Что относится к стеклу
Из чего делают стекло?
Стекло представляет собой неорганический прочный, хрупкий, непроницаемый для природных элементов, прозрачный или полупрозрачный материал, который используется во многих областях нашей повседневной жизни. Талантливые стекольщики и дизайнеры Eraglass работают со стеклом каждый день, и его уникальные качества воспринимаются ими как должное. Вот несколько интересных фактов об этом материале.
Состав стекла
Стекло изготавливается из натурального сырья, которое плавится при очень высокой температуре. Основной ингредиент стекла – это песок, но, технически, главным составляющим является компонент песка – кварц, он же диоксид кремния (SiO2), кремнезем или кварцевый песок.
Кварц соединяется с другими ингредиентами, которые могут различаться. Это такие элементы, как:
Стекло производится путем охлаждения расплавленных при температуре от +300 до +2500 °C компонентов, с достаточной скоростью, чтобы предотвратить образование видимых кристаллов. Одного песка достаточно для изготовления стекла, однако температура, необходимая для его плавления, будет намного выше. По этой причине сода добавляется в качестве модификатора. Известняк делает его более прочным. Оптимальный состав: около 75 % кремнезема, 10 % извести и 15 % соды.
Силикатное стекло
Композиции стекла разработаны таким образом, чтобы проявлять его различные физические, химические и оптические свойства. Разнообразие применения требует определенных типов стекла и производственных процессов. В промышленном производстве обычно используют несколько составов. Мы кратко остановимся на силикатном стекле.
Силикатное стекло – это обычное стекло, которое встречается повсеместно. Список изделий практически бесконечен: от посуды, объектов декора, очков, лабораторных сосудов, ламп накаливания, окон и до сотни других предметов, которые мы прямо или косвенно используем в нашей повседневной жизни.
Промышленное стекло делится на строительное, техническое, электровакуумное, тарное, лабораторное, безопасное, оптическое, сортовое.
Структура стекла
Стекло может быть сформировано естественным путем; например, в вулканах или когда молния попадает на песчаный пляж, и оно производилось людьми в течение тысяч лет. Таким образом, может быть удивительно, что наше понимание точной структуры стекла не является полным даже после столь длительного времени. Очень часто стекло обозначается как аморфное. Это слово пришло из греческого языка и означает «без формы». Таким образом, у нас есть грубое представление о том, что стекло как-то бесформенно.
Строение стекла еще окончательно не установлено. Есть расхождения даже между основной его массой и поверхностным слоем. Это связано с тем, что различные стекла имеют разный состав. Помимо этого на его структуру влияет технологический процесс.
Расположение атомов в стекле
Слева: кристаллическая форма, справа: аморфная форма.
Стекло имеет какой-то оттенок мистики – вероятно, из-за своего странного химического и физического поведения. Оно достаточно надежно, чтобы защитить нас, но может разбиться на тысячи осколков. Оно сделано из непрозрачного песка, но полностью прозрачно. И, пожалуй, самое поразительное – оно выглядит и ведет себя как твердое тело, но на самом деле это замаскированная форма странной жидкости. В результате его можно наливать, выдувать, прессовать и формовать.
Химия стекла
Химический состав стекла диктует его физические свойства и характеристики. В зависимости от основного компонента они бывают: оксидными, фторидными, сульфидными…
Оксидные
Являются одними из немногих твердых тел, которые пропускают свет в видимой области спектра. Существуют различные типы оксидного стекла. Название зависит от содержания различных окислов.
Среди оксидных стекол фосфатные и силикатные стекла являются двумя наиболее важными материалами, и они широко используются. По сравнению с силикатными стеклами фосфатные ограничены в применении, поскольку у них ниже температура стеклования. А силикатные обладают превосходной химической стойкостью.
Германатные — ближайшие аналоги силикатных. Высокая цена и небольшая химическая стойкость существенно ограничивают их применение. Имеют хорошее преломление и светопропускание. Используются для оптических приборов.
Боросиликатное стекло содержит не менее 5% оксида бора. Оно устойчиво к экстремальным температурам, а также к химической коррозии.
Эти свойства делают боросиликат идеальным для лабораторного употребления. Многие линзы для микроскопов и телескопов изготовлены из боросиликатного стекла.
Фторидные
Фторидные стекла и оптические волокна используются для изготовления поливолоконных систем передачи информации. Они имеют обширный диапазон спектрального пропускания, значительную радиационную стойкость и чувствительность. Кроме того, фторидные волокна можно использовать для направленной передачи световых волн в таких средах, как лазеры, что требуется для медицинских применений (в офтальмологии и стоматологии).
Сульфидные
Сульфидное (сульфидно-цинковое) стекло, получается при добавлении в стеклянную массу окиси железа и сульфида цинка, которые придают материалу разнообразные оттенки. Широко используется в изготовлении элементов декора, сувенирной продукции и посуды.
Стекло. Виды и применение. Свойства и производство. Особенности
Стекло – группа материалов имеющих различную химическую структуру, общим показателем для которых является свойство переходить при охлаждении из жидкого состояния в твердое без образования кристаллической решетки.
Технология производства
Существует много разновидностей стекла, технология производства которых отличается. В общем ее можно описать как варку. Материал в зависимости от применяемого сырья расплавляется и выдерживается при температуре 1200-1600°С на протяжении от 12 до 96 ч. За этот период времени используемая сырьевая масса поддается химическим изменениям. В материале происходит множество химических реакций, в конце которых он приобретает свойства стекла.
Сформированная при варке масса в горячем состоянии является жидкой. В вязком состоянии она используется для формирования различных изделий, которые при застывании становятся твердыми.
Стекло варится в шамотных горшках вместимостью до 1,5 тонны. В одну печь помещают от нескольких до 10-20 горшков. Также на некоторых производствах применяются ванные печи, которые работают в режиме непрерывной варки стекла до 5 лет, после чего меняются или поддаются ремонту.
Стекольная масса нуждается в соблюдении строгого температурного режима при остывании. Если изделие остынет быстрее допустимой скорости, то оно треснет. В связи с этим на производстве этому уделяется особое внимание.
Свойства стекла
Материал сочетает в себе ценные качества, такие как:
При всех достоинствах, у стекла имеется и недостаток – хрупкость. В отличие от металлов и прочих материалов при механическом воздействии оно не деформируется, а разлетается на осколки. Осколки могут иметь острые кромки, что несет опасность.
Материал имеет достаточно большую массу. По этому показателю он практически приравнивается ко многим видам металлов. При этом зачастую стекла гораздо тверже, и могут поцарапаться только алмазным инструментом или изделиями с твердыми напайками.
Виды стекла по сырьевому составу
Для изготовления стекла может использоваться различное сырье. От него зависят свойства и внешний вид материала. Различают следующие разновидности стекла:
Существуют и другие разновидности стекол, которые однако не нашли промышленной популярности. Они больше подходят для узкоспециализированных задач. К примеру, такой редкой разновидностью является урановое стекло, которое раньше использовалось для изготовления ваз, чаш и прочей посуды.
Кварцевое стекло
Материал является самым простым в плане сложности химического состава. По сути это просто сваренный кварцевый песок. Хотя изделие и простое в плане состава, но сложное в изготовлении. Это связано с высокой температурой плавки песка. С расплавленной кварцевой массой сложно работать, формируя необходимые изделия, что делает материал не распространенным.
В частности из него делают химические стаканы, колбы для ртутных ламп. Для менее ответственных изделий его применение нерационально. Важным качеством кварцевого стекла является высокая температурная устойчивость. Оно не меняет свою форму при нагреве до температуры +1000°С. Материал хорошо переносит резкие перепады температуры. При неравномерном сильном разогреве или охлаждении поверхности он может давать трещины.
Натриево-силикатные
Материал получается в результате совместной варки оксида кремния и оксида натрия. Последний компонент это обычная сода, которая действует как флюс. Плавка и варка стекла выполняется при температуре +900°С. Главная особенность таких стекол в том, что они растворяются в воде. Однако, несмотря на это они получили широкое распространение в промышленности.
Известковые
Это стекло является практически натриево-силикатным, в которое добавлена известь. Включение последнего компонента делает материал устойчивым к растворению в воде. Именно этот тип стекла широко использовали в древности благодаря сравнительной легкости его производства.
Известковые стека производят и в наше время, но немного по усовершенствованной технологии. В него добавляют оксид алюминия, оксид магния и прочие компоненты, позволяющие повысить качество готового изделия. Зачастую оконные стекла сделаны именно из этого материала, как и большинство зеркал. Массовая доля всего производимого в мире стекла является известковым.
Свинцовые
Несмотря на название, в состав этого стекла помимо свинца также включены сода, кремнезем и еще несколько оксидов. Этот материал является очень эффективным электрическим изолятором. Благодаря этому его используют при изготовлении микросхем, изоляторов для конденсаторов.
Эта разновидность стекла отличается повышенным блеском. Подавляющее число так называемых хрустальных изделий являются свинцовыми стеклами. Это дорогой материал с высокими декоративными качествами.
Боросиликатные
В став боросиликатного стекла включен оксид бора. За счет этого материал отличается высокой устойчивостью к температурному воздействию как минимум в 2 раза выше, чем у обычных видов стекла. Его часто называют пирекс. Это его торговое название, которое было присвоено производителем, разработавшим его рецептуру. Высокая стойкость материала к термоудару делают боросиликатное стекло популярным при производстве посуды. Из него делают тарелки, кастрюли, чашки и т.д.
Виды стекол применяемых в остеклении
Помимо различия по сырью, также осуществляется классификация стекла на виды и по другим критериям. Они бывают:
Ламинированные
Ламинированное стекло также называют триплекс. Это листовой материал, состоящий из нескольких слоев обычного стекла, между которыми располагается пленка или полимер. Наличие последних делает материал более крепким и безопасным. При разбивании он не разлетается на мелкие осколки. В связи с этим его используют для изготовления лобовых стекол для автомобилей.
В целом материал имеет массу достоинств. Его сложнее разбить, он лучше останавливает ультрафиолет. За счет пленки при взгляде на него с внешней стороны создается эффект поляризации, снижающий просматривание.
Закаленные
Эти стекла поддаются термической или химической обработки. За счет этого они становятся более крепкими и твердыми. Их очень сложно разбить или поцарапать. Их используют для изготовления триплекса, стеклопакетов для окон. В случае разбивания, что бывает редко, закаленное стекло разлетается на мелкие не острые безопасные осколки.
Армированные
Эти стекла содержат внутри металлическую сетку. Она выступает в качестве армирующего слоя. За счет нее обеспечивается высокая ударопрочность. В случае разбивания осколки стекла удерживаются на сетке. Это позволяет ему по-прежнему выполнять свою функцию, хотя и менее эффективно.
Стекло считается эффективным для удержания распространения огня и дыма. Его часто используют для остекления хозяйственных построек, СТО, гаражей, автомоек. За счет сетки внутри окна разбиваются с меньшей вероятностью, чем обычные стекла. Армированное изделие хорошо пропускает свет, но искажает изображение. По этой причине оно совершенно непригодно для установки в окна домов, административных и офисных зданий.
Энергосберегающие
Это низкоэмиссионные виды стекла. Они наделены весьма важным качеством – отражают обратно тепловые лучи при воздействии с одной стороны. Их применяют для сборки стеклопакетов для окон. За счет них тепло помещения при попадании на остекление не проходит наружу. При этом свет и тепло от солнечных лучей проникают внутрь помещения без проблем.
Эффект энергосбережения может достигаться напылением на стекла специального состава или путем приклеивания пленки. Нужно отметить, что энергосберегающее остекление может дополнительно работать и в обратную сторону, препятствовать проникать солнечного тепла внутрь помещения.
Солнцезащитное
Изделие этого типа работает на отражение солнечного тепла. Оно используется для изготовления стеклопакетов. Оно размещается отражающей стороной на улицу, за счет чего внешнее тепло не проникает в помещение. Стоимость такого стекла может существенно отличаться. Самые дорогие способны отражать солнечное тепло, при этом пропускать внутрь практически весь свет. За счет этого в помещение поступает нормальное дневное освещение.
Окрашенные в массе
Такое стекло является менее прозрачным. За счет этого оно поглощает часть света и тепла. Чаще всего при его изготовлении используются цветные пигменты: зеленые, коричневые, бронзовые, серые.
За счет поглощения тепла поверхность стекла сильно разогревается. Установлено, что у стекол с поглощением света на 50% температура поверхности днем может дойти до +90°С. Касание к ним в такие моменты вызывает ожог на коже. Использование таких стекол на окнах также нежелательно и по причине пагубного влияния на человека. Тусклый свет через такое окно приводит к нарушению ориентированию во времени, порчи зрения.
Окрашенные
Такие стекла изначально являются прозрачными. Для снижения пропускной способности они могут окрашиваться с одной из сторон. Как следствие сквозь них может проникать меньше света. Кроме этого отдельные виды красок дают возможность сохранить отличную прозрачность с одной стороны и зеркальный эффект с другой.
Стекло
Молдавит. Минерал, образовавшийся из земной горной породы в результате падения метеорита. Беседнице. Чехия
Лампа неоновая вместо накальной (13ватт с освещением в 65 свечей)
Происхождение и история возникновения стекла позволяет это название применять:
Содержание
Классификация стекла (стекломатериалов)
Согласно общим физическим свойствами и разнообразным химическим составам и происхождением стекло или стекломатериал можно классифицировать:
Этимология слова стекло
Общие сведения о стекле
Аморфные вещества, в том числе оптические материалы, переходят в стеклообразное состояние при температурах ниже температуры стеклования Tg (при температурах свыше Tg аморфные вещества ведут себя как расплавы, то есть находятся в расплавленном состоянии).
Виды стекол
В зависимости от основного используемого стеклообразующего вещества и классификации стекла можно разделить на:
Неорганическое стекло
Неорганические стёкла в зависимости от состава классифицируются в основном как:
Стеклообразующие вещества
К стеклообразующим веществам относятся:
Оксиды:
Базовый метод получения силикатного стекла заключается в плавлении смеси кварцевого песка (SiO2), соды (Na2CO3) и извести (CaO). В результате получается химический комплекс с составом Na2O*CaO*6SiO2.
Оптическое стекло
Оптическое стекло — стекло на базе неорганических и органических стекломатериалов, отличающееся особыми оптическими характеристиками: высокая прозрачность, изотропность, твёрдость, эластичность и т.д
Основные свойства стекла
Все вещества в стеклообразном состоянии обладают общими физико-химическими характеристиками:
неоднократный разогрев до расплавленного состояния, после охлаждения вновь приобретают первоначальные свойства при одинаковых режимах перехода (если не произойдет кристаллизация или ликвация). Обратимость прессов и свойств указывает на то, что стеклообразующие расплавы и затвердевшее стекло являются растворами в чистом виде. Обратимость — признак настоящего раствора.
кристаллизации. К таким веществам относится и оксид висмута, который в чистом состоянии практически не образует стекол.
Свойства стекла сопоставимы с понятием “свойство-состав” стеклообразных систем и показывыает, что свойства можно разделить на две группы в зависимости от молярного состава — на простые и сложные.
Ко второй группе относятся свойства, которые более чувствительные к изменению состава. Зависимость их от состава сложна и часто не поддается количественным обобщениям. Например: вязкость, электропроводность, скорость диффузии ионов, диэлектрические потери, химическая стойкость, светопропускание, твёрдость, поверхностное натяжение, кристаллизационная способность и др. Расчёт этих свойств возможен лишь в конкретных случаях.
Химическая устойчивость
Цвет стекла
Стекло это сплавленная из обычных сырых материалов стеклянная масса бесцветна, с лёгким желтовато-зелёным или голубовато-зелёным отливом, вызываемым различными минеральными примесями. Для того, чтобы эту массу внутри стекла окрасить, чаще всего применяют окислы металлов, добавляя их в шихту до или после плавки. Железистые соединения окрашивают стекло в голубовато-зелёный и жёлтый до красно-бурого цвет, окись марганца — в жёлтый и коричневый до фиолетового, окись хрома — в травянисто-зелёный, окись урана — в желтовато-зелёный (урановое стекло), окись кобальта — в синий (кобальтовое стекло), окись никеля в фиолетовый до серо-коричневого, окись сурьмы или сульфид натрия — в жёлтый (в самый же красивый жёлтый окрашивает, однако, коллоидное серебро), окись меди — в красный (так называемый медный рубин в отличие от золотого рубина, получаемого прибавкой коллоидного золота). Цвет слоновой кости стекло получается замутнением стекломассы пережжённой костью, а молочное — прибавкой смеси полевого и плавикового шпата. Теми же прибавками заполнив (создав помутнение) стекломассу в очень слабой степени, получим опальный цвет стекла.
История
Мюнхенская Чашка Клетки из Кёльна, 4-ое столетие нашей эры
Художественное стекло
Художественное цветное стекло (Венеция)
Художественное цветное стекло (Венеция)
Важнейший рабочий инструмент стеклодува, его выдувальная трубка. Это полая металлическая палка длинной 1 — 1,5 м, на одну треть обшитая деревом и снабжённая на конце латунным мундштуком. Пользуясь трубкой, стеклодув набирает из печи расплавленное стекло, выдувает его в форме и формует. Для этого ему нужны ещё одни инструменты, а именно металлические ножницы для отрезания стеклянной массы и прикрепления её к трубке, длинные пинцетообразные клещи из металла для вытягивания и формования стеклянной массы, для образования тиснёных украшений и т. д., сечка для отсекания всего изделия от трубки и деревянная ложка (скалка, долок — в форме коклюшки) для разравнивания набранной стекломассы. Предварительно отформованное с помощью этих инструментов стекло («баночку») стеклодув вкладывает в форму из дерева или железа. Готовое изделие выбивают от трубки на вилы и помещают для отжига в печь. Оставшийся после отшиба следы (насадок, колпачок) удаляют абразивной обработкой (шлифовкой).
Резка стекла
Красивые и необычные окна – результат кропотливой ручной работы. Например, так выглядит процесс создания витражей на нашем производстве. [9]
Стекло
Содержание
Происхождение термина
История термина
Любопытна пространственная аналогия метафоры Апокалипсиса с реальными стеклянными горами, которые именно таковыми «стали» совсем недавно, как можно понять из дальнейшего.
Первоначально стеклом называли лишь всем известный и наиболее распространённый продукт стеклоделия, относимый с некоторых пор в научном обиходе к фульгуриты (кластофульгуриты), которые образуются из силикатных отложений (SIO2 — песка, кварца, кремнезёма — то есть тривиальных, наиболее распространённых сырьевых компонентов в рядовом стеклоделии), в результате удара мощного разряда молнии, встречаются преимущественно — на вершинах скалистых гор в районах с повышенной грозовой активностью, имеют место и полупрозрачные образцы кластофульгуритов.
Основным поводом к созданию синтетического заменителя — органического стекла, стало отсутствие в пору его разработки (1930-е годы) материалов, пригодных для использования в авиации. Стеклом этот полимер — соответственно, принадлежащий к классу органических веществ, именуется только по внешнему сходству: прозрачное, иногда цветное вещество.
История стекла (технологии)
Долгое время первенство в открытии стеклоделия признавалось за Египтом, чему несомненным свидетельством считались глазурованные стеклом фаянсовые плитки внутренних облицовок пирамиды Джессера (XXVII век до н. э.); к ещё более раннему периоду (первой династии фараонов) относятся находки фаянсовых украшений, то есть стекло существовало в Египте уже 5 тысяч лет назад. Археология Двуречья, в особенности — Древних Шумера и Аккада, склоняет исследователей к тому, что немногим менее древним образцом стеклоделия следует считать памятник, найденный в Месопотамии в районе Ашнунака — цилиндрическую печать из прозрачного стекла, датируемую периодом династии Аккада, то есть возраст её — около четырёх с половиной тысяч лет. Бусина зеленоватого цвета диаметром около 9 мм, хранящаяся в Берлинском музее, считается одним из древнейших образцов стеклоделия. Найдена она была египтологом Флиндерсом Питри около Фив, по некоторым представлениям ей пять с половиной тысяч лет. Н. Н. Качалов отмечает, что на территории Старовавилонского царства археологи регулярно находят сосудики для благовоний местного происхождения, выполненные в той же технике, что и египетские. Учёный утверждает — есть все основания считать, «что в Египте и в странах Передней Азии истоки стеклоделия… отделяются от наших дней промежутком приблизительно в шесть тысяч лет». [14] [15]
Существует также несколько легенд, с той или иной степенью правдоподобия толкующих возможные предпосылки того, как сложилась технология. Н. Н. Качалов воспроизводит одну из них, поведанную античным естествоиспытателем и историком Плинием Старшим (I век). Эта мифологическая версия гласит, что однажды финикийские купцы на песчаном берегу, за неимением камней, сложили очаг из перевозимой ими африканской соды — утром на месте кострища они обнаружили стеклянный слиток. [14]
Изучающие историю происхождения этого материала когда-нибудь придут к единому мнению и относительно места — Египет, Финикия или Месопотамия, Африка или Восточное Средиземноморье и т. д., — и относительно времени — «около 6 тысяч лет назад», но характерную для феноменологии естествознания черту — «синхронность открытий», можно наблюдать по некоторым признакам и в данном случае, причём не имеет большого значения разница даже в сотни лет, в особенности, когда в реконструируемом способе варки стекла прослеживаются существенные различия.
Актуальность легенд, повествующих о зарождении стеклоделия, сводится не столько к историческим и этногеографическим аспектам, которые с точки зрения теории познания лишь косвенно важны, — сколько к происхождению технологии как таковой, словно отделившейся от «случайных» процессов гончарных ремёсел, и ставшей отправной точкой для создания материала с новыми свойствами — первым шагом к управлению ими, а в дальнейшем — к постижению строения. Существует несколько версий, одна из которых именно на этом примере делает попытку решить вопрос: что есть стекло? — Н. Н. Качалов предлагает [14] :
. отмерять этот срок от появления поливной керамики или вообще каких-либо глазурованных силикатных изделий. Всякая глазурь, закреплённая на глиняном или вообще силикатном черепке, по составу представляет собой стекло, и наиболее правдоподобная версия открытия стекла как самостоятельного материала связывается с наблюдением человека над процессами керамической технологии. Однако глазурь на древнем фаянсе играет второстепенную роль в изделии и является материалом непрозрачным, т. е. она лишена главного отличительного признака стекла, а потому может называться им лишь условно. |
Немногим ранее мысль о «стеклообразном родстве» всех силикатных материалов высказывает И. Ф. Пономарёв, причём учёный подчёркивает важность понимания не столько генезиса стекла, сколько роль исследования его строения для изучения свойств других силикатных материалов; одновременно он указывает, что эти соображения имеют место ещё у М. В. Ломоносова [16] :
Теория строения стекла имеет значение не только для понимания свойств изделий из чистого стекла, но и для всех силикатных изделий, которые в процессе производства находились при температуре выше 800 °C. Можно считать, что все силикатные материалы, рассматриваемые силикатной технологией, содержат стекло. Замечательны слова М. В. Ломоносова, написанные в «Письме о пользе стекла» (1752 г.): «Имеет от стекла часть крепости фарфор». Не только фарфор, но и фаянс, керамические изделия, огнеупоры, цемент — все они содержат то или иное количество стекла. Поэтому значение изучения стекла чрезвычайно расширяется и выводы, делаемые в исследованиях, посвящённых строению стекла, важны для понимания свойств самых различных технических силикатных продуктов. |
В изучении технологии египетского стекловарения определённых успехов добился английский исследователь А. Лукас. Его сведения дают следующее представление о развитии стекольного производства Египта «архаического» периода, который заканчивается IV тысячелетием до н. э.
Так называемый «египетский фаянс» (бусы, амулеты, подвески, небольшие пластинки для инкрустаций) представляет собой изделия, покрытые зеленовато-голубой глазурью. Отнесение их к тому, с чем ассоциируется в настоящее время «фаянс» нельзя считать правильным, поскольку отсутствует главный признак этой категории изделий — глиняный черепок. Известен египетский фаянс с «черепком» трёх родов: стеатит, мягкая кварцевая мука и цельный природный кварц. Существует мнение, что наиболее ранние образцы изготовлены из стеатита. Минерал этот по составу представляет собой силикат магния, он присутствует в природе в больших количествах. Изделия, вырезанные из куска стеатита, для получения глазури покрывались порошкообразной смесью из сырых материалов, входящих в её состав, и обжигались. Глазурь эта, по химическому составу представляющая собой силикат натрия с небольшой примесью кальция — не что иное как легкоплавкое стекло, окрашенное в голубые и зеленовато-голубые тона медью, иногда с изрядной примесью железа. [17] [18] [14]
Фриттование использовалось ещё долго после Средневековья, поэтому на старых гравюрах и при археологических раскопках мы всегда находим две печи — одну для предварительной плавки и другую для плавки фритт. Необходимая температура проплавления составляет 1450 °C, а рабочая температура — 1100—1200 °C. Средневековая плавильная печь («гуть» — по чешски) представляла собой низкий, топящийся дровами свод, где в глиняных горшках плавилось стекло. Выложенная только из камней и глинозёма, долго она не выдерживала, но надолго не хватало и запаса дров. Поэтому, когда лес вокруг гуты вырубали, её переводили на новое место, где леса было ещё в достатке.
Ещё одной печью, обычно соединяемой с плавильной, была отжигательная печь — для закалки, где готовое изделие нагревалось почти до точки размягчения стекла, а затем — быстро охлаждалось, чтобы тем самым компенсировать напряжения в стекле (предотвратить кристаллизацию). В виде такой конструкции стеклоплавильная печь продержалась до конца XVII века, однако нехватка дров вынуждала некоторые гуты, особенно в Англии, уже в XVII веке переходить на уголь; а так как улетучивающаяся из угля двуокись серы окрашивала стекло в жёлтый цвет, англичане начали плавить стекло в замкнутых, так называемых крытых горшках. Этим плавильный процесс затруднялся и замедлялся, так что приходилось подготавливать шихту не такой твёрдой, и тем не менее однако уже в конце XVIII века преобладающей делается топка углем.
Интересны сведения, имеющие отношение и к истории стекла и тому факту, что стекло, в общем смысле, за время своего существования, в отличие от многих других материалов, не претерпело практически никаких изменений (самые ранние образцы того, что стали называть стеклом, ничем не отличаются от известного всем — бутылочного; исключением, конечно, являются виды стёкол с заданными свойствами), однако в данном случае речь идёт о веществе и материале минерального происхождения, нашедшем применение в современной практике.
Наука о стекле
Основу научного подхода к исследованию и варке стёкол положил Михаил Васильевич Ломоносов. Учёным были проведены первые технологически систематизированные варки более 4 тысяч стёкол. Лабораторная практика и методические принципы, которые он применял, мало чем отличаются от считающихся в настоящее время традиционными, классическими.
Использование технологических свойств минеральных стёкол
Строение стёкол
Развитие представления о строении стекла проходит через гипотезы, объясняющие эксперименты, — к теориям, оформляющимся математически, и предполагающим количественную проверку в эксперименте. Таким образом понимание строения стеклообразных веществ (и частично — жидких) обусловлено совершенством методов исследования и математического аппарата, техническими возможностями. Выводы же позволяют в дальнейшем, совершенствуя методологию, развивать теорию строения стекла и подобных ему аморфных веществ. [23]
Методы исследования
Строго говоря, экспериментальные методы исследования строения стёкол насчитывают менее ста лет, поскольку к таковым во всей полноте представления о структуре стекла можно отнести только методику рентгенографического анализа, действительно, дающую реальную картину строения вещества. В числе первых, кто начал использовать рассеяние рентгеновского излучения для анализа строения стёкол, были ученики академика А. А. Лебедева, который ещё в 1921 году выдвинул так называемую «кристаллитную» гипотезу строения стекла, а в начале 1930-х годов с целью исследования названным методом — первым же в СССР организовал в своей лаборатории группу — во главе с Е. А. Порай-Кошицем и Н. Н. Валенковым.
Классические гипотезы
Изучение структуры монокристаллических веществ даже в настоящее время требует совершенствования экспериментальных методов и теории рассеяния. Теория М. Лауэ, закон Брэгга-Вульфа и рентгеноструктурный анализ идеальных кристаллов преобразовали законы кристаллографии Е. С. Фёдорова в законы, опирающиеся на понимание структуры и точных координат атомов базиса монокристалла: кинематическая — для идеального несовершенного (мозаичного) кристалла, и динамическая — для монокристалла — предоставляют значения интегральной рассеивающей способности, которые в этих случаях не пребывают в соответствии с экспериментальным значениям для реальных, значительно более сложных кристаллов. И для материаловедения наиважнейшими являются как раз эти отклонения от идеальной структуры, изучаемые через дополнительное рассеяние рентгеновских лучей, не подразумеваемое ни кинематической, ни динамической теориями рассеяния идеальных кристаллов. [23]
Дополнительные сложности возникают при исследовании структур жидких и стеклообразных веществ, не предполагающих применения даже подобия методов кристаллографии, кристаллохимии и физики твёрдого тела — наук изучающих твёрдые кристаллические тела.
Вышеизложенные предпосылки стали основой для возникновения почти полутора десятков гипотез строения стекла, значительная часть их, опирающаяся лишь на сравнительно узкий круг свойств и закономерностей, не подвергнутых гносеологическому анализу степени достоверности, лишена первичной базы для формировнаия теории, тем не менее с эффектными названиями регулярно декларируется. Уже были кристаллиты, беспорядочная сетка, полимерное строение, полимерно-кристаллитное строение, ионная модель, паракристаллы, структоны, витроиды, стеклоны, микрогетерогенность, субмикронеоднородность, химически неоднородное строение, мицеллярная структура, и другие названия, возникновение которых продиктовано потребностью истолкования результатов одного, в лучшем случае — нескольких частных экспериментов. Оптимисты требуют строгой общей теории стеклообразного состояния, пессимисты вообще исключают возможность её создания. [23]
Термодинамические характеристики стеклообразующих расплавов и стёкол
Свойства стекла
Стекло — неорганическое изотропное вещество, материал, известный и используемый с древнейших времён. Существует и в природной форме, в виде минералов (обсидиан — вулканическое стекло), но в практике — чаще всего, как продукт стеклоделия — одной из древнейших технологий в материальной культуре. Структурно — аморфное вещество, агрегатно относящееся к разряду — твёрдое тело. В практике присутствует огромное число модификаций, подразумевающих массу разнообразных утилитарных возможностей, определяющихся составом, структурой, химическими и физическими свойствами.
Независимо от их химического состава и температурной области затвердевания, стекло обладает физико-механическими свойствами твёрдого тела, сохраняя способность обратимого перехода из жидкого состояния в стеклообразное (данное определение позволяет наблюдать, что фигурально к стёклам, в расширительном значении, относят все вещества по аналогии процесса образования и ряда формальных свойств, так называемого стеклообразного состояния — на сём она исчерпывается, поскольку материал, как известно, прежде всего характеризуется своими практическими качествами, которые и определяют более строгую детерминацию стёкол как таковых в материаловедении).
В твёрдом состоянии силикатные стёкла весьма устойчивы к обычным реагентам (за исключением плавиковой кислоты), и к действию атмосферных факторов. На этом свойстве основано их широчайшее применение: для изготовления предметов быта, оконных стёкол, стёкол для транспорта, стеклоблоков и многих других строительных материалов, предметов медицинского, лабораторного, научно-исследовательского назначения, и во многих других областях.
Для специальных целей выпускают химически-стойкое стекло, а также стекло, стойкое к тем или иным видам агрессивных воздействий.
Физические свойства стекла
Стеклообразное состояние
Стёкла образуются в результате переохлаждения расплавов со скоростью, достаточной для предотвращения кристаллизации. Благодаря этому стёкла обычно длительное время сохраняют аморфное состояние. Неорганические расплавы, способные образовать стеклофазу, переходят в стеклообразное состояние при температурах ниже температуры стеклования Tg (при температурах свыше Tg аморфные вещества ведут себя как расплавы, то есть находятся в расплавленном состоянии).
Стекло может быть получено путём охлаждения расплавов без кристаллизации. Практически любое вещество из расплавленного состояния может быть переведено в стеклообразное состояние. Некоторые расплавы (как то — отдельных стеклообразующих веществ) не требуют для этого быстрого охлаждения. Однако некоторые вещества (такие как металлосодержащие расплавы) требуют очень быстрого охлаждения, чтобы избежать кристаллизации. Так, для получения металлических стёкол необходимы скорости охлаждения 10 5 —10 6 К/с. Стекло может быть получено также путём аморфизации кристаллических веществ, например бомбардировкой пучком ионов, или при осаждении паров на охлаждаемые подложки.
Стёкла, в частности благодаря полимерному строению обладают способностью к гетерогенности. Полимерность стёкол в стеклообразном состоянии придаёт им индивидуальные качества, определяющие, в зависимости от характера этих структурных образований, степень прозрачности и других свойств стёкол. Присутствие в составе стекла соединений того или иного химического элемента, оксида металла, может влиять его окраску, степень электропроводности, и другие физические и химические свойства.
Улучшение свойств стекла
Основной недостаток обычных стёкол — хрупкость. Для того, чтобы расширить сферу применения стекла, его подвергают закалке (закалённое стекло), создают многослойные композиты (триплекс). Армирование, вопреки распространенному мнению, ослабляет стекло, делает его более хрупким по сравнению с таким же монолитным стеклом.
Состав и технологии стёкол
Стеклообразующие вещества
К стеклообразующим веществам относятся:
Оксиды:
Виды стекол
В зависимости от основного используемого стеклообразующего вещества, стекла бывают оксидными (силикатные, кварцевое, германатные, фосфатные, боратные), фторидными, сульфидными и т. д.
Базовый метод получения силикатного стекла заключается в плавлении смеси кварцевого песка (SiO2), соды (Na2CO3) и извести (CaO). В результате получается химический комплекс с составом Na2O*CaO*6SiO2.
Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты (обычно кварцит, горный хрусталь), его химическая формула — SiO2. Кварцевое стекло может быть также природного происхождения (см. выше —кластофульгуриты), образующееся при попадании молнии в залежи кварцевого песка (этот факт лежит в основе одной из исторических версий происхождения технологии).
Кварцевое стекло характеризуется весьма малым коэффициентом температурного расширения и потому его иногда используют в качестве материала для деталей точной механики, размеры которых не должны меняться при изменении температуры. Примером служит использование кварцевого стекла в точных маятниковых часах.
Оптическое стекло — применяют для изготовления линз, призм, кювет и др.
Химико-лабораторное стекло — стекло, обладающее высокой химической и термической устойчивостью.
Основные промышленные виды стекла
В качестве главной составной части в стекле содержится 70—75 % двуокиси кремния (SiO2), получаемой из кварцевого песка при условии соответствующей грануляции и свободы от всяких загрязнений. Венецианцы для этого применяли чистый песок из реки По или даже завозили его из Истрии, тогда как богемские стеклоделы получали песок из чистого кварца.
Второй компонент — окись кальция (CaO) — делает стекло химически стойким и усиливает его блеск. На стекло она идёт в виде извести. Древние египтяне получали её из щебня морских раковин, а в Средние века она приготовлялась из золы деревьев или морских водорослей, так как известняк в качестве сырья для приготовления стекла был ещё не известен. Первым подмешивать к стеклянной массе мел, как тогда назывался известняк, стали богемские стеклоделы в XVII веке.
Следующей составной частью стекла являются оксиды щелочных металлов — натрия (Na2O) или калия (K2O), нужные для плавки и выделки стекла. Их доля составляет примерно 16—17 %. На стекло они идут в виде соды (Na2CO3) или поташа (K2CO3), которые при высокой температуре легко разлагаются на окиси. Соду сначала получали выщелачиванием золы морских водорослей, а в местности, удалённой от моря, применяли содержащий калий поташ, получая его выщелачиванием золы буковых или хвойных деревьев.
Различаются три главных вида стекла:
Кальциево-натриевое стекло
«Содовое стекло» можно с лёгкостью плавить, оно мягкое и потому легко поддаётся обработке, а кроме того, чистое и светлое.
Калиево-кальциевое стекло
«Поташное стекло», в отличие от натриевого, более тугоплавкое, твёрдое и не такое пластичное и способное к формовке, но обладает сильным блеском. Оттого что раньше его получали непосредственно из золы, в которой много железа, стекло было зеленоватого цвета, и в XVI веке для его обесцвечивания начали применять перекись марганца. А так как именно лес давал сырьё для изготовления этого стекла, его называли ещё лесным стеклом. На килограмм поташа шла тонна древесины.
Свинцовое стекло
Свинцовое стекло (или «хрусталь»), получается заменой окиси кальция окисью свинца. Оно довольно мягкое и плавкое, но весьма тяжёлое, отличается сильным блеском и высоким показателем преломления, разлагая световые лучи на все цвета радуги и вызывая игру света.
Боросиликатное стекло
Включение оксида бора вместо щелочных составляющих шихты придаёт этому стеклу свойства тугоплавкости, стойкости к резким температурным скачкам и агрессивным средам. Изменение состава и ряд технологических особенностей, в свою очередь, сказывается на себестоимости — оно дороже обычного силикатного.
Пористое стекло
Воздействие воды и растворов кислот на силикатные стёкла выражается образованием на их поверхности тонкой плёнки пористого строения — об этом было известно давно. В определённой области тройной диаграммы лежат составы малоустойчивых щелочно-боросиликатных стёкол, такое воздействие на которые (в особенности — растворов кислот) результатом может иметь образование насквозь пористых продуктов — так называемых пористых стёкол. В этом случае в раствор переходит пребывавший в составе исходного материала практически весь щелочной оксид, весомая часть борного ангидрида, а пористый продукт реакции будет на 93—96 % состоять из кремнезёма и при определённых условиях сохранит внешние качества исходного стеклянного материала: блестящую полированную поверхность и форму. [32]
Получение пористых стёкол значительных размеров и толщины возможно только из стекла некоторых определённых составов. Пористые стёкла по объёму, соответствующему исходному — сравнительно небольшие, образуются из щелочно-боросиликатных стёкол, входящих в стёкла более сложного состава, и из двухкомпонентных боросиликатных стёкол, содержащих от 60 % SiO2. [32]
Тогда и в последующих исследованиях было получено представление о том, что пористые стёкла, обладая некоторыми общими характерными особенностями, одновременно демонстрируют большое разнообразие структур, находящееся в зависимости от условий их образования, термической истории исходного стекла и его состава. [32]
В дальнейшем многими исследователями были получены материалы данной категории разнообразной структуры, чрезвычайно широкого диапазона обусловленных ею свойств, имеющие очень большую сферу применения.
Прозрачное и цветное стекло
Прозрачное стекло
Рецептура прозрачного стекла была известна ещё в древности, о чём свидетельствуют античные флаконы и бальзамарии, в том числе и цветные,— на помпейских фресках мы видим совершенно прозрачную посуду с фруктами. Но вплоть до Средневековья, когда огромное распространение получают витражи, не приходится встречать образцов стеклоделия, выраженно обладающих этими свойствами. [34] [35]
Оптическое стекло
К оптическому стеклу предъявляют особые технические требования, первое из которых — однородность, оцениваемая до сих пор на основании экспертного анализа по степени и количеству находящихся в нём свилей и прозрачности в заданном диапазоне спектра.
Наличие у государства собственного производства оптического стекла является показателем уровня его научно-технического развития.
Типы оптических стекол делятся на сорта:крон и флинт и зависят от показателя преломления (у кронов меньше, у флинтов больше) и коэффициента дисперсии. ГОСТ3514-76.
Цветное стекло
Обычная стеклянная масса после остывания имеет желтовато-зелёный или голубовато-зелёный оттенок. Стеклу можно придать окраску, если в состав шихты произвести включение, например, тех или иных оксидов металлов, которые в процессе варки изменят его структуру, что после остывания, в свою очередь, заставляет стёкла выделять определённые цвета из спектра проходящего сквозь них света. Железистые соединения окрашивают стекло в цвета — от голубовато-зелёных и жёлтых до красно-бурых, окись марганца — от жёлтых и коричневых до фиолетовых, окись хрома — в травянисто-зелёный, окись урана — в желтовато-зелёный (урановое стекло), окись кобальта — в синий (кобальтовое стекло), окись никеля — от фиолетового до серо-коричневого, окись сурьмы или сульфид натрия — в жёлтый (в самый же красивый жёлтый окрашивает, однако, коллоидное серебро), окись меди — в красный (так называемый медный рубин в отличие от золотого рубина, получаемого прибавкой коллоидного золота). Костяное стекло получается замутнением стекломассы пережжённой костью, а молочное — прибавкой смеси полевого и плавикового шпата. Теми же прибавками, замутив стекломассу в очень слабой степени, получают опаловое стекло. Окрашенные стёкла, помимо других областей применения, используют в качестве цветных светофильтров.
Художественное стекло
Этот материал изначально, и в силу разнообразия своих декоративных возможностей, и благодаря уникальным свойствам, в том числе — подобию красивейшим самоцветам, а порой в чём-то и превосходя их, именно через изобразительное творчество, с момента, когда слиток впервые оказалось на ладони мастера, — радует и, вероятно, всегда, чаруя, будет присутствовать в жизни способного ценить его красоту. Нелишним будет напомнить и то, что некогда ценой своей с золотом могло соперничать только стекло. Действительно, самые ранние его рукотворные образцы — украшения.
С точки зрения стеклодува стёкла делятся на «короткие» (тугоплавкие и термостойкие, например — «пирекс»), пластичные в весьма узком диапазоне температур и «длинные» (легкоплавкие, например — молибденовое) — имеющие этот интервал значительно более широким.
Важнейший рабочий инструмент стеклодува, его выдувальная трубка — это полая металлическая трубка длиной 1—1,5 м, на одну треть обшитая деревом и снабжённая на конце латунным мундштуком. Пользуясь трубкой, стеклодув набирает из печи расплавленное стекло, выдувает его в форме шара и формует. Для этого ему нужны металлические ножницы для отрезания стеклянной массы и прикрепления её к трубке, длинные пинцетообразные клещи из металла для вытягивания и формования стеклянной массы, для образования тиснёных украшений и т. д., сечка для отсекания всего изделия от трубки и деревянная ложка (скалка, долок — в форме коклюшки) для разравнивания набранной стекломассы. Предварительно отформованное с помощью этих инструментов стекло («баночку») стеклодув вкладывает в форму из дерева или железа. Оставшийся от отшибания след (насадок, колпачок) приходится удалять шлифовкой.
Готовое изделие отшибают от трубки на вилы и несут в отжигательную печь. Отжиг изделия производится несколько часов при температуре около 500 °C с тем, чтобы снять возникшие в нём напряжения. Неотожжённое изделие может из-за них рассыпаться при малейшем прикосновении, а иногда и самопроизвольно. В демонстрационных целях это явление издавна эффектно показывается на батавских слёзках — застывших каплях из стекла.
Смарт-стекло
Смарт-стекло — класс стекольных материалов. Представляет собой композит из слоев стекла и различных химических материалов, используемый в архитектуре и производстве для изготовления светопрозрачных конструкций (окон, перегородок, дверей и т. п.), изменяющий свои оптические свойства (матовость, коэффициент пропускания, коэффициент поглощения тепла и т. д.) при изменении внешних условий, например, освещенности или температуры или при подаче электрического напряжения.
Стекловолокно и стеклоткань
Из обычного стекла можно получить тонкие весьма гибкие нити, пригодные для изготовления ткани. В современной технике стекловолокно из специальных марок стекла наиболее широко используется в волоконной оптике, для изготовления композиционных (фиберглас), электроизолирующих (напр. стеклолента, стеклотекстолит) и теплоизолирующих (стекловата) материалов.