Что относится к природным органическим соединениям
ОРГАНИ́ЧЕСКОЕ ВЕЩЕСТВО́
Том 24. Москва, 2014, стр. 353
Скопировать библиографическую ссылку:
ОРГАНИ́ЧЕСКОЕ ВЕЩЕСТВО́ в геологии, природные органические соединения, присутствующие в почвах, поверхностных и подземных водах, большинстве горных пород и осадков, а также в атмосфере. Первоисточник O. в. – растения и в значительно меньшей степени животные. O. в. находится в твёрдом (уголь, сланцы, твёрдые битумы), жидком (нефть, жидкие битумы) и газообразном (парообразном) состоянии (газ и газоконденсат); в концентрированном (уголь, нефть, газ) или рассеянном (мелкие включения в осн. массе минер. вещества) виде. Концентрация (% по массе) рассеянного O. в. в горных породах обычно не превышает 1, концентрированное O. в. в каустобиолитах составляет: в угле 50–100, углистых и горючих сланцах 20–50; нефтяных и газоконденсатных скоплениях 5–8 (относительно массы породы-коллектора). B горных породах содержание O. в. составляет: в глинистых 0,9%, алевритистых 0,45%, карбонатных и песчаных породах 0,2%; в атмосфере и гидросфере до 0,1%. O. в. в породах находится в виде: минералов и их компонентов; автономных, обладающих собств. формой и размерами включений диаметром 0,001–0,01 мм (дисперсное O. в.), 0,01–1 мм (микродетрит) и св. 1 мм (макродетрит); автономных включений жидкой, полужидкой и твёрдой консистенции, форма и размер которых зависят от параметров межзернового пространства; в сорбированном состоянии на поверхности и внутри кристаллич. решётки минералов. B магматич. породы O. в. попадает при ассимиляции ими осадочных пород, внедрении битумов, образующихся при контактовом метаморфизме O. в. осадочных пород и миграции нефти и газа. O. в. пород подразделяют на две категории: сингенетичное – поступившее в осадок вместе c осн. минер. массой и претерпевающее вместе c ней постседиментац. преобразования, и эпигенетичное – внедрившееся в горную породу на её постседиментац. этапе (O. в. магматич. пород, нефть, газ, пластовые и жильные битумы). B сингенетич. O. в. выделяют: автохтонное – образовавшееся за счёт продукции фациальной среды, в которой отложился осадок; аллохтонное – поступившее либо из др. одновозрастных фациальных сред, либо унаследованное осадком из размывающихся более древних пород.
Органические соединения
Органические вещества — класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов).
Название «органические соединения» появилось на ранней стадии развития химии и говорит само за себя — ученые той эпохи считали, что живые существа состоят из особых органических соединений.
Основные классы соединений биологического происхождения — белки, липиды, углеводы — содержат, помимо углерода, преимущественно водород, азот, кислород и серу. Именно поэтому, несмотря на то, что элементами, составляющими органические соединения, помимо углерода, могут быть практически любые элементы, «классические» органические соединения содержат прежде всего водород, кислород, азот и серу.
Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.
Количество известных органических соединений давно перевалило за 10 млн; таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов углерода, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной: двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, т. е. стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).
Существует несколько важных свойств, которые выделяют органические соединения в отдельный ни на что не похожий класс химических соединений.
Содержание
Органическая номенклатура
Органическая номенклатура —это система классификации и наименований органических веществ.
Классификация
Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами. В соответствии с этими критериями построена классификация органических соединений.
Классификация органических веществ.
Алифатические соединения
Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.
Ароматические соединения
Ароматические соединения или арены — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация)
Гетероциклические соединения
Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом
Полимеры
Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты меньшего размера. Эти сегменты могут быть идентичны, тогда речь идет о гомополимере. Полимеры относятся к макромолекулам, классу веществ, состоящих из молекул очень большого размера. Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид), или природными (целлюлоза, крахмал).
Структурный анализ органических веществ
В настоящее время существует несколько методов характеристики органических соединений. Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.
Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.
Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определенных функциональных групп.
Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.
Спектроскопия ядерного магнитного резонанса ЯМР.
Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе
Про другие методы смотри в разделе Аналитическая химия.
Органические вещества
Органические соединения, органические вещества — класс химических соединений, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). [1]
Содержание
История
Название органические вещества появилось на ранней стадии развития химии во время господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. Вещества при этом разделялись на минеральные — принадлежащие царству минералов, и органические — принадлежащие царствам животных и растений. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis ), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером в 1828 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.
Количество известных органических соединений составляет почти 27 млн
. Таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной — двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).
Классификация
Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу — несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.
Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.
Характерные свойства
Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.
Номенклатура органических соединений
Органическая номенклатура — это система классификации и наименований органических веществ. В настоящее время распространена номенклатура ИЮПАК.
Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами.
В зависимости от природы углеродного скелета органические соединения можно разделить на ациклические и циклические. Среди ациклических соединений различают предельные и непредельные. Циклические соединения разделяются на карбоциклические (алициклические и ароматические) и гетероциклические.
Алифатические соединения
Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.
Ароматические соединения
Ароматические соединения, или арены, — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация)
Гетероциклические соединения
Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом
Полимеры
Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты (соединения) меньшего размера. Эти сегменты могут быть идентичны, и тогда речь идёт о гомополимере. Полимеры относятся к макромолекулам — классу веществ, состоящих из молекул очень большого размера. Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид) или природными (целлюлоза, крахмал).
Структурный анализ органических веществ
В настоящее время существует несколько методов характеристики органических соединений. Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.
Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.
Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определённых функциональных групп.
Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.
Спектроскопия ядерного магнитного резонанса ЯМР.
Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе
Про другие методы смотрите в разделе Аналитическая химия.
Органическое вещество
Органические вещества — класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов).
Название «органические соединения» появилось на ранней стадии развития химии и говорит само за себя — ученые той эпохи считали, что живые существа состоят из особых органических соединений.
Основные классы соединений биологического происхождения — белки, липиды, углеводы — содержат, помимо углерода, преимущественно водород, азот, кислород и серу. Именно поэтому, несмотря на то, что элементами, составляющими органические соединения, помимо углерода, могут быть практически любые элементы, «классические» органические соединения содержат прежде всего водород, кислород, азот и серу.
Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.
Количество известных органических соединений давно перевалило за 10 млн; таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов углерода, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной: двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, т. е. стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).
Существует несколько важных свойств, которые выделяют органические соединения в отдельный ни на что не похожий класс химических соединений.
Содержание
Органическая номенклатура
Органическая номенклатура —это система классификации и наименований органических веществ.
Классификация
Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами. В соответствии с этими критериями построена классификация органических соединений.
Классификация органических веществ.
Алифатические соединения
Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.
Ароматические соединения
Ароматические соединения или арены — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация)
Гетероциклические соединения
Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом
Полимеры
Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты меньшего размера. Эти сегменты могут быть идентичны, тогда речь идет о гомополимере. Полимеры относятся к макромолекулам, классу веществ, состоящих из молекул очень большого размера. Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид), или природными (целлюлоза, крахмал).
Структурный анализ органических веществ
В настоящее время существует несколько методов характеристики органических соединений. Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.
Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.
Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определенных функциональных групп.
Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.
Спектроскопия ядерного магнитного резонанса ЯМР.
Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе
Про другие методы смотри в разделе Аналитическая химия.
Органические и неорганические вещества – что это и отличия
Органические и неорганические вещества – эти термины знакомы каждому человеку из школьной программы по биологии или химии. Также о них слышали садоводы. Что представляют собой и чем отличаются подобные вещества, способны объяснить не все. Для того чтобы лучше разобраться в особенностях и понять нюансы, рекомендуется сначала дать определение для каждого из рассматриваемых понятий, а затем провести сравнение по ключевым характеристикам.
Определение понятий
Органические вещества – соединения, которые имеют сложную химическую структуру (молекулярное строение). Они имеют невысокую температуру плавления, при воздействии высоких температур распадаются на несколько простых компонентов. Реакция протекает с выделением углекислого газа и воды. В молекулах присутствуют углерод и водород. Происхождение природное.
Неорганические вещества – химические соединения, имеющие простое молекулярное строение и небольшую массу. Температуры плавления высокие. Разложение происходит длительное время. Природа происхождения как биологическая, так и искусственная (промышленность).
Сравнение
Некоторые отличия между органикой и неорганическими веществами стала понятна из приведенных определений, но для более подробного разбора и выявления отличий, следует провести сравнение. Органика распадается за короткий промежуток времени на простые составные элементы – белки, углеводы, липиды. Разнообразие органики – результат наличия в ее молекулах углерода. Органические вещества способны к процессу изометрии. В результате образуются соединения, которые имеют одинаковый набор атомов в молекулах. Достичь разнообразия в этом случае позволяет различное положение атомов в молекулах образовавшихся веществ. Самыми распространенными являются такие соединения, как фруктоза и глюкоза. В них находится одинаковый набор атомов, но расположение отличается, поэтому свойства этих компонентов и их работа в химических реакциях различаются.
Неорганические вещества, самым распространенным из которых является вода, обладают небольшой молекулярной массой. Неорганики по современной классификации насчитывается всего около 100 тысяч, против органических соединений, которых представлено более 18 млн. Неорганические составляющие не способы к процессам изометрии. К неорганике также относятся различные металлы, соли, оксиды, различные смеси и простые вещества.
Выводы
Проведя сравнение, можно с уверенностью сказать, что различия между органическими и неорганическими веществами выражены в особенностях молекулярной структуры. Температура плавления и скорость разложения также являются факторами, указывающими на различия между рассматриваемыми понятиями. Наличие таких составляющих как водород и углерод характерны для органических соединений. Происхождение неорганики не всегда природное, многие компоненты являются плодом технических, производственных и научных изысканий. Общее количество неорганических веществ составляет по современной классификации 100 тысяч. Органика же превосходит числом, таких элементов в классификации представлено более чем в 10 раз больше. Органика имеет сложную структуру молекулярной сетки, неорганика — простую. Для того чтобы запустить процессы разложения в первом случае не требуется нагрева до высоких температур (например, мясо портиться при комнатной температуре, а для плавления металлов требуется длительный нагрев).
В состав молекул всех органических веществ входит углерод, но нужно учитывать и особенности этой группы компонентов. Так в карбидах или цианидах нет этого элемента. Уникальным свойством углерода является способность образовывать цепочки из атомов. Благодаря подобной способности соединений из одного и того же атомного набора может появляться очень много.