Что относится к радиационным источникам
РАДИАЦИОННЫЕ ИСТОЧНИКИ
Смотреть что такое «РАДИАЦИОННЫЕ ИСТОЧНИКИ» в других словарях:
РАДИАЦИОННЫЕ ИСТОЧНИКИ — не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение; источники ионизирующего излучения, содержащие радиоактивные вещества … Российская энциклопедия по охране труда
Радиационные источники — не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение;. Источник: Федеральный закон от 21.11.1995 N 170 ФЗ (ред. от… … Официальная терминология
Радиационные источники — 10. Радиационные источники не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся РВ. Источник … Словарь-справочник терминов нормативно-технической документации
Радиационные источники (РИ) — 5. Радиационные источники (РИ) не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся РВ или генерируется ионизирующее излучение. Комплекс совокупность технических устройств (установок,… … Словарь-справочник терминов нормативно-технической документации
РАДИАЦИОННЫЕ ИСТОЧНИКИ — не относящиеся к ядерным установкам комплексы, установки аппараты, оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение … Энциклопедический словарь экономики и права
радиационные источники — по определению ФЗ Об использовании атомной энергии от 20 октября 1995 г. не относящиеся к ядерным установкам комплексы, установки,аппараты,оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение … Большой юридический словарь
Радиационные источники — не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение. Федеральный закон от 21.11.95 N 170 ФЗ, ст.3 … Словарь юридических понятий
Радиационные источники передвижные — Передвижные РИ РИ, смонтированные и используемые (эксплуатируемые) по назначению на транспортных средствах (самоходных или специально приспособленных для транспортирования). Источник: Приказ Ростехнадзора от 05.03.2011 N 104 Об утверждении и… … Официальная терминология
Радиационные источники переносные — Переносные РИ РИ, конструкция и масса составных блоков (частей) которых позволяют их переносить (или, в случае необходимости, перевозить, в том числе в собранном виде) и использовать (эксплуатировать) по назначению непосредственно на месте… … Официальная терминология
ИСТОЧНИКИ РАДИАЦИИ — см РАДИАЦИОННЫЕ ИСТОЧНИКИ … Энциклопедический словарь экономики и права
Источники радиации
Навигация по статье
Источники радиации и их влияние на живые и не живые объекты. Искусственные источники радиации, естественные источники радиоактивных излучений, природный радиационный фон, космическая и солнечная радиация. Природные изотопы, радон, углерод 14 и калий 40.
Источники радиоактивных излучений по природе своего происхождения, можно разделить на две основных группы:
Естественные источники радиации
К естественным источникам радиации относятся:
Космическое излучение
Источником космического излучения в основном являются взрывы «сверхновых», а также различные пульсары, черные дыры и другие объекты вселенной, в недрах которых идут термоядерные реакции. Благодаря непостижимо большим расстояниям до ближайших звезд, которые являются источниками космического излучения, происходит рассеивание космического излучения в пространстве и поэтому падает интенсивность (плотность) космического излучения. Проходя расстояния в тысячи световых лет, на своем пути космическое излучение взаимодействует с атомами межзвездного пространства, в основном это атомы водорода, и в процессе взаимодействия теряют часть своей энергии и меняют свое направление. Несмотря на это, до нашей планеты все равно со всех сторон доходит космическое излучений невероятно высоких энергий.
Космическое излучение состоит:
Все это продукты термоядерного синтеза происходящего в недрах звезд или последствия взрыва звезд.
Состав излучения от солнца (солнечная радиация) отличается от основного космического излучения и состоит:
Все это продукты термоядерного синтеза проходящего в недрах Солнца.
Если Земля не обладала бы газовой атмосферой и магнитным полем, то шансов у биологических видов на выживание просто бы не было
Что получаем в итоге?
В итоге, космическое излучение проходя защитные механизмы Земли, не только теряет почти всю свою энергию, но и претерпевает физическое изменение в процессе ядерного взаимодействия с газами атмосферы, превращаясь в фактически безопасное, обладающее низкой энергией излучение в виде электронов (бета излучение), фотонов (гамма излучение)и мюонов.
В пункте 9.1 МУ 2.6.1.1088-02 указано нормативное значение эквивалентной дозы радиации получаемой человеком от космического излучения, это
Излучение от радиоактивных природных изотопов
На нашей планете можно выделить 23 радиоактивных изотопа, которые обладают большим периодом полураспада и которые наиболее часто встречаются в земной коре. Большая часть радиоактивных изотопов содержится в породе в очень малых количествах и концентрациях, и доля создаваемого ими облучения пренебрежимо мала. Но есть несколько природных радиоактивных элементов, которые оказывают влияние на человека.
Рассмотрим эти элементы и степень их влияния на человека.
Радиоактивные изотопы, облучения от которых нельзя избежать:
Радиоактивные изотопы, облучения от которых можно избежать организационными мероприятиями:
Все остальные природные радиоизотопы, содержащиеся как в Земной коре, так и в атмосфере, оказывают пренебрежительно малое влияния на человека.
Если человек, добыл, переработал и выделил природные изотопы из руды или других источников, а затем их применил в строительных конструкция, минеральных удобрениях, машинах и механизмах и так далее, то действие этих изотопов уже будет техногенным, а не естественным и на них должны распространяться нормы для техногенных источников.
Общий фон радиации от естественных источников облучения
Если просуммировать действие всех рассмотренных природных источников излучения, и взять за основу допустимые нормативные дозы радиации от каждого из них, то получим допустимое нормативное значение общего радиационного фона от природных источников радиации.
Если действие радона исключаем, как оно и должно быть, то получаем, что нормальный радиационный фон от природных источников радиации не должен превышать
Почему такая большая разница, аж в 8 раз, и к тому же в одних и тех же нормативных документах. Да все очень просто! Техногенное действия человека, привели к тому, что радиоактивные элементы стали массово применяться от техники, строительства, минеральных удобрений до атомных взрывов и АЭС с их авариями и сбросами. В результате, мы сами себе создали среду, в которой нас окружают радиоактивные изотопы с периодом полураспада до нескольких тысяч лет, то есть уже хватит не только нам, но и сотням поколений людей после нас.
То есть, уже трудно найти территории на Земле с действительно нормальным естественным радиационным фоном (но пока еще есть такие). Вот поэтому, нормативные документы и допускают проживание человека в обстановке с приемлемым уровнем радиации. Он не безопасный, он именно приемлемый.
И с каждым годом этот приемлемый уровень, в результате техногенного действия человека, будет только увеличиваться. Тенденций к его уменьшению нет, а вот статистика по онкологическому действию даже малых доз радиации, становится с каждым годом подробней и устрашающей, и поэтому менее доступной для широких масс.
На данный момент уже звучат, пока еще не официальные заявления, но от официальных источников, предложения по увеличению допустимого уровня радиации.
Можно к примеру, ознакомиться с «трудом» Акатова А. А., Коряковского Ю. С., сотрудников информационного центра «Росатома», в котором они выдвигают «свои теории» о безопасности доз в 500 мЗв/год, то есть 57 мкЗв/час, что выше максимального предельно допустимого нормативного уровня радиации на данный момент в 100 раз.
Информация с «трудом» «авторов» взята с ресурса: http://www.myatom.ru
А на фоне подобных заявлений, в России каждый год регистрируется до 500 000 новых случаев заболевания человека раком. И на основании статистики ВОЗ, в ближайшие годы ожидается увеличение случаев первичных заболеваний раком на 70%. Без всяких сомнений, среди причин, вызывающих рак, облучение радиацией и заражение радиоактивными изотопами, занимает лидирующее место.
По данным ВОЗ, только в 2014 году на нашей планете умерли более 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших. Это 19 человек, умирающих в мире от рака каждую минуту.
И это только официальная статистика по зарегистрированным случаям, с поставленным диагнозом. Можно только с ужасом гадать, каковы реальные цифры.
Радон
Радон тяжелый газ, редко встречающийся в природе, не имеет запаха, вкуса и цвета.
Радон относится к числу наименее распространенных химических элементов на нашей планете.
Плотность радона в 8 раз выше плотности воздуха. Радон растворим в воде, крови и других биологических жидкостях нашего организма. На холодных поверхностях радон легко конденсируется в бесцветную фосфоресцирующую жидкость. Твердый радон светится бриллиантово-голубым светом. Период полураспада 3,82 дня.
Основным источником радона, являются горные и осадочные породы, содержащие уран 238 U. В процессе цепочки распадов радиоактивных изотопов уранового ряда, образуется радиоактивный элемент радий 226 Ra, распадаясь который и выделяет газ радон 222 Rn. Радон накапливается в тектонических нарушениях, куда он поступает по системам микротрещин из горных пород. Радон не распространен по Земной коре равномерно, а скапливается наподобие всем известного природного газа, только в несравнимо меньших объемах и концентрациях.
Облучение радоном происходит в замкнутых пространствах, где способен накапливаться газ радон, поднимающийся из трещин и разломов в земной коре. К таким замкнутым пространствам можно отнести: шахты, пещеры, подземные сооружения (бункеры, землянки, погреба и т.п.), жилые и не жилые помещения с нарушенной гидроизоляцией фундамента и плохо работающей вентиляцией.
Как попадает радон в помещение?
Если к примеру жилой дом расположен в районе скопления радона и под фундаментом дома в земной коре имеется трещина, то радон может проникать, сначала в подвальные помещения, а далее через систему вентиляции в выше расположенные помещения (квартиры).
Попадание радона в жилое помещение возможно, если будут нарушены сразу несколько строительных норм при строительстве жилого здания:
Если все строительные нормы соблюдены, то даже наличие залежей радона под жилым домом не приведет к дополнительному облучению радиацией, радон просто не будет попадать в жилые помещения. То есть облучение радоном происходит только при нарушении норм проектирования и строительства зданий и сооружений, из-за халатности ответственных лиц или жажды сэкономить на строительстве.
При нормальных условиях человек не должен подвергаться действию радона.
Если человек подвергается действию радона, то в 99% случаев это вызвано нарушением действующих норм и правил.
Не стоит пренебрегать опасностью радона. Он опасен! Если есть основания и сомнения, лучше провести замеры радона у себя в жилом помещении, особенно если это коттедж или частный дом.
Влияние радона на живые организмы.
Радон опасен для живых организмов. Попадая внутрь организма через дыхательные пути, радон растворяется в крови, а продукты его распада быстро разносятся по всему телу и приводят к внутреннему массированному облучению. Сам радон распадается на другие радиоактивные элементы в течении 4 суток. А радиоактивные продукты распада радона впоследствии облучают организм в течении 44 лет. Наиболее опасными продуктами распада радона являются радиоактивные изотопы полония 218 Po и 210 Po.
Радон занимает первое место среди причин вызывающих рак легких. Так же установлено что радон накапливается в мозговых тканях человека, что так же приводит к развитию рака головного мозга. И это далеко не все примеры губительного действия радона на организм человека.
Радиация: источники
В предыдущем посте я рассказал о единицах измерения ионизирующей радиации. А теперь поговорим об источниках излучения.
Я не буду здесь писать о «том, что не надо трогать руками» — об этом и так много написано, а я не Олег Айзон и уникальных фотографий невиданных доселе радиоактивных артефактов у меня нет. Я расскажу в общем — откуда у нас берется радиация.
Радиоактивный распад как явление
Что такое радиоактивный распад? Кто-то, вспомнив школьные знания, ответит — это явление превращения одних элементов в другие. Кто-то даст иное, как правило, столь же неточное определение. На самом деле, радиоактивный распад — это любое спонтанное изменение состояния атомного ядра как системы нуклонов, сопровождаемое выделением энергии, величина которой, как правило, превышает несколько килоэлектронвольт. Эта энергия затем уносится вылетающими из ядра элементарными частицами, квантами электромагнитного излучения, либо передается электронам атома. Само ядро при этом может изменить свой заряд, массу, разделиться на два или несколько ядер, а может и остаться самим собой, лишь перейдя в более устойчивое состояние.
«Внешними», легко определяемыми характеристиками атомного ядра являются его масса А и заряд (или атомный номер) Z, измеряемые в зарядах и массах протона. Это целочисленные величины, имеющие физический смысл числа соответствующих частиц в составе ядра. Заряд нейтрона равен нулю, а масса почти такая же, как у протона, так что число нейтронов подсчитать: . Ядра с одинаковыми зарядами называются изотопами, с одинаковыми массами — изобарами, если же одинаково и то, и другое, мы имеем дело с изомерами. Z и A обозначаются слева от символа элемента в нижнем и верхнем индексах соответственно.
Из сказанного очевидно, что чтобы изменился Z, ядро должна покинуть заряженная частица, а чтобы изменилась A, из ядра должно улететь что-то тяжелее электрона. Так, возможны следующие варианты:
— вылетает электрон и антинейтрино или позитрон и нейтрино (бета-распад) — Z изменяется на единицу (увеличивается в случае электронного и уменьшается в случае позитронного распада), A — не меняется;
— ядро наоборот может поглотить электрон с К-уровня атома (К-захват) — Z увеличивается на единицу (как при бета-плюс распаде), A не меняется, испускается нейтрино.
— вылетает ядро гелия-4, так называемая альфа-частица (альфа-распад) — Z уменьшается на 2, A уменьшается на 4;
Бета-распад (и электронный захват) представляет собой превращение одного из нейтронов в протон или наоборот, и является проявлением слабого взаимодействия, которое «перезаряжает» один из кварков нуклона. Вместе с электроном всегда образуется антинейтрино, уносящее часть энергии, при этом энергия между ними перераспределяется случайным образом. Из-за этого энергетический спектр бета-излучения непрерывен.
А альфа-распад происходит просто потому что любому ядру тяжелее железа энергетически выгоднее «похудеть». Но пока эта выгода не больше нескольких МэВ, энергетический барьер удаления альфа-частицы или какого-либо иного фрагмента из ядра слишком высок. А когда энергетический выигрыш достаточно велик (но все же меньше энергии связи), становится возможным туннелирование альфа-частицы за пределы ядра. Помимо альфа-частицы из ядра в крайне редких случаях может вылететь нейтрон или протон, либо ядро тяжелее альфа-частицы. И, наконец, ядро может развалиться на несколько ядер, испустив при этом несколько нейтронов. Это спонтанное деление, к которому способны только тяжелые ядра, начиная с тория и урана.
После акта распада в ядре может остаться избыток энергии и это «разогретое» ядро должно от него каким-то образом избавиться. Для этого оно испускает один или несколько гамма-квантов. Иногда происходит также явление внутренней конверсии: энергия не излучается в виде фотонов, а передается электронам, которые вылетают из атома. В отличие от бета-лучей электроны конверсии имеют моноэнергетический (линейчатый) спектр.
В некоторых случаях ядро с избытком энергии может существовать достаточно долго, иногда даже сотни лет. Оно не отличается от такого же «обычного» ядра — ни зарядом, ни массой, то есть это тот же самый химический элемент и тот же самый изотоп. А вот изомеры — разные. Чаще всего время жизни метастабильных изомеров не превышает часы, и лишь у нескольких из них — годы. Существует единственное ядро, для которого лишь изомерное состояние устойчиво: это тантал-180. В основном состоянии он бета-активен и короткоживущ (период полураспада 8 часов), а его изомер тантал-180m, казалось бы, должен либо переходить в основное состояние с испусканием гамма-кванта энергией 75 кэВ, либо претерпевать бета-распад, но ни того, ни другого никто никогда не наблюдал: этот изомер, в отличие от короткоживущего основного состояния стабилен.
Распад ядерного изомера — это единственный пример радиоактивного распада, сопровождающегося исключительно гамма-излучением. Во всех остальных случаях гамма-излучение всегда существует исключительно вместе с альфа- или бета-излучением.
Про изотопы и изомеры мы сказали. Осталось еще одно «изо» — это изобары. Ядра с разным зарядом ядра и одинаковой массой. Стабильные изобары обычно имеют заряды, отличающиеся на две единицы, а между ними практически всегда есть радиоактивный изотоп. Существование двух стабильных изобаров в соседних клетках таблицы Менделеева маловероятно — это правило носит название правила Щукарева-Маттауха. Известно только два исключения из него: сурьма и теллур-123 и гафний-180 и вышеупомянутый тантал-180m.
Космические лучи и другие нерадиоактивные источники радиации
Помимо радиоактивных веществ, некоторые другие процессы и явления, как природные, так и порожденные человеческим разумом, также приводят к появлению излучений с подобными свойствами.
Вы, наверное, знаете про космическую радиацию. Космические лучи заполняют всю Вселенную, они представляют собой протоны и более тяжелые ядра, электроны и гамма-кванты с исключительно высокими энергиями. Максимальная энергия, зарегистрированная у космических частиц, достигает зептаэлектронвольта! Это эВ. Что является источниками столь высокоэнергетических частиц, однозначно сказать невозможно, а вот частицы и гамма-кванты с умеренными энергиями — от кило- до гигаэлектронвольт — порождаются звездами, в том числе и нашим Солнцем.
Это так называемое первичное космическое излучение. С ним можно столкнуться только выйдя на околоземную орбиту или по крайней мере, поднявшись на несколько десятков километров. Несмотря на высокую энергию, эти частицы не долетают до поверхности. Каждая из таких частиц, влетев в атмосферу, вызывает целый каскад ядерных реакций, приводящий к образованию множества частиц — в основном мюонов — которые уже и долетают до Земли. Кстати, долетают они исключительно благодаря релятивистскому замедлению времени: время существования мюона — две микросекунды — без него дало бы возможность пролететь мюону лишь полкилометра с небольшим. И еще один интересный факт, связанный с космическими мюонами: они заряжены отрицательно, а вот первичные космические лучи заряжены положительно, так как состоят в основном из протонов. Именно поэтому Земля имеет отрицательный заряд, а ионосфера — положительный. У поверхности Земли через каждый квадратный сантиметр за минуту в среднем пролетает один мюон. Примерно треть естественного фона — около 3,5 мкР/ч — обусловлена ими. А на высоте, на которой летают пассажирские самолеты, космические лучи создают мощность дозы в несколько микрозиверт в час, представляя уже определенную опасность для здоровья летчиков.
Помимо мюонов есть во вторичных космических лучах также электроны и нейтроны. Последние играют важную роль в образовании так называемых космогенных радионуклидов.
Вторичные космические лучи обладают весьма высокой проникающей способностью. Чтобы от них защититься, приходится уходить в глубокие подвалы и шахты. Разумеется, защищаться от них приходится не потому что они наносят вред здоровью — а потому что они мешают обнаруживать редкие и слабые события в ядерно-физических экспериментах, измерять малые активности радионуклидов и т.п. Но и польза от них есть: с их помощью удается «просвечивать» геологические структуры, крупные постройки (такие, как египетские пирамиды).
Кстати, земная атмосфера эквивалентна для космических лучей примерно метру свинца. Не только одна атмосфера защищает Землю и всех нас от космических лучей — кроме нее есть магнитное поле, отклоняющее заряженные частицы. Но не следует недооценивать защитные свойства атмосферы. Во время геомагнитных инверсий магнитный щит Земли может на определенное время практически исчезнуть, но вопреки страшилкам алармистов, это не приведет к прекращению жизни на Земле, а уровень радиации у поверхности возрастет лишь в 2-3 раза.
Особо высокоэнергетические частицы, прилетевшие из космоса, вызывают образование ливня частиц, который покрывает большую площадь, вызывая одновременную регистрацию множества частиц на детекторах, разнесенных на значительные расстояния. Это так называемые широкие атмосферные ливни. Их регистрация с помощью множества разнесенных детекторов позволяет определить энергию первичной частицы и именно таким способом определены энергии наиболее высокоэнергетических частиц космических лучей. Кроме того, такая частица вызывает мощную вспышку черенковского излучения в атмосфере.
«Земными» источниками кратковременных вспышек гамма-излучения и высокоэнергетических электронов являются молнии и другие атмосферные разряды.
А делом рук человеческих являются многочисленные устройства, которые генерируют потоки высокоэнергетических частиц и квантов, необязательно преднамеренно. Специально для этого существуют рентгеновские трубки и различного рода ускорители — от маленьких, помещающихся почти что на ладони, до монстра БАК, занимающего территорию нескольких стран. А источниками, как говорится сухим языком официальных бумаг, неиспользуемого рентгеновского излучения являются любые электровакуумные приборы. Но наружу оно способно выйти обычно при напряжении на аноде, составляющем десятки киловольт. Так, источниками рентгена становятся высоковольтные кенотроны, импульсные модуляторные лампы и СВЧ лампы бегущей волны, клистроны и т.п. в радиолокационных станциях. А также — в руках разных любителей домашних экспериментов.
Часто можно слышать про то, что источником рентгеновского излучения является кинескоп телевизора или монитора. Может, но обычно не является. Дело в том, что стекло у кинескопа достаточно толстое, а рентгеновское излучение при анодном напряжении 15-25 кВ слишком мягкое для того, чтобы через такое стекло пройти. Вот кинескопы проекционных телевизоров, которые работали при напряжениях до 50 кВ и имели небольшие размеры и тонкие стенки колбы, «рентгенили» еще как. А среди телевизоров «отличились» УЛПЦТ с их схемой стабилизации анодного напряжения. В этой схеме использовалась лампа ГП-5, работавшая при анодном напряжении, равном напряжению на втором аноде (то есть 25 кВ), через нее шел заметный анодный ток, а стенки у этой лампы — тонкие. В итоге она ярко «светилась» в рентгеновском диапазоне. Положив завернутый в черную бумагу лист фотобумаги на такой телевизор, можно было получить отчетливый снимок его внутренностей — особенно если с лампы сняли защитный кожух.
Но мы вернемся к радиоактивности.
Уран и торий и их дочки
Уран и торий стали первыми известными человеку радиоактивными элементами. Именно на урановой руде Анри Беккерель обнаружил новое проникающее излучение, подобное рентгеновскому, именно из нее Мария Склодовская-Кюри добыла первые крупицы радия и полония.
Эти элементы являются своеобразными «островами стабильности» посреди моря элементов, жизнь которых по сравнению с временем существования Земли слишком коротка. Они остались с тех времен, когда образовались в недрах сверхновой звезды, при взрыве которой образовались те газ и пыль, из которых потом сформировалась наша Солнечная система. А расположены они в гуще элементов, периоды полураспада которых измеряются минутами, часами, годами, тысячелетиями… Так что, сменив клетку в таблице Менделеева на соседнюю справа (при бета-распаде) или на через одну слева, этот элемент превращается в еще более неустойчивый и радиоактивный элемент, который вновь распадается — И так, пока цепочка распадов не приведет, наконец, к стабильному элементу — свинцу или висмуту.
В связи с этим в обсуждении на разных форумах радиоактивных артефактов типа японских объективов или уранового стекла, а также истории с обедненным ураном в оружии и самолетах часто можно услышать заблуждение: мол, уран и торий — альфа-излучатели и в связи с этим их радиоактивностью можно пренебречь, если они не попадают внутрь организма. Да, уран-238 и торий-232 претерпевают альфа-распад, не сопровождающийся гамма-излучением. Однако последующие члены ряда урана-238, распады которых быстро следуют один за другим вплоть до долгоживущего урана-234, бета-активны, а протактиний-234m дает интенсивное гамма-излучение.
К тому же в природном уране помимо 238-го изотопа всегда есть 235-й и 234-й изотопы. Удельная активность первого в природном уране в 21 раз ниже, чем , однако обладает интенсивным гамма-излучением, как и уран-234, активность которого почти всегда равна активности урана-238, так как он находится с ним в вековом равновесии. Поэтому кусок урана-238 достаточно прилично «светит» и засвечивает фотопленку, на которой лежит, примерно за час. С торием примерно та же история, с той только разницей, что свежевыделенный торий-232 действительно практически чистый альфа-излучатель, и, к примеру, ториевое стекло японских объективов в момент их изготовления не представляло собой особой радиационной опасности. Но по мере восстановления в нем равновесия, в течение 10-15 лет интенсивность бета- и гамма-излучения тория значительно возрастает, что обусловлено накоплением в нем радия-228 и последующих членов ряда — вплоть до финального «салюта» таллия-208, дающего очень жесткое гамма-излучение с энергией 2,6 МэВ. Эта линия обычно последняя в гамма-спектрах, за ней ничего, кроме космического излучения, просто нет.
Самой знаменитой «дочкой» урана-238 является, конечно же, радий-226, тот самый, который открыли супруги Кюри и с добычей которого сравнивал свой труд Маяковский:
Изводишь единого слова ради
Тысячи тонн словесной руды…
Но в свежем уране радия почти нет. До него еще 245 тысяч лет ждать распада урана-234 и потом 75 тысяч лет — тория-230 с красивым названием «ионий». А вот в урановой руде радий находится в равновесии с ураном и активность его равна его, урана, активности. Поэтому урановая руда гораздо более радиоактивна, чем сам уран.
Именно поэтому свежий уран не является источником радона-222 (еще минус один миф про урановое стекло).
У тория в ряду тоже есть свой радий — двести двадцать восьмой. Поскольку равновесие в ториевом ряду устанавливается быстро, радий-228, а с ним и радон-220, не заставляет себя ждать.
Пара слов о радоне
Радон — это инертный газ. В связи с этим, он, казалось бы, не должен обладать высокой степенью радиотоксичности, так как практически не усваивается и не накапливается. Так долгое время и думали, и уже когда о вреде радиации знали много — радоновые ванны были популярнейшим способом лечения.
Но дело в том, что радон (что урановый 222, что ториевый 220), стоя в середине радиоактивного ряда, быстро превращается в один из радиоактивных изотопов свинца (214 для радона и 212 для торона), который оседает в легких и остается там навсегда. Вернее, пока не распадется. И уже он (и последующие члены ряда — в урановом ряду это, например, полоний-210) эффективно и качественно облучает легкие. Именно радон и продукты его распада дают основной вклад в годовую дозу облучения.
Кстати, эти радиоактивные продукты распада радона постоянно падают нам на головы. И если в сильный дождь замерить радиационный фон на улице, окажется, что он вырос — иногда даже в 2-3 раза. Это вовсе не «чернобыльский дождик» и не последствия Фукусимы, это всего-навсего продукты распада радона из километрового слоя атмосферы собрались на поверхности земли.
Потом эти свинец и висмут-214 превратятся в относительно долгоживущий (22 года) свинец-210, по которому можно определить, сколько прошло времени с момента, когда слой осадков на дне моря или другого водоема оказался перекрыт новыми наслоениями.
А еще их охотно поглощают лишайники, например, ягель, которым затем питаются олени. Концентрация дочерних продуктов распада радона в лишайниках многократно превышает исходное их содержание в дождевой воде и почве. Содержание свинца-210 в ягеле достигает 500 Бк/кг, что приводит к высокому содержанию этого нуклида (а следовательно, и полония-210) в мясе северных оленей — и в костях представителей народов крайнего севера, которые этим мясом (а также рыбой, в которой также велико содержание свинца-210) питаются. Итог — в 35 раз большая годовая доза, чем у жителя, например, Москвы.
Про калий, бананы и прочие апельсины
Помимо урана и тория с «дочками» источниками природной радиоактивности является некоторое количество элементов, имеющих помимо стабильных и радиоактивные природные изотопы. Среди них есть изотопы, образовавшиеся еще при царе Горохе до рождения Солнечной системы. Их периоды полураспада, как и у урана и тория, превышают время существования Солнечной системы, а то и Вселенной. Другие же имеют относительно короткие периоды полураспада, не позволяющие им сохраниться с древних времен. Они не могли образоваться и при распаде других радиоактивных изотопов, а значит, где-то должен быть другой источник их появления. Это — космические лучи.
Высокоскоростные протоны, врезаясь в ядра атомов, как сами по себе вызывают ядерные реакции, так и приводят к рождению нейтронов и высокоэнергетичных гамма-квантов, которые вызывают новые ядерные реакции. В результате каждый из влетевших в атмосферу космических протонов приводит к образованию не только кучи мюонов и электронов, но и к образованию множества нестабильных ядер — космогенных радионуклидов. Благодаря тому, что они образуются постоянно, они все время присутствуют в атмосфере, несмотря на относительно короткое (от секунд до тысяч лет) время жизни. Пожалуй, важнейшим из космогенных радионуклидов является углерод-14, образуемый под действием космических лучей из азота. Другие примеры — это бериллий-7, который вместе с продуктами распада радона легко обнаружить в дождевой воде по характерному гамма-излучению, тритий.
Некоторые космогенные радионуклиды не образовались в атмосфере Земли под действием космических лучей, а с этими космическими лучами и прилетели. Таковы хлор-36 и бериллий-10.
Космогенные радионуклиды являются важными трассерами для изучения различных природных процессов переноса вещества, радиоактивными «часами» для датировки (про радиоуглеродный метод все знают), а вот их роль в создании естественного радиационного фона невелика — в этом никто, кроме радона не может соперничать с калием-40. Их (в основном, углерода-14) активность в человеческом теле лишь немногим меньше активности калия-40, однако у последнего энергия распада — полтора МэВа, а у углерода-14 — 156 кэВ. Соответственно, и доза от него на порядок ниже — всего около 15 мкЗв/год.
Особенность калия в том, что он является важнейшим жизненно-важным элементом практически для любых форм жизни. И вместе с тем, калий неотделим от радиоактивного калия-40, который обуславливает его весьма заметную радиоактивность. Активность грамма природного калия составляет 31 Бк/г, а активность калия в человеческом организме — примерно 60 Бк/кг. Этой активностью создается годовая доза в 170 мкЗв/год — где-то немного меньше одной десятой от общей дозы облучения.
Бананы, как известно, богаты калием, а значит, и его радиоактивным изотопом. Калием, вообще-то много чего богато — курага, финики, орехи, и в общем-то бананы среди них не лидер, но все же калия в нем сравнительно много. Средний банан содержит около половины грамма калия, что соответствует 15-16 беккерелям калия. Эта активность, а также величина вклада в дозу облучения, вызванного потреблением одного банана (оцененная, как 0,1 мкЗв) во времена аварии на Тримайл-Айленде были в шутку прозваны «банановым эквивалентом».
На самом деле «банановый эквивалент» в дозовом выражении практически равен нулю. Дело в том, что концентрация калия в организме — это штука довольно постоянная. Любое серьезное отклонение в концентрации калия в тканях организм воспринимает весьма болезненно и тщательно поддерживает эту концентрацию в узких пределах. Если в организм поступает много калия, много калия выводится почками. Мало калия — почки будут беречь калий изо всех сил. Но содержание его в организме будет держаться неизменным. Так что съеденный банан не изменит количества калия в теле, а значит, и не создаст дополнительной дозы облучения.
Есть еще рубидий-87. Он тоже ведет себя в организме, как калий, но из-за редкости вклад его в дозу небольшой — что-то в районе 6 мкЗв/год.
Дела рук человеческих
Образование радиоактивного фосфора было доказано химически: при растворении ставшего радиоактивным алюминия в соляной кислоте вся активность уходила в выделяющийся газ в виде фосфористого водорода. Затем супруги Жолио-Кюри показали и образование других искусственных радиоактивных изотопов: облучением бора альфа-частицами был получен радиоактивный азот, при облучении магния — алюминий. Сбылась мечта алхимиков о превращении одних элементов в другие. Более продуктивным оказалось использование недавно созданных ускорителей заряженных частиц, с помощью которых удалось синтезировать не только множество радиоактивных изотопов известных элементов, но и те элементы, которых в природе не было. Первым из них стал открытый в 1937 году Эмилио Сегрэ технеций, название которого с тех пор указывает на его искусственное происхождение. Потом были франций, астат, затем первые трансурановые элементы — нептуний, плутоний…
Как я выше говорил, для тяжелых ядер цельное существование целого ядра менее выгодно энергетически, чем его разрушение. Тем не менее, ядро остается целым, так как между состояниями «целое ядро» и «отдельные фрагменты» существует значительный энергетический барьер. Вероятность самопроизвольного преодоления такого барьера даже для самых тяжелых ядер — урана, тория, трансурановых элементов — незначительна. Она гораздо больше в случае, если отделяемый фрагмент — альфа-частица, чем обусловлена альфа-активность таких ядер. Но остается очень небольшая вероятность того, что ядро распадется на несколько примерно одинаковых «кусков», которые немедленно разлетятся под действием электростатического отталкивания. Но вероятность деления ядра резко возрастает, если ядро «подогреть», возбудить какой-либо частицей извне. Проще всего это сделать с помощью нейтрона: ему не нужно преодолевать кулоновский барьер. Возбужденное ядро деформируется, а затем разрывается. Важно, что при делении обычно образуются не только «осколки», но и свободные нейтроны, которые также оказываются способны вызвать деление у других ядер. Этот процесс лежит в основе всей ядерной энергетики нашего времени, и он же производит огромное количество самых разнообразных радиоактивных изотопов: ядерные «осколки» могут быть практически любыми, и сможем мы их обнаружить и выделить или нет, определяется только временем их жизни. А мощный поток нейтронов, образующийся в процессе интенсивной ядерной реакции (особенно при ядерном взрыве) способен породить очень тяжелые трансурановые элементы. Такими «детищами ядерного взрыва» стали эйнштейний и фермий. А более легкие плутоний, америций, кюрий и калифорний получаются в реакторах во вполне промышленных количествах.
Переработка облученного ядерного топлива и облучение нейтронами различных элементов в реакторах стали эффективным и дешевым источником практически любых радиоактивных изотопов, позволяющим получать их в любых количествах — от небольших контрольных источников для калибровки карманных дозиметров, идущих вместе с ними в комплекте и не представляющих серьезной опасности, до тех, в луче от которых почти мгновенно погибают даже бактерии, а воздух светится, как лампочка.
А после, слив бензин и запустив реактор.
У радиоактивного изотопа как источника излучения есть одно свойство, что является как достоинством, так и недостатком. Он «работает» сам по себе, ни от чего не завися. «Выключить» радиоактивный источник нельзя — только спрятать за толстый слой свинца.
А вот реакцией деления можно (и нужно) управлять. Условием протекания самоподдерживающейся реакции деления является то, чтобы количества нейтронов, которые рождаются при актах деления, хватало для восполнения как тех нейтронов, которые затрачиваются на само деление, так и тех, которые покинули активную зону, не вызвав деления: были поглощены или захвачены либо просто улетели за ее пределы. Это — условие критичности. Нейтронов образуется больше, чем надо — реакция разгоняется, экспоненциально, лавинообразно наращивая свою интенсивность. Не хватает нейтронов — реакция угасает.
Ядерные реакторы обычно рассматриваются прежде всего как источники нейтронов. Вокруг такого исследовательского реактора (или нескольких) обычно строится целый научный центр, в котором проводятся разнообразные исследования и эксперименты, для которых необходим интенсивный поток нейтронов. Это исследования кристаллической структуры с помощью дифракции нейтронов, различные методы химического анализа, основанные на превращении стабильных элементов в радиоактивные изотопы (нейтронно-активационный анализ), изучение влияния излучения на вещество, включая и биомолекулы и живые организмы в целом, и многое другое.
Ядерный реактор — хороший источник нейтронов, но стационарный, дорогой, громоздкий и опасный. В условиях рядовой лаборатории или в полевых условиях для получения нейтронного потока используют либо калифорний-252, генерирующий нейтроны за счет спонтанного деления, либо источники, основанные на реакциях альфа-частиц с бериллием, бором или алюминием. Однако, такие источники малоинтенсивны и неизбежно дают вместе с нейтронами гамма-излучение. Таким источникам есть альтернатива в виде так называемой нейтронной трубки.
Послесловие
Об этом — а вернее, о радиационной безопасности, я расскажу в следующей статье.