличением тока. Это свойство реактора используется для ограничения тока КЗ.

Токоограничивающие коммутационные аппараты уменьшают ударный ток КЗ, т.е являются аппаратами безынерционного действия. К ним относятся токоограничивающие предохранители и ограничители ударного тока взрывного действия.

Токоограничивающие предохранители изготавливают на напряжение 6 – 35 кВ. Они отличаются простотой конструкции и небольшой стоимостью, но имеют ряд недостатков:

одноразовое действие, что затрудняет применение автоматического повторного включения;

нестабильность токовременных характеристик;

неуправляемость со стороны внешних устройств (релейной защиты) и т.д., в связи с чем предохранители устанавливаются в цепях менее ответственных потребителей.

Резонансные токоограничивающие устройства. Принцип их действия основан на использовании эффекта резонанса напряжений при работе в нормальном режиме и расстройке резонанса в аварийном режиме.

Кроме того, известны другие токоограничивающие устройства:

токоограничивающие устройства трансформаторного и реакторно- вентильного типов;

вставки постоянного тока;

сверхпроводниковые токоограничивающие устройства.

Основные понятия и определение устойчивости

В установившимся режиме реальной системы его параметры постоянно меняются, что связано со следующими факторами:

изменением нагрузки и реакцией на эти изменения регулирующих устройств;

нормальными эксплуатационными изменениями схемы коммутации системы;

включением и отключением отдельных генераторов или изменением их мощности.

Таким образом, в установившимся режиме системы всегда есть малые возмущения параметров ее режима, при которых она должна быть устойчива.

Статическая устойчивость – это способность системы восстанавливать исходный (или близкий к исходному) режим после малого его возмущения.

Аварийные режимы в электрической системе возникают при КЗ, аварийных отключениях нагруженных агрегатов или линий и т.п. Под действием больших возмущений возникают резкие изменения режима.

Динамическая устойчивость – это способность системы возвращаться в исходное ( или близкое к нему) состояние после большого возмущения. Когда после большого возмущения синхронный режим системы нарушается, а затем после допустимого перерыва восстанавливается, то говорят о результирующей устойчивости системы.

Исходя из определения статической устойчивости системы, можно заключить, что существует такой режим, при котором очень малое увеличение нагрузок вызывает нарушение его устойчивости. Такой режим называется предельным, а нагрузки системы – максимальными или предельными нагрузками по условиям статической устойчивости.

Ограничение нагрузок может быть вызвано и другими обстоятельствами, например, нагревом элементов электрической системы (генераторов, трансформаторов и т.п.). В этом случае говорят о предельных нагрузках по условию нагрева и устанавливают также максимальное время существования режима.

Возможны ограничения нагрузок по уровням напряжения в узлах, напряжению короны и т.п.

Пропускной способностью элемента системы называют наибольшую мощность, которую можно передать через этот элемент с учетом всех ограничивающих факторов (нагрева, устойчивости, напряжения в узлах и т.п.).

Понятие о пропускной способности справедливо и для динамической устойчивости. В этом случае говорят о пределе передаваемой мощности по условиям динамической устойчивости при КЗ в какой-либо точке, отключении линии и т.п.

Статические характеристики – это связи параметров режима системы, представленные аналитически или графически и не зависящие от времени. Эти связи выявляются в основном в установившимся режиме системы.

Динамические характеристики – это связи параметров, полученных при условии, что они зависят от времени. В этом случае отражается влияние первых, а возможно, и более высоких производных рассматриваемых параметров.

Динамический переход от одного режима к другому подвергается качественной оценке. При этом оцениваются характер протекания переходного процесса (быстрый, медленный, монотонный, апериодический) и характер нового установившегося режима. Считается, что качество переходного процесса хорошее, если наблюдаются быстрое его затухание, апериодичность или монотонность. Режим, наступающий после переходного процесса, должен иметь достаточный запас устойчивости, который проверяется изменением какого-либо параметра. Наибольшая величина отклонения, при которой система еще сохраняет устойчивость, определяет запас устойчивости, выражаемый коэффициентом запаса. Например, запас по напряжению определяется

Что относится к токоограничивающим аппаратам,

Что относится к токоограничивающим аппаратам.

Источник

ЛЕКЦИЯ 8. КОММУТАЦИОННЫЕ ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ ВЫСОКОГО НАПРЯЖЕНИЯ

Электрические аппараты высокого напряжения используются в электроэнергетических системах (объединенных и автономных) для осуществления всех необходимых изменений схем выдачи мощности и электроснабжения потребителей в нормальном эксплуатационном режиме и в аварийных условиях, обеспечения непрерывного контроля за состоянием систем высокого напряжения, ограничения возникающих в процессе эксплуатации перенапряжений и токов короткого замыкания (КЗ), а также для компенсации избыточной зарядной мощности линий в нормальных и аварийных режимах. Иными словами с помощью электрических аппаратов высокого напряжения осуществляется управление энергетическими системами в самом широком смысле этого понятия. По функциональному признаку аппараты высокого напряжения подразделяются на следующие виды: коммутационные аппараты (выключатели, выключатели нагрузки, разъединители, короткозамыкатели, отделители); измерительные аппараты (трансформаторы тока и напряжения, делители напряжения); ограничивающие аппараты (предохранители, реакторы, разрядники, нелинейные ограничители перенапряжений); компенсирующие аппараты (управляемые и неуправляемые шунтирующие реакторы). Коммутационные аппараты используются для формирования необходимых схем выдачи мощности от электростанций, ее передачи на расстояние и схем электроснабжения потребителей.

Выключатели предназначены для включения и отключения токоведущих элементов электроэнергетических систем в нормальных (отключение рабочего тока) и аварийных (отключение тока КЗ) режимах и тем самым для предотвращения развития аварий в электроэнергетических системах. В связи с такой ответственной ролью выключателей к ним предъявляются весьма жесткие требования. Они должны обеспечивать многократно (тысячи раз) коммутацию (включение и отключение) токоведущих цепей при номинальном токе (либо при меньших токах). Во включенном положении выключатели должны выдерживать в течение срока службы (25 лет) воздействие рабочих напряжения и тока. При возникновении КЗ выключатель должен выдержать воздействие тока КЗ и обеспечить отключение поврежденного участка сети в течение нескольких полупериодов промышленной частоты. Из сказанного следует, что выключатель должен иметь очень высокий коэффициент готовности: при малой продолжительности процессов коммутации (несколько минут в году) постоянно должна быть обеспечена готовность к осуществлению коммутаций. В эксплуатации используются различные типы выключателей. Наиболее распространены масляные выключатели, в которых дугогасительной средой является минеральное масло. Они изготавливаются для распределительных устройств (РУ) напряжением до 220 кВ включительно. Для РУ напряжением 110 кВ и выше (вплоть до 1150 кВ) наиболее широко используются воздушные выключатели, где гашение дуги осуществляется потоком сжатого воздуха. Однако в последнее время они вытесняются элегазовыми выключателями, в которых в качестве дугогасящей среды используется электроотрицательный газ — шестифтористая сера (элегаз). Такие выключатели создаются для герметичных распределительных устройств (ГРУ), а также для наружной установки. Использование элегаза в качестве дугогасящей среды обусловлено его высокими изоляционными и дугогасящими свойствами. Это позволяет создать более совершенные выключатели с меньшим числом дугогасительных разрывов, с меньшими габаритами и более надежные в эксплуатации. В последнее время интенсивно развиваются конструкции вакуумных выключателей, в которых контактная система помещена в вакуумную камеру. Такие выключатели изготавливаются на напряжение до 35 кВ включительно. Их отличительная особенность — погасание дуги при первом же переходе тока Через ноль (после расхождения контактов) и в связи с этим чрезвычайно большой ресурс — до тысяч операций и более. На напряжение 6 и 10 кВ наиболее распространены электромагнитные выключатели, в которых дуга горит в воздухе при атмосферном давлении и в результате воздействия сильного магнитного поля удлиняется настолько, что отдача тепла от ствола дуги (усиленная специальными мерами) превосходит его поступление и дуга распадается. Выключатели нагрузки применяются, как правило, в цепи генераторного напряжения на очень большие номинальные токи 20 — 30 кА, когда отключение токов КЗ осуществляется выключателями высокого напряжения за повышающими трансформаторами. В этом случае ток электродинамической стойкости достигает сотен тысяч ампер. Кроме того, выключатели нагрузки применяются на тупиковых подстанциях небольшой мощности, в кольцевых линиях, когда применение выключателей оказывается неэкономичным. Существенно меньшие токи, отключаемые выключателями нагрузки, определяют значительное упрощение их конструкции и снижение массогабаритных показателей по сравнению с выключателями.

Что относится к токоограничивающим аппаратам

Разъединители применяются для коммутации обесточенных с помощью выключателей участков токоведущих систем, для переключения присоединений распределительных устройств с одной ветви на другую без перерыва тока и для коммутации очень малых токов ненагруженных силовых трансформаторов и коротких линий. Например, при подготовке выключателя к ремонту он должен быть отделен от смежных элементов токоведущих систем, находящихся под напряжением, с помощью разъединителей. При этом разъединители отключают небольшой ток, определяемый напряжением сети и емкостью токоведущих элементов выключателя и подводящей ошиновки. Разъединители открытой установки создают видимые разрывы токоведущей системы, обеспечивающие безопасность выполнения работ на выключателе.

Отделитель служит для отключения обесточенной цепи высокого напряжения за малое время (не более 0,1 с). Он похож на разъединитель, но снабжен быстродействующим приводом.

Что относится к токоограничивающим аппаратам

Короткозамыкатель служит для создания КЗ в цепи высокого напряжения. По конструкции он сходен с заземляющим устройством разъединителя, но снабжен быстродействующим приводом. Короткозамыкатели и отделители устанавливаются на стороне высшего напряжения РУ мало ответственных потребителей, когда с целью экономии площади и стоимости выключатели предусмотрены только на стороне низшего напряжения. При повреждении в РУ и токе КЗ, недостаточном для работы защиты на отправном конце питающей линии, короткозамыкатель заземляет линию. При этом увеличивается ток КЗ, что обеспечивает надежное срабатывание защиты и отключение линии с отправного конца выключателем. После этого отключаются выключатель поврежденной трансформаторной группы на стороне низшего напряжения и затем отделитель этой же группы на стороне высшего напряжения. Таким образом поврежденная трансформаторная группа оказывается изолированной от сети, что обеспечивает возможность повторного включения выключателя на отправном конце питающей линии и восстановление питания потребителей поврежденной трансформаторной группы в результате их подключения междушинным выключателем к неповрежденной трансформаторной группе. Короткозамыкатели и отделители обладают большим быстродействием для ограничения длительности аварийного режима в системе.

Что относится к токоограничивающим аппаратам

Измерительные — трансформаторы тока (ТТ) и напряжения (ТН) применяются для осуществления непрерывного контроля за этими параметрами электрической цепи в качестве датчиков сигнала ее состояния, воспринимаемого устройствами защиты и автоматики. Применяются ТТ и ТН при высоких напряжениях и больших токах, когда непосредственное включение в первичные цепи контрольно-измерительных приборов, реле и приборов автоматики технически невозможно или недопустимо по условиям безопасности обслуживающего персонала. Измерительные трансформаторы устанавливаются в открытых (ОРУ), закрытых (ЗРУ) и герметичных (ГРУ) распределительных устройствах и связываются контрольными кабелями с приборами устройств вторичной коммутации, которые размещаются на панелях щитов и пультов и на стенах в помещениях щитов управления, машинного зала и РУ. Основное требование к трансформаторам тока — обеспечение передачи информации со стороны высокого потенциала на потенциал земли с минимально возможными искажениями. Наиболее распространенными в настоящее время являются электромагнитные ТТ и ТН, содержащие магнитопровод, первичную обмотку, включаемую непосредственно в цепь высокого напряжения последовательно (ТТ) либо параллельно (ТН), и одну или несколько вторичных обмоток. Номинальный ток вторичных обмоток ТТ составляет обычно 5 А. иногда 1 А, номинальное напряжение вторичных обмоток ТН составляет обычно 100 В. Эти трансформаторы имеют очень небольшие погрешности в установившемся режиме: от долей процента до нескольких процентов в зависимости от класса точности. Однако в переходных режимах, связанных, например, с возникновением КЗ, погрешности измерения тока и напряжения могут достигать 10% и более прежде всего из-за насыщения стали сердечника. В связи с этим в последнее время вместо электромагнитных ТН применяются емкостные делители, а вместо электромагнитных ТТ — оптико-электронные, в которых передача сигнала со стороны высокого потенциала на землю осуществляется по оптическому каналу с помощью волоконных световодов (ОЭТТ). Такие ТТ передают сигнал на устройства защиты и управления практически без искажения. Однако, мощность передаваемого по оптическому каналу сигнала недостаточна для использования в обычных устройствах релейной защиты и автоматики. Поэтому использование ОЭТТ необходимо сочетать с применением микроэлектронных устройств и ЭВМ. Ограничивающие аппараты подразделяются на аппараты ограничения тока и напряжения. К токоограничивающим аппаратам относятся высоковольтные предохранители и реакторы. Плавкие предохранители высокого напряжения предназначены для защиты силовых трансформаторов, воздушных и кабельных линий; конденсаторов, электродвигателей и трансформаторов напряжения. Токоограничивающие предохранители с мелкозернистым наполнителем применяются на напряжение 3 — 35 кВ и номинальные токи 2 — 1000 А, с током отключения 2,5 — 63 кА. Выхлопные предохранители переменного тока, где гашение дуги происходит при переходе тока через нуль, применяются на напряжение 6 — 220 кВ и номинальные токи 2 — 200 А. Токоограничивающие реакторы представляют собой катушку индуктивности без сердечника, включаемую последовательно в токоведущую цепь. Реактор выбирается из условия ограничения тока КЗ в цепях 6 — 10 кВ до уровня, при котором обеспечиваются динамическая и термическая стойкость коммутационных аппаратов (когда их параметры недостаточны для работы без реакторов), а также термическая стойкость защищаемых кабелей. Менее распространены токоограничивающие реакторы в сетях 110 — 220 кВ. При малых токах (вплоть до номинального) падение напряжения на реакторе обычно не превосходит 3 — 10% номинального напряжения. При КЗ на фидере, защищаемом реактором, напряжение на соседнем фидере не должно уменьшаться более чем на 25 %. Наиболее распространенным средством ограничения грозовых и внутренних перенапряжений являются разрядники. Эти аппараты состоят из нелинейных резисторов (варисторов) и искровых промежутков, автоматически подключающих блок варисторов к токоведущей цепи при превышении заданного уровня напряжения. В настоящее время производятся варисторы с такой высокой степенью нелинейности вольт-амперной характеристики, что они могут быть подключены к токоведущим элементам без искровых промежутков. Протекающий по ним ток при номинальном напряжении составляет миллиамперы, а при повышениях напряжения возрастает до тысяч ампер. Отсутствие искровых промежутков существенно упрощает конструкцию ограничителей перенапряжений, но порождает ряд новых проблем, связанных с необходимостью обеспечения падежной работы аппарата при рабочем напряжении.

Компенсирующие аппараты.

В сетях сверхвысокого напряжения широкое распространение получили реакторы, включаемые между токоведущими элементами и землей (шунтирующие реакторы). Они предназначены для компенсации избыточной зарядной емкости линий в режиме малых нагрузок (когда по линии передается мощность меньше натуральной). Поэтому при номинальной нагрузке линии реакторы отключены, а по мере уменьшения нагрузки они подключаются выключателями высокого напряжения. Регулируемые реакторы обеспечивают возможность быстрого и плавного изменения потребляемой ими реактивной мощности без их отключения от линии. Такие реакторы в настоящее время находятся в стадии разработки. Регулирование тока в обмотке управления с помощью тиристоров позволяет плавно изменять ток в обмотке, подключенной к электрической сети (сетевой обмотке). В зависимости от применяемой системы управления может быть обеспечено различное быстродействие реактора. В частности, при управлении реактором по принципу трансформатора время изменения тока от минимального (холостой ход) до максимального (номинальный ток) составляет 0,01 с.

Классификация высоковольтных аппаратов по назначению

Электрический аппарат это электротехническое устройство предназначенное для управления электрическими и не электрическими объектами и защиты их в ненормальных режимах работы.

Классификация высоковольтных эл. аппаратов по назначению:

1) Коммутационные. ( выключатели, отделители, короткозамыкатели, разъединители)

2) Защитные ( предохранители)

3) Ограничивающие ( реакторы, разрядники, ОПН- ограничители перенапряжения нелинейный)

4) Измерительные аппараты (ТТ, ТН)

Выключатель предназначен для коммутации любых режимов: номинальных, токов КЗ, токов х.х. тр-ов, токов холостых линий и кабелей. Характерной особенностью этого аппарата является наличие дугогос. устр. Различают шесть групп выключателей по среде гашения дуги:

1) Маслянные выключатели — дуга, образующаяся между контактами, горит в трансформаторном масле. Под действием энергии дуги масло разлагается и образующиеся газы и пары используются для ее гашения. В зависимости от способа изоляции токоведущих частей различают баковые(35-220 кВ) выключатели и маломасляные(6-220 кВ).

2) Электромагнитные выключатели Гашение дуги происходит за счет увеличения сопротивления дуги вследствие ее ин-тенсивного удлинения и охлаждения. (6-10 кв)

3) В вакуумных выключателях контакты расходятся под вакуумом (давление равно 10-4 Па). Возник-щая при расхождении контактов дуга быстро гаснет благодаря интенсивной диффузии зарядов в вакууме. (10-35 кВ)

4) В воздушном выключателе в качестве гасящей среды исполь-ся сжатый воздух, находящийся в баке под давлением 1-5 МПа; при отключении сжатый воздух из бака подается в дугогасительное устройство. (110-1150 кВ)

5) В элегазовых выключателях гашение дуги осуществляется за счет охлаждения ее двигающимся с большой скоростью элегазом (шестифтористой серой SF6), который используется и как изолирующая среда.

6) Выключатели нагрузки ДУ этих выключателей рассчитаны только не гашение маломощной дуги, возникающей при отключении нагрузки, поэтому их нельзя использовать для отключения цепей при коротких замыканиях. Для этого с ним последовательно ставится предохранитель. (6-10 кВ)

Разъединители, отделители, короткозамыкатели – это коммут аппараты у которых нет ДУ.

Разъединитель служит для включения и откл. цепи ВН либо при токах, знчительно меньших номинальных, либо в случаях, когда отключается номинальный то, но напряжение на контактах недостаточно для образования дуги. (ручной привод)

Короткозамыкатель- это быстродействующий контактный аппарат, с помощью которого по сигналу РЗ созд-ся КЗ сети. Отделитель предст собой разъединитель, который быстро откл обесточенную цепь после подачи команды на его привод. Токоограничивающий реактор- катушка индуктивности, которая служит для ограничения тока КЗ и поддержания необходимого напряжения на сборных шинах. Реакторы позволяют применить высоковольтные выключатели и другие АВН облегченного типа, а также повысить надежность работы эл.уст-ки

Реакторы. Различают: бетонные, масляные, сдвоенные.

Разрядники, ОПН- ограничивают напряжение в эл уст-ке при коммутационных и атмосферных перенапряжениях. Разряднки: трубчатый, вентильный ОПН- усовершенствованный вентильный разрядник.ТТ, ТН- они изолируют цепи высокого напряжения от токовых цепей и цепей напряжения измерительных приборов и РЗ. ТТ- Измерительным трансформатором тока называют трансформатор, предназн-аченный для преобразования тока до значения, удобного для измерения. Вторичные токи 1, 5А

По конструкции: одновитковые( для преобраз больших токов); многовитковые ( исп-ся на малые токи); каскадные. По изоляции: масляные, литые, сухие. Новый элегазовый- ТГФ в фарфоровом корпусе > 220 кВ. ТН- предназначены для преобраз напряжения до 100, В. TН: однофазные, трехфазные, каскадные

По изоляции: масляные, литой, сухой.

Марки НАМИ-6(10),35 кВ-тр-р напряжения антирезонансный, маслян изоляц дополнит обмотка защиты изоляции

Комплектные РУ

Комплектные РУ составляются из полностью или частично закрытых шкафов или блоков с встроенными в них аппаратами, устройствами защиты и автоматики, поставляемых в собранном или полностью подготовленном для сборки виде. Комплектные РУ выпускаются для внутренней (КРУ) и для наружной (КРУН) установки. Комплектные РУ 6 — 20 кВ в наибольшей степени отвечают требованиям индустриализации энергетического строительства. Поэтому они становятся самой распространенной формой исполнения РУ. В последние годы получает широкое распространение новый тип комплектных РУ — герметичных, в которых все токоведущие элементы и аппараты (сборные шины, выключатели, разъединители, трансформаторы тока и напряжения) расположены внутри герметичной оболочки, заполненной сжатым высокопрочным газом (элегазом). Такие РУ полностью изготавливаются на заводе в виде отдельных ячеек, набор которых может изменяться в зависимости от схемы подстанции. В настоящее время в России освоен серийный выпуск ячеек ГРУ на напряжение 110 и 220 кВ и серийный выпуск ГРУ на напряжение 330, 500, 750 и 1150 кВ. Герметичные РУ предполагается использовать прежде всего в крупных городах с целью экономии площади и объема. Так, ГРУ 110 и 220 кВ могут быть размещены в подвальных помещениях жилых зданий. Целесообразно использование ГРУ на гидроэлектростанциях, где, как правило, недостаточно места для размещения ОРУ, а также в районах со сложными климатическими, метеорологическими и сейсмическими условиями и в районах с сильным загрязнением атмосферы. Прогрессивное направление развития аппаратостроения — создание комплексов аппаратов — получило развитие и при создании аппаратных комплексов на генераторное напряжение. В единый комплекс объединяются все три аппарата, включаемые в рассечку токопровода от генератора до трансформатора: выключатель, разъединитель и ТТ. Такое объединение аппаратов приводит к существенному уменьшению объема, занимаемого аппаратами, повышает их технико-экономические характеристики, в том числе надежность их работы.

КОММУТАЦИОННЫЕ И ЗАЩИТНЫЕ АППАРАТЫ ВЫСОКОГО НАПРЯЖЕНИЯ

Назначение и классификация аппаратов

По функциональному признаку электрические аппараты высокого напряжения

(АВН) подразделяются на следующие виды:

· коммутационные аппараты (выключатели, разъединители, короткозамыкатели, отделители);

· защитные и ограничивающие аппараты (предохранители, токоограничивающие реакторы, разрядники, нелинейные ограничители перенапряжений);

· комплектные распределительные устройства (КРУ).

Коммутационные аппараты используются для формирования необходимых схем передачи энергии от ее источника (электростанции) к потребителю

предназначены для оперативной и аварийной коммутации в
энергосистемах
, т.е. выполнения операций включения и отключения отдельных
цепей
при ручном или автоматическом управлении. Во включенном состоянии выключатели должны беспрепятственно пропускать токи нагрузки. Характер режима работы этих аппаратов несколько необычен: нормальным для них считается как включенное состояние, когда они обтекаются током нагрузки, так и отключенное, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи. Коммутация цепи, осуществляемая при переключении выключателя из одного положения в другое, производится нерегулярно, время от времени, а выполнение им специфических требований по отключению возникающего в цепи короткого замыкания чрезвычайно редко. Выключатели должны надежно выполнять свои функции в течение срока службы (25 лет), находясь в любом из указанных состояний, и одновременно быть всегда готовыми к мгновенному эффективному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Отсюда следует, что они должны иметь очень высокий коэффициент готовности: при малой продолжительности процессов коммутации (несколько минут в год) должна быть обеспечена постоянная готовность к осуществлению коммутаций.

Секционные выключатели применяются в сборных шинах. В распределительных устройствах

(РУ) электростанций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически отключаться только при повреждении в зоне сборных шин. Вместе с ними должны отключаться и другие выключатели поврежденной секции. Таким образом, поврежденная секция РУ будет отключена, а остальная часть останется в работе.

применяются для коммутации обесточенных при помощи выключателей участков токоведущих систем, для переключения РУ с одной ветви на другую, а также для отделения на время ревизии или ремонта силового электротехнического оборудования и создания безопасных условий от смежных частей
линии
, находящихся под напряжением. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе. В отличие от выключателей разъединители в отключенном состоянии образуют видимый разрыв цепи. После отключения разъединителей с обеих сторон объекта, например выключателя или
трансформатора
, они должны заземляться с обеих сторон либо при помощи переносных заземлителей, либо специальных заземляющих ножей, встраиваемых в конструкцию разъединителя.

служит для отключения обесточенной цепи высокого напряжения за малое время (не более 0,1 с). Он подобен разъединителю, но снабжен быстродействующим приводом.

служит для создания искусственного короткого замыкания (КЗ) в цепи высокого напряжения. Конструкция его подобна конструкции заземляющего устройства разъединителя, но снабженного быстродействующим приводом.

Короткозамыкатели и отделители устанавливаются на стороне высшего напряжения РУ малоответственных потребителей, когда в целях экономии площади и стоимости РУ выключатели предусмотрены только на стороне низшего напряжения.

Ограничивающие аппараты подразделяются на аппараты ограничения тока и напряжения.

Что относится к токоограничивающим аппаратам

К токоограничивающим аппаратам относятся предохранители и реакторы высокого напряжения. Плавкие предохранители предназначены для защиты силовых трансформаторов

и измерительных трансформаторов напряжения, воздушных и кабельных линий,
конденсаторов
.

представляют собой катушку индуктивности без стали и служат для ограничения
тока короткого замыкания
(КЗ) и поддержания напряжения на сборных шинах РУ. Применение их позволяет существенно снизить требования к выключателям по электродинамической, термической стойкости и отключающей способности в
сетях
с реакторами по сравнению с аналогичными сетями, не защищенными реакторами.

В качестве ограничителей грозовых и внутренних перенапряжений

используются
разрядники и ограничители перенапряжения
. Они должны быть установлены вблизи силовых повышающих трансформаторов и вводов
воздушных линий
в РУ. Они позволяют снизить требования к прочности электрической изоляции аппаратов и оборудования РУ, уменьшить габаритные размеры электрической установки и значительно снизить ее стоимость.

Комплектные распределительные устройства

(КРУ) составляются из полностью или частично закрытых шкафов или блоков со встроенными в них АВН, устройствами защиты, автоматики, контрольно-измерительной аппаратуры и поставляемых в собранном на заводе или полностью подготовленном для сборки виде. Различают распределительные устройства внутренней и наружной установки. Комплектные распределительные устройства становятся наиболее распространенным типом РУ. В последнее время начали широко применяться герметизированные РУ (ГРУ), в которых все токоведущие элементы и весь комплекс аппаратуры (выключатели, разъединители) расположены внутри герметичной оболочки, заполненной сжатым газом (
элегазом
). Наиболее эффективно ГРУ будут применяться в крупных городах, что даст значительную экономию городских площадей и повысит
надежность
энергосистем.

Оглавление

Дисциплина: Электрическое оборудование электроэнергетических систем и сетей зарубежных стран

Лекция № 5. Коммутационные аппараты высокого напряжения

5.1. Назначение и классификация аппаратов 1

5.2 Условия работы аппаратов высокого напряжения и общие требования, предъявляемые к ним 4

5.3 Выключатели высокого напряжения 5

5.3.2 Элегазовые выключатели 13

5.3.3 Масляные выключатели 19

5.3.4. Электромагнитные выключатели 24

5.3.5 Вакуумные выключатели 27

5.1. Назначение и классификация аппаратов

По функциональному признаку электрические аппараты высокого напряжения (АВН) подразделяются на следующие виды:

— коммутационные аппараты (выключатели, разъединители, короткозамыкатели, отделители);

защитные и ограничивающие аппараты (предохранители, токоограничивающие реакторы, разрядники, нелинейные ограничители перенапряжений);

комплектные распределительные устройства (КРУ).

— коммутационные аппараты используются для формирования необходимых схем передачи энергии от ее источника (электростанции) к потребителю.

Рассмотрим наиболее важные аппараты.

предназначены для оперативной и аварийной коммутации в энергосистемах, т.е. выполнения операций включения и отключения отдельных цепей при ручном или автоматическом управлении. Во включённом состоянии выключатели должны беспрепятственно пропускать токи нагрузки. Характер режима работы этих аппаратов несколько необычен: нормальным для них считается как включённое состояние, когда они обтекаются током нагрузки, так и отключённое, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи. Коммутация цепи, осуществляемая при переключении выключателя из одного положения в другое, производится нерегулярно, время от времени, а выполнение им специфических требований по отключению возникающего в цепи короткого замыкания чрезвычайно редко. Выключатели должны надёжно выполнять свои функции в течение срока службы (25 лет), находясь в любом из указанных состояний, и одновременно быть всегда готовыми к мгновенному эффективному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Отсюда следует, что они должны иметь очень высокий коэффициент готовности: при малой продолжительности процессов коммутации (несколько минут в год) должна быть обеспечена постоянная готовность к осуществлению коммутаций. Секционные выключатели применяются в сборных шинах. В распределительных устройствах (РУ) электростанций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически отключаться только при повреждении в зоне сборных шин. Вместе с ними должны отключаться и другие выключатели повреждённой секции. Таким образом, повреждённая секция РУ будет отключена, а остальная часть останется в работе.

применяются для коммутации обесточенных при помощи выключателей участков токоведущих систем, для переключения РУ с одной ветви на другую, а также для отделения на время ревизии или ремонта силового электротехнического оборудования и создания безопасных условий от смежных частей линии, находящихся под напряжением. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе. В отличие от выключателей разъединители в отключённом состоянии образуют видимый разрыв цепи. После отключения разъединителей с обеих сторон объекта, например выключателя или трансформатора, они должны заземляться с обеих сторон либо при помощи переносных заземлителей, либо специальных заземляющих ножей, встраиваемых в конструкцию разъединителя.

служит для отключения обесточенной цепи высокого напряжения за малое время (не более 0,1 с). Он подобен разъединителю, но снабжён быстродействующим приводом.

служит для создания искусственного короткого замыкания (КЗ) в цепи высокого напряжения. Конструкция его подобна конструкции заземляющего устройства разъединителя, но снабжённого быстродействующим приводом. Короткозамыкатели и отделители устанавливаются на стороне высшего напряжения РУ малоответственных потребителей, когда в целях экономии площади и стоимости РУ выключатели предусмотрены только на стороне низшего напряжения.

подразделяются на аппараты ограничения тока и напряжения. К токоограничивающим аппаратам относятся предохранители и реакторы высокого напряжения. Плавкие предохранители предназначены для защиты силовых трансформаторов и измерительных трансформаторов напряжения, воздушных и кабельных линий, конденсаторов.

представляют собой катушку индуктивности без стали и служат для ограничения тока короткого замыкания (КЗ) и поддержания напряжения на сборных шинах РУ. Применение их позволяет существенно снизить требования к выключателям по электродинамической, термической стойкости и отключающей способности в сетях с реакторами по сравнению с аналогичными сетями, не защищёнными реакторами. В качестве ограничителей грозовых и внутренних перенапряжений используются разрядники и ограничители перенапряжения. Они должны быть установлены вблизи силовых повышающих трансформаторов и вводов воздушных линий в РУ. Они позволяют снизить требования к прочности электрической изоляции аппаратов и оборудования РУ, уменьшить габаритные размеры электрической установки и значительно снизить ее стоимость.

Комплектные распределительные устройства

(КРУ) составляются из полностью или частично закрытых шкафов или блоков со встроенными в них АВН, устройствами защиты, автоматики, контрольно-измерительной аппаратуры и поставляемых в собранном на заводе или полностью подготовленном для сборки виде. Различают распределительные устройства внутренней и наружной установки. Комплектные распределительные устройства становятся наиболее распространённым типом РУ. В последнее время начали широко применяться герметизированные РУ (ГРУ), в которых все токоведущие элементы и весь комплекс аппаратуры (выключатели, разъединители) расположены внутри герметичной оболочки, заполненной сжатым газом (элегазом). Наиболее эффективно ГРУ применяются в крупных городах, что даёт значительную экономию городских площадей и повышает надёжность энергосистем.

Комплектная элегазовая ячейка РУ (КРУЭ), собираемая блоками в заводских условиях по выбранной схеме из стандартных элементов, показана на рисунке 5.1а.

Рис. 5. 1а Распределительное устройство с элегазовой изоляцией.

На рисунке 5.1б представлен разрез ячейки EXK-0cдвойной системой сборных шин с кабельным присоединением и трансформатором напряжения электро-оптического типа.

Что относится к токоограничивающим аппаратам

Рис. 5. 1б Разрез ячейки EXK-0cдвойной системой сборных

5.2 Условия работы аппаратов высокого напряжения и общие требования, предъявляемые к ним

Аппараты высокого напряжения могут устанавливаться как внутри помещения, так и на открытых распределительных устройствах (ОРУ). Условия работы при этом значительно различаются, и это находит отражение в их конструктивных особенностях. Во время эксплуатации аппараты ОРУ подвергаются воздействию окружающей среды. Эти воздействия особенно вредно сказываются на состоянии изоляции аппаратов. Поэтому все аппараты ОРУ рассчитываются на воздействие гололёда, ветра и загрязнений. Загрязнения и периодические увлажнения изоляции АВН требуют соответствующего развития поверхности изоляторов. Поскольку условия загрязнения на разных ОРУ существенно зависят от конкретных климатических условий (близость водных бассейнов, пустынных зон), наличия вредных выбросов производств в атмосферу, то они значительно различаются. Для изоляторов наружной установки предусмотрены три исполнения в зависимости от длины пути тока утечки: категория I — 1,67 см/кВ, категория II — 2,5 см/кВ, категория III — 3,5 см/кВ. Согласно этим нормам допустимая длина утечки соответствует удельной длине утечки — длине, отнесённой к 1 кВ наибольшего рабочего линейного напряжения. Аппараты внешней установки оказываются под воздействием коммутационных перенапряжений, зависящих от вида коммутации, типа выключателя, параметров электрической сети и грозовых импульсов, возникающих при воздействии грозовых разрядов на электрическую сеть. Природа происхождения перенапряжений определяет специфическую форму импульса перенапряжений. Так, грозовой импульс имеет обозначение 1,2/50 мкс, что означает крутизну фронта импульса 1,2 ± 0,3 мкс при общей длительности 50 ± 10 мкс. Коммутационные перенапряжения имитируются апериодическим импульсом с длительностью фронта tф = 250 ± 50 мкс и длительностью полуспада tпсп = 2500 ± 1500 мкс. В процессе эксплуатации при возникновении короткого замыкания все токоведущие элементы сети испытывают мощное термическое и электродинамическое воздействие токов КЗ, превосходящих номинальные токи в десятки раз. При протекании токов КЗ температура токоведущих элементов, повышаясь, не должна превышать нормированных предельных допустимых значений для неизолированных шинопроводов, например для медных 300°С, для алюминиевых 200°С. Токи КЗ вызывают появление значительных электродинамических усилий, воздействующих на шинопроводы и их несущие механические конструкции (в частности, опорные изоляторы). Кроме того, контактные системы всех коммутирующих аппаратов должны выдерживать эти нагрузки без сваривания или самопроизвольного размыкания контактов. Электродинамические усилия рассчитываются по наибольшему мгновенному значению (ударного) тока трёхфазного КЗ i

уд с учётом фазового сдвига между токами.

Высоковольтная коммутационная аппаратура

Высоковольтная коммутационная аппаратура состоит из разъединителей и высоковольтных выключателей. Разъединители — электрические коммутационные аппараты, предназначенные для включения и отключения отдельных элементов оборудования или целых участков электрической сети высокого напряжения при отсутствии тока нагрузки. Характерной особенностью разъединителей является наличие видимого разрыва между контактами, чем обеспечивается безопасность работы обслуживающего персонала. У разъединителя отсутствует дугогасительное устройство, и дуга, возникающая на контактах, гасится в результате ее растяжения ножом подвижного контакта. На рис.1.7 показаны зависимости максимального

Что относится к токоограничивающим аппаратам
вылета дуги на контактах разъединителя в функции тока при разных номинальных напряжениях. Даже при относительно небольших отключаемых токах вылет дуги таков, что может привести к перебросу дуги на соседние фазы и заземленные части и к возникновению междуфазного к.з. или

замыкания на землю. Поэтому разъединители применяются для коммутации ранее обесточенных с помощью выключателей участков цепи, для переключения в нормальных условиях присоединения распределительного устройства с одной ветви на другую без прерывания тока и для коммутации очень малых токов ненагруженных силовых трансформаторов.
Коммутация нагруженных силовых цепей осуществляется высоковольтными выключателями нагрузки. Исполнение этих аппаратов различно. Они могут быть, в зависимости от конструктивных особенностей и способов гашения дуги, автогазовыми с гашением дуги газами, выделяемыми газогенерирующими материалами дугогасительной камеры; масляными с гашением дуги в масле; вакуумными; элегазовыми с гашением дуги в среде элегаза (SF6).

Основным элементом любого высоковольтного выключателя нагрузки является дугогасительное устройство (ДУ). Это устройство, обеспечивающие быстрое гашение дуги в коммутационном аппарате. Время горения дуги зависит от коммутационного тока, интенсивности горения дуги и электрической прочности газа, в котором существует дуга.

Характеристики ДУ сильно зависят от среды гашения дуги: масло, газ, вакуум. Среди газов наибольшей дугогасительной способностью обладает элегаз (SF6 ), меньшей — водород; еще меньшей – воздух.

В высоковольтных выключателях разрыв цепи производится в среде масла или газа. Рассмотрим гашение дуги в масляном выключателе с продольным дутьем (рис.1.8). Стрелками показано движение газа и масла вдоль дуги и дальше через зазоры между подвижными контактами и перегородками. Камера действует следующим образом. Когда подвижный контакт 1 отходит от неподвижного 2, между ними возникает дуга 3, вокруг которой образуется газовый пузырь (главным образом водорода — продукт распада масла), в результате чего давление в верхней части камеры сильно повышается. Это давление заставляет масло перемещаться через зазоры между подвижными контактами и перегородками.

Когда подвижный контакт минует одну-две перегородки, начинается газовое дутье вдоль дуги и ее интенсивное охлаждение. В процессе разрыва дуги будут существовать два газовых потока: поток горячей плазмы (собственно дуга) и поток газов – продуктов распада масла. Скорости этих потоков различны: скорость газов достигает нескольких сот метров в секунду, в то время как скорость плазмы достигает нескольких тысяч метров в секунду. За счет разности скоростей на границах этих потоков будут образовываться завихрения и горячая плазма будет интенсивно охлаждаться газом. Камера выполняется из прочного материала, так как давление в ней может достигать 3*105– 5*105 н/м2(30 — 50 атм.) и более.

В ТП устанавливаются маломасляные выключатели типов ВМГ-10, ВМП-10, ВК-10, рассчитанные на рабочее напряжение 10 кВ и номинальные токи от 630 до 1600А. Помимо этих параметров, выключатель также характеризуется отключающей способностью для токов кротких замыканий, которая составляет 20, 31,5 кА и временем их отключения (не более 0.12с). Время отключения номинальных токов — 0,02 с.

К недостаткам масляных выключателей следует отнести большие габариты и ограниченный ресурс отключения коротких замыканий, так как каждое отключение сопровождается загрязнением масла продуктами дуги.

В автогазовом выключателе камера выполняется из газогенерирующего материала (например, оргстекла или фибры). Под действием высокой температуры дуги стенки камеры выделяют большое количество газов, при выбрасывании которых из дугогасительной камеры дуга разрывается и гасится в течении долей секунды. Такие выключатели используются на напряжение до 6 кВ.

В настоящее время наиболее совершенными являются выключатели нагрузки вакуумного типа. На рис.1.9 показаны зависимости разрядного напряжения от расстояния между контактами для различных сред. Из этого рисунка следует, что вакуум обладает максимальной электрической прочностью, что позволяет создавать коммутационные аппараты с минимальными габаритами. Помимо этого вакуумные выключатели

Что относится к токоограничивающим аппаратам

Что относится к токоограничивающим аппаратам
обладают высоким быстродействием, не требуют пополнения и замены дугогасящей среды, значительно дешевле в эксплуатации и обладают большим сроком службы (до 25 лет). Конструкция вакуумного выключателя представлена на рис.1.10. В цилиндрическом сосуде 1 из изоляционного материала расположен неподвижный контакт 2, укрепленный в металлическом фланце 3, герметически соединенным с цилиндром 1. Там же находится подвижный контакт 4, соединенный с фланцем 5 с помощью сильфона 6. Сильфон представляет собой цилиндрическую гармонику, выполненную из нержавеющей стали. Она имеет достаточную механическую прочность и позволяет подвижному контакту, связанному с ним, иметь перемещение до 20 мм. Из ДУ выкачен воздух. В современных выключателях давление внутри ДУ равно 1,33(10-4 10-6) Па (10-4 10-6 мм рт. ст.). Нажатие подвижного контакта на неподвижный создается за счет атмосферного давления.
При расхождении контактов возникает дуга, которая горит в среде паров металла электродов. При прохождении тока через ноль дуга гаснет. Малая плотность газа в ДУ обуславливает исключительно высокую скорость диффузии зарядов из-за большой разницы плотностей частиц в погасшей дуге и окружающем пространстве — вакууме. После прохождения тока через ноль за время 10 мкс между контактами восстанавливается электрическая прочность вакуума.

Для защиты стенок изоляционного корпуса 1 от паров металла электродов служат экраны 7 и 8. При отсутствии экранов пары металла электродов осаждаются на поверхности цилиндра 1, что впоследствии приводит к перекрытию изоляции между контактами 2 и 4. Недостатком вакуумных выключателей является их повышенная стоимость.

Для включения высоковольтного выключателя, удержания его во включенном положении и отключении используется обычно отдельный или встроенный механизм, называемый приводом к выключателю. Приводы бывают ручные и двигательные. Двигательные приводы подразделяются на приводы прямого действия — электрические (электромагнитные и электродвигательные) и приводы косвенного действия — маховые (инерционные), пружинные, пневматические, совершающие включение за счет энергии, запасаемой в приводе до совершения операции коммутации.

Для контроля применяют следующие виды сигнализации аппаратов и устройств: визуальную положения разъединителя или выключателя нагрузки, действия релейной защиты (блинкер), световую положения масляных выключателей, звуковую отключения масляного выключателя (сирена), звуковую отключения нормального режима работы электроустановки и неисправности оперативных цепей (звонок).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *