Что относится к тканевому уровню

Биология

Уровни организации живых систем

Каждый уровень организации характеризуется определенным строением (химическим, клеточным или организменным) и соответствующими свойствами.
Каждый следующий уровень обязательно содержит в себе все предыдущие.

Давайте разберем каждый уровень подробно.

8 уровней организации живой природы
1. Молекулярный уровень организации живой природы

Химический состав клеток: органические и неорганические вещества,

Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма — от одно- до многоклеточных.

На этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ.

Науки, которые изучают живые организмы именно на этом уровне:

Молекулярная биология, молекулярная генетика

2. Клеточный уровень организации живой природы

Включает в себя предыдущий — молекулярный уровень организации.

На этом уровне уже появляется термин «клетка» как «мельчайшая неделимая биологическая система»

Обмен веществ и энергии данной клетки (разный в зависимости от того, к какому царству принадлежит организм);

Синтез специфических органических веществ; регуляция химических реакций; деление клеток; вовлечение химических элементов Земли и энергии Солнца в биосистемы

Науки, изучающие клеточный уровень организации: цитология, генетика, эмбириология

Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.

3. Тканевый уровень организации:

Включает в себя 2 предыдущих уровня — молекулярный и клеточный.

Обмен веществ; раздражимость

Этот уровень можно назвать «многоклеточным» — ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.

4. Органный (ударение на первый слог) уровень организации жизни

У одноклеточных органы — это органеллы — есть общие органеллы — характерные для всех эукариотических или прокариотических клеток, есть отличающиеся.

У многоклеточных организмов клетки общего строения и функций объединены в ткани, а те, соответственно, в органы, которые, в свою очередь, объединены в системы и должны слаженно взаимодействовать между собой.

Пищеварение; газообмен; транспорт веществ; движение и др.

Тканевый и органный уровни организации — изучают науки: ботаника,

зоология, анатомия, физиология, медицина

5. Организменный уровень

Включает в себя все предыдущие уровни: молекулярный, клеточный, тканевый уровни и органный.

На этом уровне идет деление Живой природы на царства — животных, растений и грибов.

Характеристики этого уровня: Обмен веществ (как на уровне организма, так и на клеточном уровне тоже )

Обмен веществ; раздражимость; размножение; онтогенез. Нервно-гуморальная регуляция процессов жизнедеятельности. Обеспечение гармоничного соответствия организма его среде обитания

Науки: анатомия, генетика, морфология, физиология

6. Популяционно-видовой уровень организации жизни

Включает молекулярный, клеточный, тканевый уровни, органный и организменный.

Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.

Генетическое своеобразие; взаимодействие между особями и популяциями; накопление элементарных эволюционных преобразований; выработка адаптации к меняющимся условиям среды

Основные процессы на этом уровне:
Взаимодействие организмов между собой (конкуренция или размножение)

Науки, изучающие этот уровень: популяционная генетика, эволюционистика, экология

7. Биогеоценотический уровень организации жизни

На этом уровне уже учитывается почти все:

Пищевое взаимодействие организмов между собой — пищевые цепи и сети

Биологический круговорот веществ и поток энергии, поддерживающие жизнь; подвижное равновесие между живым населением и абиотической средой; обеспечение живого населения условиями обитания и ресурсами

Наука, изучающая этот уровень — Экология

8. Биосферный уровень организации живой природы

Активное взаимодействие живого и неживого (косного) вещества планеты; биологический глобальный круговорот; активное биогеохимическое участие человека во всех процессах биосферы

Он включает в себя:
Взаимодействие как живых, так и неживых компонентов природы

Источник

Урок Бесплатно Уровни организации живых систем

Введение

Также ученые стремятся рассмотреть отдельные составляющие организма, проследить взаимодействие этих составляющих друг на друга и их влияние на отдельный субъект. Изучая внутренние органы животных, исследователи пытаются понять, как один орган влияет на другой (например, как головной мозг регулирует деятельность остальных органов).

То есть биология пытается развить представление о целостности живой природы на основе анализа и синтеза, поэтому учеными были выделены уровни организации живых организмов для понимания устройства и взаимодействия всего живого и неживого.

Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня, то есть характер клеточного уровня организации определяется молекулярным, характер организменного- клеточным уровнем.

Например, сердце формируется благодаря особому строению и функциям мышечных клеток, которое было определено их молекулярным строением.

Деление живого на уровни весьма условно, оно просто отражает системный подход в изучении природы.

Каждый отдельный уровень изучает соответствующий отдел науки о живом: молекулярной биологии, цитологии, генетики, анатомии, физиологии, экологии и других наук.

Выделяют три большие группы уровней организации:

Суборганизменный уровень включает, в свою очередь, пять уровней: атомарный, молекулярный, субклеточный, клеточный, тканевый, органный.

Организменный (или онтогенетический) уровень- это сам организм.

Надорганизменный уровень включает в себя три подуровня: популяционно- видовой, биогеоценотический, биосферный.

Что относится к тканевому уровню

Мы с вами изучим основные уровни организации живых систем:

Суборганизменные уровни организации

1. Молекулярный уровень организации жизни

Молекулярный уровень можно назвать первым и наименьшим, но именно он является определяющим в строении и функции последующих уровней организации, то есть это как бы основа всех дальнейших уровней.

Что относится к тканевому уровню

Формируют этот уровень молекулы белков, жиров, углеводов, нуклеиновых кислот, которые сами по себе вне клеточных структур не являются живыми, но именно они создают надмолекулярные клеточные структуры, в которых проявляются отдельные, но очень важные признаки жизни.

Благодаря изучению молекулярного уровня можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности, основы последовательных биохимических реакций в организме.

Что относится к тканевому уровню

Компоненты молекулярного уровня: молекулы неорганических и органических соединений, молекулярные комплексы химических соединений (клеточная мембрана или мембраны ядра).

Основные процессы молекулярного уровня:

Науки, ведущие исследования на этом уровне:

У меня есть дополнительная информация к этой части урока!

Что относится к тканевому уровню

Атомный (элементарный) уровень: на нем рассматривается роль отдельных химических элементов в живом организме (Fe, F, I, Se, Na).

Субклеточный уровень образован органеллами клетки (митохондриями, хлоропластами, рибосомами, лизосомами), ядром, хромосомами и другими субклеточными структурами.

На уровне субклеточных (надмолекулярных) структур ученые изучают строение и функции органелл, а также других включений клетки

2. Клеточный уровень организации жизни

Единицей этого уровня является клетка (клетки бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов (мукор, дрожжи), клеток многоклеточных организмов)).

Клетка- это структурная и функциональная единица всего живого.

Более подробную информацию о клетке вы можете узнать из урока «Клетка- основа жизни».

Именно на этом уровне прослеживаются все признаки живого (размножение, рост, обмен веществ, раздражение и другие признаки).

Клетка также является минимальной единицей живого, способной к самостоятельному существованию либо в виде одноклеточных организмов, либо в тканях многоклеточного организма.

Если говорить об организмах одноклеточных, то к таковым мы можем отнести бактерии и простейшие (амеб, эвглен, инфузорий), среди грибов к одноклеточным относятся дрожжи и мукор.

Если рассматривать многоклеточных организмов, то количество клеток в их организме может быть очень велико, и эти клетки могут сильно отличаться по строению, хоть и находятся в одном организме. Например, посмотрим на нервную и мышечную клетки человека:

Что относится к тканевому уровню

Вне клетки жизни нет. Такие организмы, как вирусы, подтверждают это правило, потому что они могут проявлять признаки живого и реализовывать свою наследственную информацию только тогда, когда попали в живую клетку.

У меня есть дополнительная информация к этой части урока!

Что относится к тканевому уровню

Стволовыми клетками называются незрелые клетки особого типа, способные развиваться во все виды клеток, составляющих различные ткани организма.

Стволовые клетки в организме находятся как бы в спящем состоянии, у них замедлен обмен веществ.

Они являются резервом организма в случае возникновения различных стрессовых ситуаций (травмы, ранения, болезни).

После «активации» они служат «материалом» для восстановления (регенерации) пораженных органов или тканей.

Также стволовые клетки необходимы для непрерывно происходящей в организме физиологической регенерации (замена старых клеток на новые).

Ученые полагают, что из стволовых клеток в отдаленной перспективе можно будет выращивать практически любую ткань, что может помочь лечению многих заболеваний.

Что относится к тканевому уровню

Компоненты клеточного уровня: комплексы молекул химических соединений и органеллы клетки.

Основные процессы клеточного уровня:

Науки, ведущие исследования на клеточном уровне:

3. Тканевый уровень организации жизни

Единицей этого уровня является ткань.

Ткань— это совокупность клеток и межклеточного вещества, объединенных общностью происхождения, строения и выполняемых функций.

Ткани возникли в ходе эволюционного развития вместе с многоклеточностью организмов.

В ходе онтогенеза ткани образуются на ранних стадиях эмбрионального развития благодаря дифференциации клеток.

Дифференциация клеток- процесс, в результате которого клетка становится специализированной, то есть приобретает химические, морфологические и функциональные особенности, свойственные только для нее.

У животных различают несколько типов тканей: эпителиальная, соединительная, мышечная, нервная.

Что относится к тканевому уровню

У растений выделяют следующие виды тканей: образовательная, основная (фотосинтезирующая), проводящая (флоэма, ксилема), покровная, механическая.

На этом уровне происходит специализация клеток.

Более подробно вы можете узнать о тканях из наших уроков: «Ткани растений» и «Ткани животных».

Компоненты тканевого уровня: клетки и межклеточная жидкость.

Основные процессы тканевого уровня: процессы, характерные для того или иного вида тканей (гомеостаз, регенерация).

Наука, ведущая исследования на тканевом уровне:

4. Органный уровень организации жизни

Составляют этот уровень органы многоклеточных организмов.

Что относится к тканевому уровню

Орган- это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая конкретную функцию.

Орган чаще всего образован несколькими видами тканей, среди которых одна (две) преобладает.

У меня есть дополнительная информация к этой части урока!

Что относится к тканевому уровню

У простейших организмов, конечно же, нет тканей и органов, так как они состоят всего из одной клетки, но функции пищеварения, дыхания, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл в их клетках.

Организменный уровень организации жизни

Все живое на Земле существует в виде обособленных субъектов- особей, которые формируют организменный уровень.

При изучении одноклеточных организмов ученые отмечают то, что особью является каждая отдельная клетка, например, бактерия, простейшие (амеба, инфузория, эвглена), то есть это организмы, которые одновременно могут представлены и клеточным и организменным уровнем организации.

Что относится к тканевому уровню

Компоненты органного уровня: клетки одноклеточных; клетки и ткани, из которых образованы органы многоклеточных организмов.

Основные процессы органного уровня:

Науки, ведущие исследования на органном уровне:

У меня есть дополнительная информация к этой части урока!

Что относится к тканевому уровню

Биометрия- система распознавания людей по одной или более физическим или поведенческим чертам (трёхмерная фотография лица или тела, образец голоса, отпечатки пальцев, рисунок вен руки, группа крови, специальное фото роговицы глаза и так далее).

К примеру, в Китае активно используется технология распознавания лиц в различных областях, начиная от оплаты покупок до общественной безопасности.

Что относится к тканевому уровню

Пройти тест и получить оценку можно после входа или регистрации

Источник

Ключ к программе диетотерапии – методы оценки состава тела

Что относится к тканевому уровню

Что относится к тканевому уровню

С развитием диетологии как части комплексной терапии больного на первый план выходит актуальная проблема — определение критериев эффективности проведения диетотерапии. Помимо стандартных способов стабилизации патологического процесса, таких как объективный осмотр пациента, инструментальное и лабораторное исследование показателей функционирования органов и систем, в практической диетологии появились новые методики определения состава тела человека, которым присущи наиболее объективные критерии оценки пищевого статуса пациента. Теперь, применяя эти современные методы, врач-диетолог может максимально точно определять эффективность назначенного лечебного питания.

Актуальность рассмотрения темы «Методики определения состава тела человека» заключается в необходимости вводить в работу врача-диетолога, лечащего врача перечень современных требований к оценке пищевого статуса.

В основу представленного обзора положены научные труды отечественных и зарубежных авторов, в том числе монографии «Технологии и методы определения тела человека» (Мартиросов Э. Г., Николаев Д. В., Руднев С. Г. 2006 г.), «Биоимпедансный анализ состава тела человека» (Николаев Д. В., Смирнов А. В., Бобринская И. Г., Руднев С. Г. 2009 г.), «Состав тела человека: история изучения и новые технологии определения» (Николаев В. Г., Синдеева Л. В., Нехаева Т. Н., Юсупов Р. Д. 2011 г.).

В кабинете диетолога. Стандарт оснащения кабинета врача-диетолога

Приказом Минздравсоцразвития РФ от 24.06.2010 № 474н «Об утверждении Порядка оказания медицинской помощи населению по профилю „диетология“» в Приложении № 3 представлен стандарт оснащения кабинета врача-диетолога (см. табл. 1).

В перечне наименований оборудования необходимого для использования врачом-диетологом должны быть:

Всё перечисленное оборудование — это инструменты или аппараты для проведения оценки состава тела. Его изучение играет ключевую роль в оценке пищевого статуса пациента, прогнозировании течения заболеваний. Результаты этого исследования применяются при анализе риска развития ряда патологических состояний.

Модели состава тела

В основе оценки состава тела положен принцип разделения его на два или несколько взаимодополняющих компонента. Например, представление массы тела в виде суммы жировой и безжировой массы используется для диагностики избыточной массы тела и ожирения, а также для оценки риска сопутствующих заболеваний. В настоящее время предложено несколько моделей состава тела: двух-, трех-, четырех- и многокомпонентные модели.

Двухкомпонентная модель (традиционная модель)

В основу этой модели заложен принцип различия плотности жировой и безжировой массы. Т. е. масса тела представлена в виде суммы жировой и безжировой массы.

Масса тела, свободная от жира (т. е. липидов), имеет название безжировой массы. Она состоит из воды, мышечной массы, массы скелета и других составляющих. При этом жировая масса тела (ЖМТ) — это масса всех липидов в организме, наиболее лабильный компонент массы тела. Норма содержания жира в организме мужчин составляет около 15 % от массы тела, женщин — около 20 %. У больных ожирением этот показатель увеличен более чем в два раза.

Жир, находящийся в организме человека, анатомически подразделяют на следующие виды:

Традиционную двукомпонентную модель можно использовать для характеристики групповых средних значений процента жировой массы тела. Из-за существования большого количества вариантов плотности безжировой массы этот показатель оказался малопригодным для мониторинга изменений состава тела на индивидуальном уровне за исключением случаев предварительной диагностики и оценки эффективности лечения истощения или ожирения (Heymsfieldetal., 2005). Установлено, что риск развития сердечно-сосудистых и других заболеваний, связанных с избыточной массой тела, коррелирует выше с содержанием внутреннего, а не подкожного жира (Larssonetal., 1992).

Трехкомпонентные модели

Разработка трехкомпонентных моделей состава тела связаны с необходимостью детализации понятия безжировой массы и с развитием методов прижизненной оценки ее отдельных фракций. Измеряемыми величинами здесь являются масса тела, плотность тела и общая вода организма.

Использование трехкомпонентных моделей для характеристики популяций здоровых взрослых людей и подростков позволяет несколько улучшить точность оценки процента ЖМТ.

Четырехкомпонентные модели

У пациентов с нарушениями баланса жидкости в организме или изменениями мышечной массы тела оценка процента ЖМТ с использованием трехкомпонентных моделей дает значительную погрешность. В этом случае используют четырехкомпонентную модель с одновременным определением содержания воды в организме и минеральной массы тела (чаще используется минеральная масса костей), при этом масса остатка состоит из суммы белковой массы и минеральной массы мягких тканей.

Данным методом измеряются четыре показателя: масса и плотность тела, содержание воды в организме и минеральная масса костей. Главная сложность в определении оценки процента ЖМТ при использовании четырехкомпонентных моделей связана с естественной вариацией отношения белок / минеральная масса тела, так как надежная оценка белковой массы invivo возможна только через измерение содержания азота в организме.

Золотым стандартом для оценки процента ЖМТ являются четырехкомпонентные модели состава тела. Измерение осуществляется при помощи новых прогнозирующих формул для оценки жировой массы на основе антропометрии, калиперометрии и биоимпедансного анализа.

Многокомпонентные модели

Эти модели обычно классифицируют не только по количеству рассматриваемых компонентов массы тела, но и по их принадлежности к одному из пяти уровней организации биологической системы:

Уровни организации биологической системы

Элементный уровень. В организме человека содержится около 50 химических элементов, при этом четыре элемента — кислород, углерод, водород и азот — составляют в сумме около 95 % массы тела. Для оценки элементного состава тела применяется нейтронный активационный анализ.

Наиболее устойчивые соотношения между содержанием в организме различных химических элементов обычно наблюдаются для элементов, образующих естественные соединения. Например, свыше 99 % всего кальция в организме находится в костной ткани в составе гидроксиапатита кальция.

Соотношения между элементами, не образующими химические соединения, могут быть относительно постоянными в норме, но при этом значительно варьировать при заболеваниях. Так, нарушение водно-электролитного баланса приводит к изменению концентрации калия в клеточной жидкости.

Молекулярный уровень. Молекулярный состав тела представлен водой, липидами, белками, углеводами и минеральными веществами.

Основу биологических жидкостей составляет вода с растворенными в ней электролитами. Важнейшая функция жидких сред организма — транспорт и обмен веществ. Сумма клеточной и внеклеточной жидкости рассматривается как общая вода организма. Внеклеточная жидкость состоит из плазмы крови, лимфы и интерстициальной жидкости, а также внутриглазной, синовиальной и спинномозговой жидкости.

Организм человека состоит из белковых соединений. В настоящее время проводится количественная оценка общего содержания белков, а также их мышечной и внемышечной фракций.

Углеводы в организме человека представлены главным образом гликогеном, который содержится в клетках мышц и печени. Общая масса гликогена у взрослого человека составляет около 1 кг.

Минеральные вещества составляют около 5 % массы тела. Они содержатся как в костях скелета, так и в мягких тканях.

Клеточный уровень. Клеточный уровень строения тела характеризуется содержанием клеток разных типов, объемом вне- и внутриклеточной жидкости и массой внеклеточных твердых веществ.

Для характеристики клеток организма, потребляющих основную часть кислорода и энергии, выделяющих основную часть углекислого газа и производящих метаболическую работу, Ф. Д. Мур предложил понятие клеточной массы тела (КМТ).

КМТ состоит из клеток печени, почек, сердца, скелетной и гладкой мускулатуры, нервной, паренхиматозной и других тканей. Это понятие объединяет компоненты тела, подверженные наибольшим трансформациям под действием изменений режима питания, заболеваний и физических нагрузок. КМТ не содержит клетки соединительной ткани, костей скелета и черепа и других тканей с низкой скоростью обменных процессов.

Тканевой уровень. Тканевой уровень строения тела представлен скелетно-мышечной, жировой, костной тканями и внутренними органами. Масса тканей и органов оценивается путем измерения объема. Часто при заболеваниях химический состав тканей меняется даже при относительном постоянстве объема, а содержание липидов варьирует в зависимости от процентного содержания жира в организме и других факторов. Это служит препятствием для непосредственного сопоставления моделей тканевого и молекулярного уровней.

Изучение состава тела на различных уровнях стало возможным при применении различных методов исследования. Так, за небольшой временной период оценка состава тела человека от классических методов антропометрии и гидростатического взвешивания была усовершенствована новыми методами, основанными на измерении параметров внешних физических полей при их взаимодействии с организмом: рентгеновской костной денситометрии, компьютерной и магнитно-резонансной томографией, ультразвуковой и инфракрасной диагностикой. Метод многочастотного биоимпедансного анализа для оценки баланса водных секторов организма хорошо зарекомендовал себя в интенсивной терапии, гемодиализе, кардиохирургии.

История открытия методов для оценки состава тела

Вероятно, первые попытки объективного количественного исследования тела были связаны с началом формирования естественно-научной картины мира.

Значительный интерес вызывало такое явление, как ожирение. В своих трудах, посвященных ожирению, Гиппократ, Гален и Артей из Каппадокии различали «водяную тучность» и «твердое ожирение» (без отеков). Твердое ожирение они рассматривали как результат переедания и предлагали лечить его голоданием и физическими нагрузками. Гиппократ обращал внимание, что чрезмерно тучные люди живут меньше, а слишком полные женщины бесплодны.

Другим примером начала формирования научного подхода к изучению состава тела являются знаменитые опыты древнегреческого ученого Архимеда по изучению физических свойств материальных тел путем их погружения в жидкость. Закон Архимеда, описанный им в трактате «О плавающих телах», лежит в основе гидростатической денситометрии — одного из современных методов определения состава тела человека.

В первой половине XIX в. в связи с применением математической статистики в демографических и биологических исследованиях было положено новое направление оценки состава тела — весо-ростовые индексы. Так, до нашего времени как основной индекс оценки пищевого статуса пациента используется индекс Кетле. Для общей характеристики человеческих популяций А. Кетле в 1835 г. ввел понятие «среднего человека», а для оценки индивидуального физического развития впервые в истории антропологии он предложил весо-ростовые индексы. Наибольшей популярностью остается индекс Кетле, равный отношению массы тела, измеряемой к килограммах, к квадрату длины тела, измеряемой в метрах.

Индекс Кетле применяется Всемирной организацией здравоохранения (ВОЗ) для характеристики пищевого статуса, предварительной диагностики ожирения и оценки риска развития сердечно-сосудистых и других заболеваний. При обследовании больных ожирением индекс Кетле рекомендуется считать пятым основным показателем жизнедеятельности организма.

Источник: Мартиросов Э. Г., Николаев Д. В., Руднев С. Г. «Технологии и методы определения тела человека». М. Наука, 2006 г.

Современные методы оценки состава тела

В настоящее время есть несколько групп методов для оценки состава тела:

2. Методы на основе плотности и объема тела:

3. Биофизические методы:

В данной статье мы рассмотрим наиболее простые и доступные методы оценки состояния питания, которые вошли в практическую диетологию достаточно давно. А также представим научно-обоснованную информацию о возможности применения новых современных методов оценки состава тела человека — антропометрии, калиперометрии и биоимпедансометрии.

Простые индексы

Наиболее доступным и в то же время корректным методом для характеристики состава тела являются индексы, в расчете которых используются такие параметры, как масса тела и рост. Наибольшее распространение на практике получил индекс Кетле, иногда его называют индексом Кетле-Гульда-Каупа или более коротко — индексом массы тела (ИМТ).

Индекс Кетле = масса тела, кг / (длина тела, м) 2

Оценка индекса массы тела проводится в соответствии с показателем индекса Кетле с учетом возрастных групп (см. табл. 3).

В 2001 г. предложен способ зрительной оценки величины индекса массы тела (см. рис. 1). На основе обработки большого массива данных измерений различным значениям индекса массы тела у мужчин и женщин был поставлен в соответствие вариационный ряд очертаний тела (фигуры) (см. табл. 5). Нормальный диапазон значений ИМТ соответствует типам фигур 1–6 для мужчин и 1–5 для женщин. Ожирению у мужчин соответствует тип фигуры 7 и выше, у женщин 6 и выше.

По данным проведенных исследований информативность индекса Кетле для изучения состава тела остается одним из эталонных методов (Smalltey et.al.,1990). Коэффициент корреляции составляет 0,69–0,82 при сравнении показателей ИМТ (Кетле) с результатами изменения состава тела методом гидростатической денситометрии. Результаты этих исследований подтверждены учеными в дальнейших работах, в результате которых был сделан следующий вывод: «При обследовании взрослых людей, больных ожирением, не следует проявлять особой избирательности в том, какой из индексов лучше использовать, достаточно использования общепринятого индекса Кетле, рекомендованного экспертами ВОЗ для оценки состава тела человека».

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

По данным мультицентрового исследования (Calle e tal., 1999) проведен анализ результатов длительного наблюдения за группой более 1 млн человек. Цель этого мероприятия — анализ факторов риска снижения продолжителности жизни. Итоги наблюдений: при ИМТ от 20,5 до 24,9 независимо от пола и возраста установлены наиболее низкие показатели смертности. Величина ИМТ повышалась в группе с высоким уровнем смертности от сердечно-сосудистой патологии и рака. В то же время при уменьшении величины ИМТ ниже возрастной нормы увеличивались показатели смертности от пневмонии, заболеваний сосудов головного мозга и болезней центральной нервной системы.

Таким образом, проведенный анализ исследований свидетельствует о том, что основная область применения весо-ростовых таблиц и индексов массы тела связана с оценкой уровня физического развития, пищевого статуса и предварительной диагностики ожирения и прогнозирования развития ряда заболеваний.

В то же время высокие индивидуальные значения индекса массы тела не могут служить всегда объективными критериями ожирения. По данным Д. В. Николаева с соавторами («Биоимпедансный анализ состава тела человека», 2009), известны случаи ожирения у пациентов, имеющих нормальные значения индекса массы тела, существенные изменения которого могут быть связаны с повышенной гидратацией. Возникает закономерный вопрос: каковы способы объективной количественной оценки содержания жира в организме? Задача такой оценки решается с использованием современных методов изучения состава тела.

Калиперометрия

Метод калиперометрии представляет собой измерение толщины кожно-жировых складок на определенных участках тела при помощи специальных устройств — калиперов.

Калиперометрия явилась одним из первых методов, используемых для изучения состава тела. Разработанные на ее основе прогнозирующие формулы для оценки состава тела хорошо себя зарекомендовали для решения задач спортивной, оздоровительной и клинической медицины.

В настоящее время в мире производится большое количество моделей калиперов, которые отличаются друг от друга конструктивными особенностями, точностью измерения, условиями применения, ценой и другими показателями.

Калиперометрия, как правило, используется для определения содержания жира в организме. В основе метода лежит оценка средней кожно-жировой складки (КЖС) калипером по нескольким кожно-жировым складкам (наиболее часто над трицепсом, над бицепсом, субскапулярной и супраилеальной).

Калипер — это прибор, который позволяет измерять КЖС и имеет стандартную степень сжатия складки 10 мг/см³. Изготовление калипера доступно и в индивидуальном порядке.

Правила измерения кожно-жировой складки

Стандартная ошибка оценки калипером жировой массы при повторных измерениях одного и того же индивида не должна превышать 5 %.

Формулы для оценки состава тела специфичны для конкретных популяций. На сегодняшний день имеется свыше 100 формул для оценки жировой, безжировой и мышечной массы.

Порядок проведения калиперометрии:

Рассчитываемые величины, характеризующие массы мышц плеча и подкожно-жировой ткани, с достаточно высокой точностью коррелируют соответственно с тощей (ОМП) и жировой (КЖСТ) массами тела, а соответственно, и с общими периферическими запасами белков и жировым запасом организма. В среднем антропометрические показатели, соответствующие 90–100 % от общепринятых, характеризуются как нормальные, 80–90 % — как соответствующие легкой степени недостаточности питания, 70–80 % — средней степени, а ниже 70 % — тяжелой степени.

Биоимпедансометрия

Одним из методов оценки состава тела, получившим достаточно широкое применение в практической диетологии, является метод биоэлектрического импеданса. Он был разработан в 1927 г. Friche, а затем незаслуженно забыт. Только в 1960-е гг. благодаря работам Томассета и его модификации методики спектральная биоимпедансометрия вновь обрела второе рождение.

Инструментальное измерение состава тела методом биоэлектрического импеданса основано на оценке распределения водных объемов. Определение состава тела базируется на большей проводимости мышечной массы тела в сравнении с жировой, что связано с различным содержанием жидкости в этих тканях. Биоэлектрический импедансный анализ основан на способности тканей проводить электрический ток. Сопротивление тканей электрическому току прямо соотносится с содержанием в них жидкости: высоко гидратированные ткани (мышечная ткань) — хорошие проводники, а плохо гидратированная жировая ткань — изолятор. Таким образом, импеданс обратно пропорционален содержанию жидкости в тканях организма. Токи высоких частот проходят через внеклеточную и внутриклеточную среду, делая возможной оценку свободной от жира массы, а более низкочастотные токи распространяются во внеклеточном пространстве.

Биофизической основой импедансного анализа служит модель зондирования тела человека электрическим током различной частоты и определения водного баланса.

Серийное производство и широкое применение биоимпедансных анализаторов началось в 1990-е гг. В настоящее время в мире известно несколько фирм, осуществляющих выпуск таких приборов. Кроме того, регулярно появляются сообщения о новых разработках, предназначенных для решения каких-либо частных задач или отличающихся улучшениями каких-либо характеристик.

Приборы для биоимпедансометрии можно классифицировать по нескольким признакам:

В биоимпедансном анализе измеряются активное и реактивное сопротивления тела человека или его сегментов на различных частотах.

Что такое биоимпеданс

Импеданс — это сопротивление, а биоимпеданс — сопротивление биологических тканей тела при прохождении электрического тока. Вода, кровь (содержимое полых органов человеческого тела) хорошо проводят ток, т. к. у них низкий импеданс. Ткани же более плотные (мышцы, нервы и органы) проводят его слабее. Еще хуже сопротивляемость у жировой ткани.

Параметры, получаемые в биоимпедансном анализе

Параметры, используемые в биоимпедансном анализе, подразделяются на биоэлектрические и антропометрические.

Биоэлектрические параметры — компоненты вектора импеданса всего тела, его отдельных сегментов или локальных участков тела, измеряемые на одной или нескольких частотах переменного тока. Зная компоненты импеданса, вычисляют дисперсионные характеристики тканей, а также фазовый угол — арктангенс отношения реактивного и активного сопротивлений для некоторой частоты тока. Значение фазового угла характеризует емкостные свойства клеточных мембран и жизнеспособность биологических тканей: считается, что чем выше фазовый угол, тем лучше состояние тканей.

Антропометрические параметры — пол, возраст, расовая и этническая принадлежность, а также линейные и весовые размеры тела (характеристики телосложения индивида), используемые для оценки состава тела, такие как длина, масса и объем тела. Также измеряют окружность талии и бедер, другие размеры тела. Измерения выполняют по стандартной методике с использованием антропометра или ростомера, напольных весов и измерительной ленты (Мартиросов Э. Г., Николаев Д. В., Руднев С. Г. «Технологии и методы определения тела человека» 2006 г.). Вычисляют индекс массы тела, а также индекс распределения жировой ткани, равный отношению окружности талии (ОТ) к окружности бедер (ОБ). ИМТ и другие вспомогательные параметры используются при формировании норм состава тела для различных популяций (Bosy-Westphaletal., 2006). Площадь поверхности тела (ППТ) оценивают, зная длину и массу тела.

В перечень параметров состава тела, оцениваемых методом биоимпедансного анализа, входят абсолютные и относительные показатели. В зависимости от методики измерений абсолютные показатели определяют как для всего тела, так и для его отдельных регионов (сегментов). К абсолютным показателям относятся жировая (ЖМТ) и безжировая (тощая) массы тела (БМТ, ТМ), активная клеточная (АКМ) и скелетно-мышечная массы (СММ), общая вода организма (ОВО), клеточная и внеклеточная жидкости (КЖ, ВКЖ). Наряду с ними рассчитываются относительные (приведенные к массе тела, тощей массе или другим величинам) показатели состава тела.

Относительные показатели используются для сопоставления пациентов и групп пациентов, в том числе различающихся по полу, возрасту, телосложению и состоянию здоровья. При этом выбираются такие показатели, которые наиболее адекватно для рассматриваемой группы пациентов отражают ее особенности.

Параметры сегментов тела используются для характеристики региональных особенностей строения тела, оценки перераспределения жидкости в организме или степени асимметрии конечностей.

Оценка параметров импеданса

Средняя величина фазового угла у детей, подростков и взрослых людей повышается, достигая максимума к 30–40 годам, и в дальнейшем постепенно снижается. В клинических исследованиях величина фазового угла используется для оценки тяжести состояния пациентов и для прогноза времени дожития у больных тяжелыми хроническими заболеваниями.

Жировая масса является наиболее изменчивым компонентом состава тела человека. В момент рождения процентное содержание жира в организме составляет 10–15 % от массы тела независимо от пола, к 6 месяцам она составляет около 30 % и затем постепенно снижается. К 5–6 годам у ребенка формируются половые различия в развитии жироотложения с соответствующими изменениями формы тела. С возрастом количество абсолютной жировой массы продолжает расти. Так, у взрослых мужчин и женщин за год оно увеличивается в среднем на 0,37 и 0,41 кг. При этом у женщин с возрастом темпы роста объема абсолютной жировой массы несколько увеличиваются, а у мужчин замедляются. У мужчин к 40–50 годам среднепопуляционное значение жировой массы тела достигает максимума с тенденцией к последующему уменьшению. У женщин наблюдается двустадийное увеличение абсолютной жировой массы: первая стадия завершается к 40 годам фазой относительной стабилизации, дальнейший рост происходит начиная с 60 лет.

Топография подкожного жироотложения и формы тела формируются в перипубертатном периоде. Так, у мужчин накопление подкожного жира происходит в верхней части туловища (андроидный тип жироотложения), у женщин — в области бедер и ягодиц (гиноидный тип). Это важный признак при назначении дополнительного обследования пациенту. Если топография подкожного жироотложения пациента демонстрирует вариант, характерный для противоположного пола, то повышается риск развития ряда заболеваний. Андроидный тип жироотложения как у мужчин, так и у женщин может ассоциироваться с метаболическими факторами риска, такими как увеличенное содержание кортизола, холестерина, повышенное давление и инсулиновая резистентность, а также с поведенческими и психосоциальными факторами риска, такими как низкая физическая активность, курение, прием алкоголя и депрессивные состояния.

Важное физиологическое и патофизиологическое значение имеет развитие внутреннего жира. Установлено, что риск метаболических нарушений гораздо выше при преимущественном накоплении внутреннего, а не подкожного жира.

Безжировая масса. По сравнению с жировой массой тела индивидуальные возрастные изменения безжировой массы носят более устойчивый характер и находятся под более жестким генетическим контролем.

Этот показатель увеличивается в период роста организма. В зрелом возрасте он относительно стабилен и может снижаться в процессе старения. В период полового созревания у мальчиков нарастание мышечной и скелетной массы происходит более быстрыми темпами. В процессе старения объем безжировой массы обычно снижается быстрее у мужчин. Одной из ее составляющих является клеточная масса тела.

Установлено уменьшение отношения клеточной массы к безжировой массе с возрастом в результате частичного замещения метаболически активных тканей инертными компонентами, такими как внеклеточная жидкость и соединительная ткань. Эти два показателя снижаются в результате голодания (истощение), болезней (кахексия) и при старении (саркопения). Уменьшение безжировой массы до 40 % от нормальных значений считается несовместимым с жизнью (Winick, 1979).

Общая вода организма. Водные сектора. Общая вода организма представляет собой наибольший по массе компонент состава тела молекулярного уровня. В норме общая вода организма составляет около 55 % массы тела у женщин и 60 % у мужчин (Детьен, 2005). Основной вклад в возрастные изменения общей гидратации организма вносит процентное содержание слабо гидратированной жировой ткани — в адипоцитах содержание воды составляет 5–10 %, в жировой ткани — до 30 %.

Внеклеточная жидкость опосредует процессы газообмена, переноса питательных веществ и вывода конечных продуктов метаболизма и состоит из плазмы крови, интерстициальной жидкости и жидкостей третьего пространства (желудочного сока, мочи, жидких фракций содержимого кишечника).

Активная клеточная масса. Для количественной оценки содержания метаболически активных тканей в организме с использованием биоимпедансного анализа оценивается величина активной клеточной массы, также называемая клеточной массой тела.

Диагностическая трактовка этого показателя как белковой массы тела или суммы масс скелетно-мышечной ткани и внутренних органов не является строгой, но имеет под собой многолетний опыт успешного использования в практике диетологии. В клинической практике отношение активной клеточной массы к тощей массе применяется для оценки достаточности белкового питания и выраженности гиподинамии.

Скелетно-мышечная масса. В количественном отношении основной составляющей активной клеточной массы является скелетно-мышечная масса. Биоимпедансная оценка скелетно-мышечной массы используется в спортивной медицине наряду с антропометрическими оценками для характеристики физического развития и уровня тренированности.

Основной обмен

Биоимпедансный анализ дает возможность выбора наиболее информативных способов нормировки показателей общего метаболизма, опираясь не только на антропометрические данные, но и на компонентный состав тела.

Оценки основного обмена востребованы в диетологии и других областях медицины. Основной обмен здорового взрослого человека составляет примерно 1 ккал на 1 кг массы тела за 1 ч. Величина основного обмена зависит от пола, возраста, длины, массы, температуры тела и других факторов.

У детей она растет с увеличением массы тела. Зависимость эта нелинейная в силу изменений размеров и состава тела. Показатель основного обмена у мужчин увеличивается до достижения ими 30–40-летнего возраста и в дальнейшем постепенно снижается со скоростью 0,5–1 % в год. Механизмами такого снижения могут являться уменьшение активности клеток, замедление обмена веществ, снижение мышечного тонуса, а также уменьшение массы печени, мозга, сердца и почек — органов, где обмен веществ и расход энергии происходят наиболее интенсивно. У женщин наблюдается двустадийный рост величины основного обмена.

Величина основного обмена зависит от уровня развития скелетно-мышечной ткани. При одинаковых массе и длине тела (и, следовательно, индексе массы тела) значения основного обмена у людей атлетического телосложения на 10–15 % выше, чем при избыточном содержании жира в организме. При ожирении 2-й степени значения основного обмена ниже в среднем на 20–25 %, а при ожирении 3-й степени — на 30 %, чем у здоровых людей. Для сравнения интенсивности обменных процессов у разных индивидов значения основного обмена обычно рассчитывают на площадь поверхности тела.

Особенности биоимпедансометрии

Несмотря на то что калиперометрия и определение индекса массы тела являются широко используемыми методами для изучения состава тела, они остаются недостаточными для определения различных параметров соотношения компонентов тела, которые оказывают значительное влияние на определение необходимой для данного пациента диетотерапии.

По сравнению с этими методами у биоимпедансного анализа есть немало преимуществ. Во-первых, у специалистов появилась возможность досконально изучить обмен веществ, водно-солевой, липидный обмен и разобраться с тем, что влияет на пропорции и вес тела человека, а также понять, откуда взялся лишний вес и чем он обусловлен. Во-вторых, метод отличается высокой точностью и надежностью для объективной оценки эффективности подбора диеты, выбора способа и уровня физической нагрузки для пациента, а также оценки эффективности проводимого лечения и его влияния на состояние пациента. В-третьих, владея данными биоимпедансного анализа, врач-диетолог может регулировать скорость и качество достижения желаемого результата.

В-четвертых, благодаря тому, что результаты измерения электрического сопротивления тканей организма методом импедансометрии подвергаются компьютерной обработке, оценка изменений в составе организма и коррекция диеты проводится в режиме реального времени.

Каким пациентам назначается исследование:

Проведение биоимпедансометрии

Исследование абсолютно безвредно, безболезненно и комфортно, сама процедура во многом схожа с проведением ЭКГ. По длительности оно не превышает 10–15 минут.

Повторные исследования (при необходимости) следует проводить не ранее, чем через две недели после предыдущего. Перед самим исследованием (за 2–3 часа) следует воздержаться от приема пищи и жидкости. Заключение выдается через несколько минут после окончания исследования.

Исследование не рекомендуют проводить беременным женщинам, а также лицам с кардиостимулятором, имплантированными электронными устройствами.

Основные параметры, которые могут быть получены при проведении биоимпедансометрии:

В практической диетологии метод биоимпедансометрии используется для определения состава тела, то есть содержания жидкости, жировой, тощей и мышечной массы тела. Результаты данного исследования позволяют с максимальной точностью установить, за счет какого (или каких) из этих компонентов пациент страдает избыточным весом.

Более того, биоимпедансометрия является незаменимым инструментом для оценки влияния лечения на пациента. Динамика показателей, полученных с ее помощью, позволяет вносить необходимые корректировки в проводимую терапию с целью достижения наилучшего ее эффекта.

Основы основ. Интерпретация данных биоимпедансометрии

Для правильной интерпретации данных биоимпедансометрии необходимо не только объективно получить индивидуальные параметры нарушений в составе тела, но и понять, какие показатели и как в конечном счете влияют на формирование программы диетотерапии.

Жировая ткань. Основной задачей жировой клетки является создание запаса энергии, то есть жировая ткань является важнейшим энергетическим депо. Жировая ткань является и своеобразным хранилищем воды в организме, так как при распаде жира выделяется вода. Жиры жизненно важны как строительный компонент кожи, волос, ногтей. Жировая ткань служит для теплоизоляции, с ее участием вырабатываются нужные биологические вещества (в частности женские половые гормоны), жировая прослойка механически защищает внутренние органы и т. д. То есть направленность диетотерапии должна быть только на ликвидацию излишнего жира.

Жидкость в организме. Различают жидкость внутриклеточную, внеклеточную — кровь (плазма, эритроциты), лимфа — и жидкости, находящиеся в нашем организме в связанном состоянии (в отеках тканей). Пройдя диагностику, можно точно определить, в каких пределах нормы или отклонения находится та или иная жидкость. При недостатке жидкости происходит замедление обмена веществ, сгущение крови, нарушение кровообращения. При количестве жидкости больше нормы увеличивается нагрузка на сердце, и, соответственно, вес тоже увеличивается. Переизбыток воды в связанном состоянии создает отечность в тканях, что, соответственно, увеличивает вес. При задержке этой жидкости выше нормы тормозится процесс жиросжигания. Каждый лишний грамм соли удержит 100 мл воды. Соответственно, 10 г соли задержат 1 л, а это обеспечит прибавку веса на 1 кг. Среднее время полувыведения из организма задержавшейся воды составляет 3,3 дня.

Активная клеточная масса (мышцы, органы, нервные клетки, мозг). В активной клеточной массе происходит сжигание жира. Если активная клеточная масса в своем процентном содержании ниже нормы, это свидетельствует о том, что не все клетки активны. Соответственно, человек съедает небольшое количество пищи, а жир всё равно откладывается под кожу. Причиной такого нарушения может стать нарушение функций щитовидной железы. В этом случае врач, после соответствующего обследования, подключает препараты для нормализации обмена, восстановления и улучшения работы печени. Для поддержания активной клеточной массы необходимо адекватное сбалансированное клеточное питание. При недостатке мышечной массы замедляется основной обмен веществ. Нарушается усвоение кальция, что приводит к остеопорозу.

Надежность и оперативность

Применение всех трех основных методов оценки состава тела не только позволяет врачу-диетологу определить отклонение параметров состава тела от средней эталонной нормы антропологическими методами измерений, индивидуализировать критерии увеличения или уменьшения жировой массы тела объективным методом калиперометрии, но и дает возможность провести анализ изменения жировой ткани, жидкости в организме, состояния активной клеточной массы (мышц, органов, нервных клеток, мозга). Проводится этот анализ для оценки степени нарушения пищевого статуса и возможности организма их ликвидировать.

Внедрение новых технологий и методов исследования позволит практикующим врачам повысить надежность и оперативность оценки таких показателей состава тела, как жировая, безжировая, клеточная и внеклеточная жидкости. Применение своевременных подходов дает возможность изучения состава тела на всех уровнях организации биологической системы: клеточном, органно-клеточном, органно-тканевом и уровне целостного организма.

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *