Что относится к первичным датчикам измерения температуры
КомПА
Первичные преобразователи
Первичные приборы, датчики или первичные преобразователи предназначены для непосредственного преобразования измеряемой величины в другую величину, удобную для измерения или использования. Выходными сигналами первичных приборов, датчиков являются как правило унифицированные стандартизованные сигналы, в противном случае используются нормирующие преобразователи.
Различают генераторные, параметрические и механические преобразователи:
Первичные преобразователи для измерения температуры:
По термодинамическим свойствам, используемым для измерения температуры, можно выделить следующие типы термометров:
Первичные преобразователи для измерения давления:
По принципу действия:
По роду измеряемой величины:
Первичные преобразователи для измерения расхода пара, газа и жидкости:
Эти приборы могут быть снабжены счетчиками (интеграторами), тогда они называются расходомерами-счетчиками. Такие приборы позволяют измерять расход и количество вещества.
Классификация преобразователей для измерения расхода пара, газа и жидкости:
Первичные преобразователи для измерения уровня:
Под измерением уровня понимается индикация положения раздела двух сред различной плотности относительно какой-либо горизонтальной поверхности, принятой за начало отсчета. Приборы, выполняющие эту задачу, называются уровнемерами.
Методы измерения уровня:
Что относится к первичным датчикам измерения температуры
Термоэлектрические преобразователи (термопары)
К приборам Термодат могут быть подключены как медные (ТСМ) так и платиновые (ТСП) термосопротивления. При настройке прибора следует установить тип термосопротивления и его градуировку (сопротивление при 0С) в третьем уровне режима настройки. Стандартные значения составляют 50 и 100 Ом (50М, 50П, 100М, 100П), однако могут быть установлены и другие значения. В многоканальных приборах ко всем каналам должны быть подключены термосопротивления одного типа.
Термосопротивления могут быть подключены к прибору Термодат как по трехпроводной, так и по двухпроводной схеме. Двухпроводная схема подключения дает удовлетворительные результаты, когда датчик удален на небольшое расстояние от прибора. Уточним наши слова. Предположим, Вы используете медное термосопротивление номиналом 100 Ом (градуировка 100М). Сопротивление этого датчика изменяется на dR=0,4%R=0,4Ом, при изменении температуры на один градус. Это означает, что если сопротивление проводов, соединяющих термодатчик с прибором, будет равно 0,4 Ом, ошибка измерения температуры будет равна одному градусу. В таблице приведены справочные значения сопротивлений медных проводов разного сечения, и допустимые длины проводов при двухпроводной схеме подключения.
Сечение подводящих проводов, мм2 | Сопротивление провода при 20С, Ом/км | Максимально допустимое удаление датчика, при котором ошибка, вызванная подводящими проводами при двухпроводной схеме подключения составляет один градус | |
М50, П50 | М100, П100 | ||
0,25 | 82 | — | 2,5 |
0,5 | 41 | 2,5 | 5 |
0,75 | 27 | 3,5 | 7,1 |
1,0 | 20,5 | 5 | 10 |
1,5 | 13,3 | 7,5 | 15 |
2,0 | 10 | 10 | 20 |
2,5 | 8 | 12,5 | 25 |
При удалении термодатчика на большие расстояния следует применять трехпроводную схему подключения. Третий провод используется для измерения сопротивления подводящих проводов. Все три провода должны быть выполнены из одного и того же медного кабеля сечением не менее 0,5 мм2 и иметь одинаковую длину (говоря точно, сопротивление проводов не должно отличаться друг от друга более чем на 0,2 Ом для ТСМ100 и более чем на 0,1 Ом для ТСМ50). Максимальная длина проводов не должна превышать 300м. Для работы с искрозащитными барьерами требуется четырехпроводная схема подключения термосопротивления. По специальному заказу приборы Термодат могут быть оборудованы входами для четырехпроводного подключения датчиков.
Для быстрой проверки работоспособности прибора, термодатчика, схемы подключения и настроек мы рекомендуем, как и в случае с термопарами, поместить подключенный датчик в кипящую воду или в тающий лед. Измеренная прибором температура не должна отличаться от 100С (от 0С) более, чем на 2С. Прибор без датчика можно протестировать, подключив к входу вместо термосопротивления точный постоянный резистор номиналом 100 Ом (точность не хуже 0,5%). Установить тип термодатчика ТСМ или ТСП (роли не играет) и градуировку 100. После этого прибор должен показывать температуру 0С+-2С. С помощью точного резистора аналогичным образом можно проверить качество длинной линии, подключив резистор вместо термосопротивления на длинной линии.
Диапазон измерения температуры, точность измерения и разрешение по температуре
Тип термопреобразователя | Диапазон измерения, С | Обозначение в меню настройки |
Термопара ХА(К) | -50 +1100 | 1 |
Термопара ХК(L) | -50 +800 | 2 |
Термопара МК(Т) | -50 +400 | указывается в паспорте |
Термопара ЖК(J) | -50 +700 | указывается в паспорте |
Термопара ПП (S) | 0 +1600 | указывается в паспорте |
Термопара ПП (R) | 0 +1700 | указывается в паспорте |
Термопара ПР (B) | +300 +1800 | указывается в паспорте |
Термопара ВР (А-1,А-2,А-3) | +300 +2500 | указывается в паспорте |
Термосопротивление ТСМ (М50, М100) | -50 +200 | Cu |
Термосопротивление ТСП (П50, П100) | -50 +800 | Pt |
В большинстве задач регулирования температуры быстродействия измерительного прибора не имеет значения, так как характерные времена тепловых процессов велики. Приборы Термодат последовательно опрашивают все каналы и производят измерения. В каждом цикле измерения производится измерение температуры холодных спаев и опрос опорных каналов для самокалибровки и балансировки нуля. Время измерения по одному каналу для малоканальных одноблочных приборов составляет 200мс, с учетом усреднений и пауз после переключения коммутатора. Полный цикл измерения составляет 2 сек для одноканального прибора, 2,5 сек для двухканального и 3 сек для трехканального. Время полного цикла измерения для многоканальных приборов зависит от количества установленных каналов измерения N и может быть оценено по формуле: Т= (0.6 + 0.2N) секунд.
В условиях повышенных электромагнитных помех показания прибора могут быть неустойчивыми и колебаться в пределах 1-2 последних разрядов. Эти колебания не выходят за пределы погрешности измерения, однако, вызывают неудовлетворенность работой аппаратуры. Мы рекомендуем в таких условиях включить программный цифровой фильтр. Фильтр включается наладчиком оборудования во втором уровне режима настройки. Алгоритм обработки результатов измерения при включении цифрового фильтра предусматривает анализ результатов измерений, отсев случайных выбросов, специальное цифровое сглаживание сигнала. Фильтр существенно увеличивает соотношение сигнал/шум в приборе и, соответственно, стабильность показаний прибора. Однако при включении фильтрации сигнала увеличивается постоянная времени прибора. Если условия работы прибора благоприятные, устанавливать цифровую фильтрацию не следует.
Первичные преобразователи. Датчики
Первичные приборы, датчики или первичные преобразователи предназначены длянепосредственного преобразования измеряемой величины в другую величину, удобную для измерения илииспользования. Выходными сигналами первичных приборов, датчиков являются как правилоунифицированные стандартизованные сигналы, в противном случае используются нормирующие преобразователи (см. рис.1).
Различают генераторные, параметрические и механические преобразователи:
Пояснения к рисунку 1. Первичный преобразователь, датчик Д может иметь выходнойунифицированный сигнал см.рис.1.8.а и неунифицированный сигнал см.рис.1.8.б. Во втором случаеиспользуют нормирующие преобразователи НП.
Нормирующий преобразователь НП выполняет следующие функции: преобразует нестандартныйнеунифицированный сигнал (например, mV, Ом) в стандартный унифицированный выходной сигнал;осуществляет фильтрацию входного сигнала; осуществляет линеаризацию статической характеристикидатчика; применительно к термопаре, осуществляет температурную компенсацию холодного спая.
Первичные преобразователи для измерения температуры:
П о термодинамическим свойствам, используемым для измерения температуры, можно выделитьследующие типы термометров:
Первичные преобразователи для измерения давления:
П о принципу действия:
По роду измеряемой величины:
Первичные преобразователи для измерения расхода пара, газа и жидкости:
П риборы, измеряющие расход, называются расходомерами. Эти приборы могут быть снабженысчетчиками (интеграторами), тогда они называются расходомерами-счетчиками. Такие приборы позволяютизмерять расход и количество вещества.
Классификация преобразователей для измерения расхода пара, газа и жидкости:
Первичные преобразователи для измерения уровня:
П од измерением уровня понимается индикация положения раздела двух сред различной плотностиотносительно какой-либо горизонтальной поверхности, принятой за начало отсчета. Приборы, выполняющиеэту задачу, называются уровнемерами.Методы измерения уровня: поплавковый, буйковый, гидростатический, электрический и др.
Виды датчиков температуры и принцип их работы
Датчики измерения температуры используются для контроля веществ в твердом, жидком или газообразном состоянии. В зависимости от целей применения, схема строения прибора будет видоизменяться. Но чтобы выбрать подходящий инструмент необходимо обращать внимание на одни и те же нюансы.
Виды, конструкция и принципы действия
Термопара
Датчик включает в себя две проволоки из разных металлов, спаянных между собой. Для отношения концов друг с другом в зоне постоянной температуры, в конструкцию добавляют удлиняющие провода из двух металлов. Когда на концы проводов действуют разные температуры (например, при помещении датчика в горячую воду), то в цепи появляется электрический ток. Сила возникшего тока (от 40 до 60 мкВ) зависит от используемого материала термопары, который влияет на термоэлектрическую силу прибора.
В практике можно встретить железоникелевые, хромоалюминиевые, медно-константановые и так далее. В дешевых моделях используются неблагородные металлы (аналогичных термоэлектродам) для удлиняющих проводов, а в дорогих – благородные металлы, которые способы развивать аналогичную термо-ЭДС, что и электроды (необходимо для уменьшения стоимости высококлассным приборов).
Термопара относится к датчикам с высокой точностью. Проблемой устройства является сложность получения замеренного значения. Термопара действует по принципу относительности отличия температур между разъемами. Горячий спай помещается в замеряемое вещество, а холодный остается находиться в окружающей среде.
При необходимости использования термопары работа проводится следующим образом. Температуру холодного спая необходимо компенсировать, для чего вторую термопару помещают в среду с известным показателем.
Если используется программный способ компенсации, второй датчик помещается в изометрическую камеру, где находятся холодные спаи, что позволяет контролировать температуру с высокой точностью. Самое сложное в работе с одноконтактной термопарой – снять показатели.
В ГОСТе прописаны коэффициенты, необходимые для перевода ЭДС в показатель температуры и наоборот. Подсчет также может вестись при помощи контроллера.
Но получаемый от термопары показатель ЭДС измеряется в единицах и сотнях микровольт. Поэтому использование аналоговых преобразователей не будет успешным. Для сборки специальной конструкции, цель которой – получение точных результатов, потребуются малошумящие аналоговые преобразователи.
На практике для устранения имеющихся погрешностей используют автоматическое введение поправки на температуру свободных концов. Под этим подразумевают введение моста с плечами в виде медного и манганинового терморезисторов.
Терморезисторы
Терморезисторы делятся по типу зависимости сопротивления от температуры. Они могут быть отрицательными (NTC) или положительными (PTC).
Измерения легче проводить при помощи терморезисторов. Принцип работы построен на сопротивлении материалов внешней температуре. Высокая точность присуща для приборов, изготовленных из платины. На работу терморезисторов влияют две характеристики.
Первая – базовое сопротивление, второе – температура, при которой оно определяется. ГОСТ устанавливает, что определение должно проходить при 0 градусов по Цельсию. В нормативном документе указывается, что рекомендуется использовать несколько номиналов сопротивлений, определяемых в Омах, а также температуры, что позволит сопоставить результаты при 0°С и другом показателе. Для этого используется следующая формула:
Температурный коэффициент будет изменяться в зависимости от используемого материала для термометров, что отражено в ГОСТе. В нормативном документе также указываются коэффициенты полинома, необходимые для расчета в зависимости от текущего сопротивления.
Термометры сопротивления обладают одним минусом – низкий температурный коэффициент сопротивления. Несмотря на этот нюанс, использование терморезисторов проще по сравнению с принципом работы термопары.
Способы измерения будут зависеть от комплектации модели. Базовые терморезисторы необходимо включать в цепь с источником тока и контролируемого дифференциального напряжения. Чтобы корректно определить доли единицы процента получаемых от температурного коэффициента проводников, лучше использовать аналого-цифровые преобразователи.
Если в датчик уже встроен аналоговый выход, соответствующий питаемому напряжению, то для оцифровывания можно напрямую подключать терморезистор к преобразователю
Комбинированные
Комбинированные датчики включают в себя несколько полупроводников, объединенных в единое устройство. Датчики могут иметь встроенный цифровой интерфейс, а не только интегральные схемы с выходом. Часто используется комбинированный датчик благодаря возможности подключения параллельных устройств. Погрешность при расчете температуры равна 2 °С, а при определении влажности – 5%. Проблема в таком датчике одна – оптимизация интерфейса.
Цифровые
Бесконтактные
Работа датчика основана на нагревании тонкой пленки, что осуществляется благодаря воздействию инфракрасных лучей. Встретить подобную технологию можно в пирометрических устройствах. В отличии от контактного, получить данные можно на расстоянии.
Кварцевые преобразователи температуры
Кварцевые датчики отличаются высокой точностью, стабильностью и разрешением. Являются более перспективными способами измерения температуры. Часто можно встретить в цифровых термометрах.
Шумовые
Шумовой датчик служит для получения показателей по принципу разности потенциалов на резисторе, которые меняются в зависимости от температуры. На практике подобный способ измерения имеет условие – одна из температур должна быть известна, а вторая — измеряемая. Два полученных шума от различных температур сравнивают и находят искомое значение.
Ядерного квадрупольного резонанса
Принцип работы биметаллического термометра основывается на действии градиента поля тока решетки кристалла и момента ядра, вызванного отклонением заряда от симметрии сферы. При помощи такого процесса создается процессия ядер. Частота напрямую зависит от градиента поля решетки. В зависимости от вещества, величина показателя может подниматься до нескольких тысяч МГц. Чем выше температура, тем меньше частота ЯКР.
Объемные преобразователи
При определении температуры датчиками на жидкости погрешность падает до 1-3% в зависимости от температурной среды. Температура закипания и замерзания жидкости также будет влиять на интервал работы датчика.
Если датчик измеряет преобразователи на газе, то граница измерения зависит от точки перехода газа в жидкое состояние и стойкостью баллона в воздействующей температуре.
Канальный
Все цифровые термометры относятся к канальным, так как для передачи сигналов они используют каналы. В зависимости от количества таких “магистралей” определяется канальность устройства. Так термометр Testo 925 относится к 1-канальным, в основе работы лежит термопара, как и у термометра Testo 735-2 – 3-канального. А Testo 810 – 2-канальный прибор с инфракрасным термометром.
Параметры выбора
Чтобы осуществить корректный выбор подходящего термометра, необходимо определить несколько условий, которые должны соответствовать для комфортной работы прибором.
Диапазон рабочей температуры
Необходимо знать, в каких температурах будет задействован термометр. Также нужно определить, какая погрешность будет приемлемой при получении результатов. Если диапазон температур небольшой, то подойдут термисторы. В самых суровых условиях работоспособны преимущественно шумовые приборы.
Условия проведения замеров
Возможно ли поместить термометр в среду или материал, который нужно заменить. Если нет, то получить данные можно при помощи радиационных термометров, которые замеряют температуру сквозь препятствия.
Время работы до калибровки или замены
Установить условия работы датчика. Окружающая обстановка может быть стандартной, с высокой влажность, окислительной, пожароопасной и так далее.
Величина сигнала выхода
Сигнал выхода должен соответствовать возможностям электроизмерительных приборов для дальнейшей обработки получаемых данных. Зависит это от полученных показателей температуры, преобразуемых в энергию.
Другие технические данные
Также при определении подходящего типа датчика температуры необходимо обращать внимание на второстепенные факторы. Эти нюансы позволяют выбрать самый подходящий аппарат для получения необходимых данных.
Погрешность
Для получения самых точных результатов потребуется большое количество времени. Лучший показатель выдает биметаллический термометр, построенный по принципу ЯКР и цифровые. Первые – быстрее, а вторые – точнее.
Разрешение
Этот показатель позволяет получить от датчика более точные приращениям дискретности измерения температуры. Ярким представителем является DS18B20, который может работать в разрешении 9,10,11 и 12 бит. Самый малый режим даст 0.5°C, а максимальный — 0.0625°C.
Напряжение
На величину выходного напряжения будет влиять сопротивление резистора. В зависимости от этого напряжение может быть линейным (изменяться в зависимости от температуры) и нелинейным. Для каждого датчика существуют свои эталонные величины на выводах термометра, который зависит от температуры измеряемого объекта.
Время сработки
Показатель отвечает за скорость получения результатов замера. Как правило, быстрые замеры можно получить, имея крупную погрешность. Для устранения этого недостатка потребуется пренебречь временем сработки и увеличить его до необходимого показателя точности.
Промышленные термодатчики и сенсоры
Кроме стандартных бытовых термодатчиков бывают промышленные, которые используются исключительно на специальных объектах. Их распространение направлено на определенную группу лиц из-за избыточных возможностей, которые требуются только на производстве. Некоторые из них способны работать в различных нетрадиционных средах и суровых условиях. Выбор подходящих типов осуществляется тем же образом, что и для подбора бытовых датчиков.
Применение
Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.
Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами. При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения.
Датчики температуры
Содержание
Датчик температуры – это устройство, которое позволяет измерить температуру объекта или вещества, используя при этом различные свойства и характеристики измеряемых тел или среды. Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой.
Датчики нельзя устанавливать в следующих местах:
Критерии выбора датчика:
По принципу измерения все датчики измерения температуры подразделяются на:
Термопары относятся к классу термоэлектрические преобразователи, принцип действия которых основан на явлении Зеебека: если спаи двух разнородных металлов, образующих замкнутую электрическую цепь, имеют неодинаковую температуру, то в цепи протекает электрический ток. Изменение знака у разности температур спаев сопровождается изменением направления тока. Под термоэлектрическим эффектом понимается генерирование термоэлектродвижущей силы (термо ЭДС), возникающей из-за разности температур между двумя соединениями различных металлов и сплавов.
Соединенные между собой концы термопары, погружаемые в среду, температура которой измеряется, называют рабочим концом термопары. Концы, которые находятся в окружающей среде, и которые обычно присоединяют проводами к измерительной схеме, называют свободными концами. Температуру этих концов необходимо поддерживать постоянной. При этом условии термо–ЭДС Еt будет зависеть только от температуры t1 рабочего конца.
где С – коэффициент, зависящий от материала проводников термопары.
Создаваемая термопарами ЭДС сравнительно невелика: она не превышает 8 мВ на каждые 100 °C и обычно не превышает по абсолютной величине 70 мВ. Термопары позволяют измерять температуру в диапазоне от –200 до 2200 °C.
Наибольшее распространение для изготовления термоэлектрических преобразователей получили платина, платинородий, хромель, алюмель.
Термопара типа ТХА, ТХК, ТПП и пр. состоит из двух спаянных на одном из концов проводников, изготовленных из металлов, обладающих разными термоэлектрическими свойствами. Спаянный конец, называемый «рабочим спаем», погружается в измеряемую среду, а свободные концы («холодный спай») подключаются к входу измерителей, регуляторов. Если температуры «рабочего» и «холодного спаев» различны, то вырабатывается термоЭДС которая, и подается на прибор. Поскольку термоЭДС зависит от разности температуры двух спаев датчика, то для получения корректных показаний необходимо знать температуру «холодного спая», чтобы скомпенсировать эту разницу в дальнейших вычислениях.
В модификациях входов, предназначенных для работы с термопарами ТХА, ТХК (термопреобразователями сопротивления ДТС типа ТСП и ТСМ, термоэлектрическими преобразователями, датчиками температуры, термосопротивлениями) предусмотрена схема автоматической компенсации температуры свободных концов. Датчиком температуры «холодного спая» служит полупроводниковый диод, установленный рядом с присоединительным клеммником.
Подключение термопар ТХА, ТХК (термопреобразователей сопротивления ДТС типа ТСП и ТСМ, термоэлектрических преобразователей) к датчику температуры (термопреобразователю) должно производиться с помощью специальных компенсационных (термоэлектродных) проводов, изготовленных из тех же материалов. Допускается использовать провода из металлов с термоэлектрическими характеристиками, аналогичными характеристикам материалов электродов термопары в диапазоне температур от 0..100 °С. При соединении компенсационных проводов с термопарами (термоэлектрическими преобразователями, термопреобразователями сопротивления) и прибором необходимо соблюдать полярность.
Во избежание влияния помех на измерительную часть прибора рекомендуется экранировать линию связи прибора с датчиком. При нарушении указанных условий могут иметь место значительные погрешности при измерении.
Интегральные датчики температуры отличаются от других типов термодатчиков тем, что работают в диапазоне, обычно ограниченном температурой от –55 до 150 °С. Часть интегральных датчиков температуры имеет указанный диапазон измерения, часть имеет более узкий диапазон, что обусловлено либо используемым типом корпуса, либо сделано для снижения стоимости. Самой главной отличительной особенностью интегральных датчиков по сравнению с другими типами датчиков температуры является их богатая функциональность. Интегральный кремниевый датчик температуры включает в себя термочувствительный элемент – первичный преобразователь температуры и схему обработки сигнала, выполненные на одном кристалле и заключенные в единый корпус. В отличие от использования термопар, в данном случае отсутствует необходимость разрабатывать схему компенсации холодного спая и схему линеаризации выходного сигнала. Также нет необходимости разрабатывать и применять внешние схемы компараторов или АЦП для преобразования аналоговых сигналов в логические уровни или цифровой код на выходе – все эти функции уже встроены в некоторые серии интегральных датчиков температуры.
Датчики температуры NSC можно разделить на пять групп:
Датчики температуры с выходом по напряжению могут иметь различную градуировку – по шкале Кельвина либо по шкале Цельсия. Датчики LM135, LM235, LM335 имеют выходное напряжение пропорциональное абсолютной температуре с номинальным значением температурного коэффициента составляющим 10 мВ/°К. При этом номинальное выходное напряжение при 0°С составляет 2,73 В, и 3,73 В при 100 °С. Обычно эти датчики включаются по схеме, представленной на рисунке 36 а. Третий вывод позволяет осуществлять подстройку точности, для этого используется подстроечный резистор. Температурная погрешность датчика LM135 без использования подстроечного резистора в диапазоне температур измерения –55. 150 °С составляет ±2,7 °С, а с внешним подстроечным резистором уменьшается до ±1 °С в рамках всего рабочего диапазона.
Датчики LM35 и LM45 имеют выходное напряжение, пропорциональное шкале Цельсия (Кт = 10 мВ/°С). При температуре 25 °C эти датчики имеют на выходе напряжение 250 мВ, а при 100 °С на выходе – 1,0 В. Эти датчики могут применяться и для измерения отрицательных температур. Для этого используется согласующий резистор, который включается между выходным выводом и напряжением «ниже земли». Датчик LM50 является «однополярным», потому что он, в отличие от LM35 и LM45, может измерять отрицательные температуры без использования смещения. Этот датчик имеет чувствительность 10 мВ/°С и смещение на выходе 500 мВ (рисунок 36 б). Таким образом, на выходе будет 500 мВ при 0 °С, 100 мВ при –40 °С и 1,5 В при 100 °С.
Рассмотрим функциональный состав датчика этой группы на примере LM75. В состав входит непосредственно сам термочувствительный элемент, дельта-сигма АЦП, двухпроводной цифровой последовательный интерфейс I 2 C и регистры управления работой (рисунок 2.37). Температура измеряется постоянно, и может быть считана в любой момент времени. Существует возможность использования LM75 в качестве монитора температуры, который следит за ее изменениями и при выходе значения температуры за установленный предел, выдает логический сигнал на выходе – высокий или низкий уровень (знак можно задать). Таким образом, LM75 может являться ядром при построении системы управления температурой. Данные представляются 9-ти битным словом, из них один бит отводится на знак. Таким образом, разрешающая способность составляет 0,5 °С. Погрешность данного датчика в диапазоне температур –25…100 °С составляет ±2 °С, а в диапазоне –55…125 °С составляет ±3 °С.
Термометр сопротивления – датчик, предназначенный для измерения температуры, принцип действия которого основан на зависимости электрического сопротивления металлов, сплавов и полупроводниковых материалов от температуры. При применении в качестве резистивного элемента полупроводниковых материалов его обычно называют термосопротивлением, терморезистором или термистором.
Терморезистор (термистор) – полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры.
Следует заметить, что не все устройства, изменяющие сопротивление с температурой, называются терморезисторами. Например, резистивные термометры, которые изготавливаются из маленьких катушек витой проволоки или из напыленных металлических плёнок, хотя их параметры и зависят от температуры, однако, работают не так, как терморезисторы. Обычно термин «терморезистор» применяется по отношению к чувствительным к температуре полупроводниковым устройствам. Терморезисторы с отрицательным ТКС изготавливаются из полупроводникового материала – спеченной керамики, изготовленной из смеси оксидов металлов. Терморезисторы широко применяются везде, и мы встречаемся с ними каждый день: на них основаны системы противопожарной безопасности, системы измерения и регулирования температуры, теплового контроля, схемы температурной компенсации, измерения мощности ВЧ. Обычно терморезисторы имеют отрицательный температурный коэффициент сопротивления, в отличие от большинства металлов и металлических сплавов.
Предполагая в качестве приближения первого порядка, что зависимость между сопротивлением и температурой линейна, тогда:
где ΔR – изменение сопротивления; ΔT – изменение температуры; k – температурный коэффициент сопротивления.
Термисторы можно разделить на два типа, в зависимости от классификации k. Если k положительно, сопротивление увеличивается с повышением температуры, и устройство называется термистором с положительным температурным коэффициентом (PTC) или позистором. Если k отрицательно, сопротивление уменьшается с повышением температуры, а устройство называется термистором с отрицательным температурным коэффициентом (NTC). Резисторы, которые не являются термисторами, рассчитаны на максимально возможное значение k как можно ближе к 0, так что их сопротивление остается почти постоянным в широком температурном диапазоне.
Вместо температурного коэффициента k иногда используется температурный коэффициент сопротивления. Он определяется как:
Когда ток проходит через терморезистор, он будет генерировать тепло, в результате которого температура терморезистора выше своего окружения. Если термистор используется для измерения температуры окружающей среды, это электрическое отопление может привести к существенной ошибке, если не будет производиться коррекция.
Металлический термометр сопротивления представляет собой резистор, изготовленный из металлической проволоки или металлической плёнки на диэлектрической подложке и имеющий известную зависимость электрического сопротивления от температуры.
Наиболее точный и распространённый тип термометров сопротивления – платиновые термометры. Это обусловлено тем, что платина имеет стабильную и хорошо изученную зависимость сопротивления от температуры и не окисляется в воздушной среде, что обеспечивает их высокую точность и воспроизводимость. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом 0,003 925 1/К при 0 °C.
В качестве рабочих средств измерений применяются также медные и никелевые термометры сопротивления. Начальное сопротивление изготовленного термосопротивления может быть произвольным с некоторым допуском.
Термометры сопротивления, изготовленные в виде напыленной на подложку металлической плёнки, отличаются повышенной вибропрочностью, но меньшим диапазоном рабочих температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов, составляет 660 °C (класс С), для плёночных – 600 °C (класс С).
Акустические термодатчики используются преимущественно для измерения средних и высоких температур и применяются в экстремальных условиях (в диапазоне криогенных температур, при высоких уровнях радиации в ядерных реакторах и т. д.), а также при проведении измерений в замкнутом герметичном объеме, где невозможно разместить контактные датчики или использовать пирометры. Состоят из пространственно-разнесенных излучателя и приемника акустических волн. Излучатель испускает сигнал, который проходит через исследуемую среду. Измеряя время прохождения сигнала известного расстояния между излучателем и приемником, и зная базовую скорость распространения ультразвука в данной среде при известной температуре, вычислитель считает скорость распространения при данной температуре, по которой затем вычисляется температура. Например, для газов зависимость скорости ультразвука от температуры выражается формулой:
где α – коэффициент, зависящий от давления, плотности, молекулярной массы газа.
Пример акустического датчика температуры приведен на рисунке 2.38.
Датчик состоит из трех компонентов: ультразвуковых передатчика и приемника, а также герметичной трубки, заполненной газом. Передатчик и приемник представляют собой керамические пьезоэлектрические пластины, акустически несвязанные с трубкой, что обеспечивает распространение звука преимущественно через газ внутри трубки. В качестве газа чаще всего используется сухой воздух. Тактовое устройство запускает передатчик, который посылает в трубку короткий ультразвуковой импульс, который пройдя через тестируемую среду трубки, принимается приемником. Время прохождения сигнала подается в контроллер, который вычисляет скорость распространения ультразвука, а затем определяет температуру тестируемой среды.
Миниатюрные акустические датчики температуры используют принцип модуляции (зависимости) частоты электронных генераторов, построенных на основе времязадающих элементов поверхностных акустических волн (ПАВ). Фактически, такие интегральные акустические датчики являются прямыми преобразователями температуры в частоту. Такие датчики имеют чувствительность в пределах нескольких кГц на градус.
Пирометр – прибор для бесконтактного измерения температуры тел, принцип действия которого основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света.
Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.
Пирометры можно разделить по нескольким основным признакам:
Оптические. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путём сравнения его цвета с цветом эталонной нити.
Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой полосе спектрального излучения, то такой пирометр называют пирометром полного излучения.
Цветовые (другие названия: мультиспектральные, спектрального отношения) – позволяют делать вывод о температуре объекта, основываясь на результатах сравнения его теплового излучения в различных спектрах.
Пьезоэлектрические датчики температуры
Пьезоэлектрические датчики температуры – это прибор для бесконтактного измерения температуры тел, принцип действия которого основан при помощи кварцевого пьезорезонатора. При пьезоэлектрическом эффекте наблюдается зависимость частоты вибраций кварцевого кристалла от температуры. Именно на основе этого явления и реализуются пьезоэлектрические датчики температуры. Поскольку кварц является анизотропным материалом, резонансная частота пластины сильно зависит от угла среза кристалла (его кристаллографической ориентации).
В пьезоэлектрических датчиках температуры всегда очень сложно организовать хорошую тепловую связь кристалла с объектом измерения, поэтому они обладают худшим быстродействием по сравнению с термисторами и термоэлектрическими детекторами.
Наиболее используемый датчик температуры на судах является Pt 100, принцип работы которого основан на принципе изменения электрического сопротивления при повышении температуры. Изменение сопротивления преобразуется регулятором в температурное значение, которое показывается прибором.
Материалом является платина с сопротивлением 100 Ом при температуре 0 °C. Платина имеет положительный коэффициент зависимости сопротивления от температуры; с ростом температуры растёт сопротивление. Изменение сопротивления от температуры составляет 0,39 Ом/1 °C.
В одном датчике может быть несколько термосопротивлений Pt 100: 1, 2 или 3×Pt–100 (наиболее часто используется 1×Pt×100). Для разных измерительных цепей датчик может быть произведён в разных вариантах: 2-, 3- или 4-проводное подключение (наиболее точным является 4-проводное).
Конструкция Pt×100 представлена на рисунке 2.39. Термометр сопротивления расположен в специальной, заполненной окисью магния трубке толщиной 3 мм и различной длины. Гибкая часть термометра сопротивления начинается с 50 мм. Через вводную часть осуществляется соединение с гибким питающим проводом.
Классы точности Pt100
Стандарт МЭК 60751 определяет классы точности термометров сопротивления Pt100 и соответствующие допуски. Классы допуска и диапазоны измерений для термопреобразователей сопротивления и чувствительных элементов представлены в таблице 2.4.
Цвета проводов, присоединяемых к термосопротивлению Pt 100, определены стандартом EN 60751. Цвета проводов для 2-, 3- и 4-проводного подключения, указаны в каждом типе датчиков на рисунке 2.40.
Схемы включения термосопротивления в измерительную цепь: