Что относится к оксидам кислотам основаниям солям
Что относится к оксидам кислотам основаниям солям
Оксиды могут быть солеобразующими и несолеобразующими. Солеобразующим оксидам соответствуют гидроксиды и соли с элементом в той же степени окисления, что и в оксиде. Несолеобразующие оксиды не имеют соответствующих гидроксидов и солей. Таких оксидов немного: N 2 O, NO, SiO, CO.
Солеобразующие оксиды в зависимости от кислотно-основного характера делятся на кислотные, амфотерные и основные.
Основные оксиды образованы металлами с небольшими степенями окисления +1, +2. Амфотерные оксиды образованы переходными металлами со степенями окисления +3, +4, а также Be, Zn, Sn, Pb. Кислотные оксиды образованы неметаллами, а также металлами со степенью окисления больше, чем +4. Рис. 3.
ОСНОВАНИЯ – это сложные вещества, состоящие из ионов металла и гидроксид-ионов.
это сложные вещества, которые имеют свойства и кислот, и оснований, и потому их формулы можно записывать в разных формах:
форма основания форма кислоты
КИСЛОТЫ – это сложные вещества, состоящие из ионов водорода и кислотных остатков.
СОЛИ – это сложные вещества, состоящие из ионов металла и кислотных остатков.
Средние соли состоят из катионов металла (или аммония) и анионов кислотных остатков. Кислые соли, кроме катионов металла, содержат катионы водорода и анион кислотного остатка. Основные соли в своем составе содержат гидроксид-анионы.
Соли с двумя разными анионами и одним катионом называют смешанными. Например, Са(OCl)Cl – хлорид-гипохлорит кальция.
В комплексных солях содержится сложный ион, который принято заключать в квадратные скобки.
Химия
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Оксиды
Оксиды в природе нас окружают повсюду, честно говоря, сложно представить нашу планету без двух веществ – это вода Н2О и песок SiO2.
Вы можете задаться вопросом, а что бывают другие бинарные соединения с кислородом, которые не будут относиться к оксидам.
Поранившись, Вы обрабатываете рану перекисью водорода Н2О2. Или для примера соединение с фтором OF2. Данные вещества вписываются в определение, так как состоят из 2 элементов и присутствует кислород. Но давайте определим степени окисления элементов.
Рассмотрим на примере следующих веществ кальций Са, мышьяк As и алюминий Al.
Подобно простым веществам реагируют с кислородом сложные, только в продукте будет два оксида. Помните детский стишок, а синички взяли спички, море синее зажгли, а «зажечь» можно Чёрное море, в котором содержится большое количество сероводорода H2S. Очевидцы землетрясения, которое произошло в 1927 году, утверждают, что море горело.
Чтобы дать название оксиду вспомним падежи, а именно родительный, который отвечает на вопросы: Кого? Чего? Если элемент имеет переменную валентность в скобках её необходимо указать.
Классификация оксидов строится на основе степени окисления элемента, входящего в его состав.
Реакции оксидов с водой определяют их характер. Но как составить уравнение реакции, а тем более определить состав веществ, строение которых Вам ещё не известно. Здесь приходит очень простое правило, необходимо учитывать, что эта реакция относиться к типу соединения, при которой степень окисления элементов не меняется.
Возьмём основный оксид, степень окисления входящего элемента +1, +2(т.е. элемент одно- или двухвалентен). Этими элементами будут металлы. Если к этим веществам прибавить воду, то образуется новый класс соединений – основания, состава Ме(ОН)n, где n равно 1, 2 или 3, что численно отвечает степени окисления металла, гидроксильная группа ОН- имеет заряд –(минус), что отвечает валентности I.При составлении уравнений не забываем о расстановке коэффициентов.
Особо следует выделить оксиды неметаллов в степени окисления +1 или +2, их относят к несолеобразующим. Это означает, что они не реагируют с водой, и не образуют кислоты либо основания. К ним относят CO, N2O, NO.
Чтобы определить будет ли оксид реагировать с водой или нет, необходимо обратиться в таблицу растворимости. Если полученное вещество растворимо в воде, то реакция происходит.
Золотую середину занимают амфотерные оксиды. Им могут соответствовать как основания, так и кислоты, но с водой они не реагируют. Они образованные металлами в степени окисления +2 или +3, иногда +4. Формулы этих веществ необходимо запомнить.
Кислоты
Если в состав оксидов обязательно входит кислород, то следующий класс узнаваем будет по наличию атомов водорода, которые будут стоять на первом месте, а за ними следовать, словно нитка за иголкой, кислотные остатки.
В природе существует большое количество неорганических кислот. Но в школьном курсе химии рассматривается только их часть. В таблице 1 приведены названия кислот.
Валентность кислотного остатка определяется количеством атомов водорода. В зависимости от числа атомов Н выделяют одно- и многоосновные кислоты.
Если в состав кислоты входит кислород, то они называются кислородсодержащими, к ним относится серная кислота, угольная и другие. Получают их путём взаимодействия воды с кислотными оксидами. Бескислородные кислоты образуются при взаимодействии неметаллов с водородом.
Только одну кислоту невозможно получить подобным способом – это кремниевую. Отвечающий ей оксид SiO2 не растворим в воде, хотя честно говоря, мы не представляем нашу планету без песка.
Основания
Чтобы дать название, изначально указываем класс – гидроксиды, потом добавляем чего, какого металла.
Классификация оснований базируется на их растворимости в воде и по числу ОН-групп.
Следует отметить, что гидроксильная группа, также как и кислотный остаток, это часть целого. Невозможно получить кислоты путём присоединения водорода к кислотному остатку, аналогично, чтобы получить основание нельзя писать уравнение в таком виде.
В природе не существуют отдельно руки или ноги, эта часть тела. Варианты получения кислот были описаны выше, рассмотрим, как получаются основания. Если к основному оксиду прибавить воду, то результатом этой реакции должно получиться основание. Однако не все основные оксиды реагируют с водой. Если в продукте образуется щёлочь, значит, реакция происходит, в противном случае реакция не идёт.
Данным способом можно получить только растворимые основания. Подтверждением этому служат реакции, которые вы можете наблюдать. На вашей кухне наверняка есть алюминиевая посуда, это могут быть кастрюли или ложки. Эта кухонная утварь покрыта прочным оксидом алюминия, который не растворяется в воде, даже при нагревании. Также весной можно наблюдать, как массово на субботниках белят деревья и бордюры. Берут белый порошок СаО и высыпают в воду, получая гашеную известь, при этом происходит выделение тепла, а это как вы помните, признак химического процесса.
Раствор щёлочи можно получить ещё одним методом, путём взаимодействия воды с активными металлами. Давайте вспомним, где они размещаются в периодической системе – I, II группа. Реакция будет относиться к типу замещения.
Напрашивается вопрос, а каким же образом получаются нерастворимые основания. Здесь на помощь придёт реакция обмена между щёлочью и растворимой солью.
С представителями веществ этого класса вы встречаетесь ежедневно на кухне, в быту, на улице, в школе, сельском хозяйстве.
Объединяет все эти вещества, что они содержат атомы металла и кислотный остаток. Исходя из этого, дадим определение этому классу.
Средние соли – это продукт полного обмена между веществами, в которых содержатся атомы металла и кислотный остаток (КО) (мы помним, что это часть чего-то, которая не имеет возможности существовать отдельно).
Выше было рассмотрено 3 класса соединений, давайте попробуем подобрать комбинации, чтобы получить соли, типом реакции обмена.
Чтобы составить название солей, необходимо указать название кислотного остатка, и в родительном падеже добавить название металла.
Ca(NO3)2– нитрат (чего) кальция, CuSO4– сульфат (чего) меди (II).
Наверняка многие из вас что-то коллекционировали, машинки, куклы, фантики, чтобы получить недостающую модель, вы менялись с кем-то своей. Применим этот принцип и для получения солей. К примеру, чтобы получить сульфат натрия необходимо 2 моль щёлочи и 1 моль кислоты. Допустим, что в наличии имеется только 1 моль NaOH, как будет происходить реакция? На место одного атома водорода станет натрий, а второму Н не хватило Na. Т.е в результате не полного обмена между кислотой и основанием получаются кислые соли. Название их не отличается от средних, только необходимо прибавить приставку гидро.
Однако бывают случаи, с точностью наоборот, не достаточно атомов водорода, чтобы связать ОН-группы. Результатом этой недостачи являются основные соли. Допустим реакция происходит между Ва(ОН)2 и HCl. Чтобы связать две гидроксильные группы, требуется два водорода, но предположим, что они в недостаче, а именно в количестве 1. Реакция пойдёт по схеме.
Особый интерес и некоторые затруднения вызывают комплексные соли, своим внешним, казалось,громоздким и непонятным видом, а именно квадратными скобками:K3[Fe(CN)6] или [Ag(NH3)2]Cl. Но не страшен волк, как его рисуют, гласит поговорка. Соли состоят из катионов (+) и анионов (-). Аналогично и с комплексными солями.
Образует комплексный ион элемент-комплексообразователь, обычно это атом металла, которого, как свита, окружают лиганды.
Теперь необходимо справиться с задачей дать название этому типу солей.
Образование комплексных солей происходит путём взаимодействия, к примеру, амфотерных оснований с растворами щелочей. Амфотерность проявляется способностью оснований реагировать как с кислотами, так и щелочами. Так возьмём гидроксид алюминия или цинка и подействуем на них кислотой и щёлочью.
В природе встречаются соли, где на один кислотный остаток приходится два разных металла. Примером таких соединений служат алюминиевые квасцы, формула которых имеет вид KAl(SO4)2. Это пример двойных солей.
Из всего вышесказанного можно составить обобщающую схему, в которой указаны все классы неорганических соединений.
Химия
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Оксиды
Оксиды – неорганические соединения, которые содержат кислород и какой-либо другой элемент. Животные и человек вдыхают кислород О2, а выдыхают диоксид углерода СО2. Углекислый газ СО2 применяется в качестве сухого льда для охлаждения чего-либо.
Классификация оксидов
Одни оксиды соответствуют кислотам, другие – основаниям, а третьи – и кислотам, и основаниям.
Получение оксидов
Физические свойства оксидов
Оксиды существуют во всех агрегатных состояниях. Для них характерны разнообразные цвета. Черный оксид меди (II) CuO и белый оксид кальция СаО находятся в твердом состоянии. Бесцветный оксид серы (VI) SO3 – летучая жидкость. Бесцветный оксид углерода (IV) CO2 – газообразное вещество.
Химические свойства оксидов
Каждому кислотному оксиду соответствует своя кислота, поэтому в процессе реакции степени окисления сохраняются.
Кислоты
Кислоты широко распространены в природе. Кислый вкус яблок, лимонов, апельсинов и других фруктов обусловлен наличием кислот.
Классификация кислот
Растворимость кислоты определяют с помощью таблицы растворимости.
Способы получения кислот
Физические свойства кислот
Большинство кислот представляет собой бесцветные жидкости, но также существуют твердые кислоты. Практические все кислоты растворимы в воде.
Химические свойства кислот
Кислоты – вещества, которые состоят из водородного атома и кислотного остатка. Химические свойства кислот отражаются в реакциях:
При взаимодействии концентрированной азотной кислоты и металла выделяется бурый газ – диоксид азота.
Кислоты взаимодействуют с солями в трех случаях.
Если реагирующая кислота – сильный электролит, то образующаяся кислота — слабый электролит. Например, соляная кислота вытесняет угольную из ее соли.
Оценить силу кислоты можно с помощью вытеснительного ряда кислот. Кислота, находящаяся левее, вытесняет из солей ту, которая стоит правее.
Основания
Основания применяются в промышленности и быту. Например, гидроксид натрия NaOH используется при очистке нефти, в производстве мыла и текстильной промышленности. Гидроксиды калия КОН и лития LiOH применяют в аккумуляторах.
Классификация оснований
У оснований есть несколько признаков классификации.
Методы получения оснований
CuCl2 + 2 NaOH = Cu(OH)2 + 2 NaCl
Физические свойства оснований
Большинство оснований – твердые соединения с разной растворимостью.
Химические свойства оснований
Растворимые и нерастворимые основания реагируют с кислотами с образование соли и воды.
Для растворимых оснований характерны реакции с солями и кислотными оксидами.
Нерастворимые основания разлагаются при нагревании с образованием оксида и воды.
Каждый день мы добавляем в суп поваренную соль – хлорид натрия NaCl. Растения на грядках растут благодаря минеральным удобрениям (например, соли фосфата кальция Са3(РО4)2).
Классификация солей
Соли – соединения из атомов металлов и кислотных остатков. Они классифицируются на несколько групп.
Методы получения солей
Физические свойства солей
Соли – твердые вещества. Они отличаются между собой по цвету, степени растворимости.
Химические свойства солей
Таким образом, кислоты, основания, оксиды и соли постоянно окружают нас. Без них невозможно представить существование жизни на нашей планете.
Неорганическая химия: Оксиды. Основания. Кислоты. Соли
Кислотами называют сложные вещества, молекулы которых состоят из атомов водорода и кислотного остатка. Общая формула кислот:
НхКО, где Нх – атом водорода, а КО – кислотный остаток.
Как правило, кислотные остатки образуют элементы- неметаллы.
Кислоты- это электролиты, которые при электролитической диссоциации образуют в качестве катионов только ионы водорода.
Существует несколько классификаций кислот. Поскольку существует несколько различных определений кислот, то их классификация и номенклатура являются весьма условными.
3. по степени диссоциации в водных растворах: сильные \((HCl,
Получение кислот | ||
---|---|---|
Кислородосодержащие | Кислотный оксид + | \(SO_3+H_2O=H_2SO_4 \\ P_2O_5+3H_2O=2H_3PO_4\) |
Неметалл+сильный окислитель | \(P+5HNO_3+2H_2O=3H_3PO_4+5NO\) | |
Соль+менее летучая кислота | \(NaNO_3+H_2SO_4=HNO_3 \uparrow +NaHSO_4\) | |
Безкислородосодержащие | Водород+неметалл | \(H_2+Cl_2=2HCl\) |
\(NaCl+H_2SO_4=2HCl \uparrow +NaHSO_4\) |
Кислоты можно распознавать с помощью индикаторов.
Название индикатора | Окраска индикатора в нейтральной среде | Оранжевая | Красно-розовая |
---|---|---|---|
Фенолфталеин | Бесцветная | Бесцветная |
Состав оксидов выражается общей формулой: \(Э_xO_y\)
где x – число атомов элемента, у – число атомов кислорода.
Числовые значения х и у определяется степенью окисления элементов.
Классификация оксидов.
Оксиды делятся на две группы: солеобразующие и несолеобразующие, а каждую из групп, в свою очередь, подразделяют на несколько подгрупп.
По агрегатному состоянию оксиды делятся на твердые (CaO, MgO, SiO2, P2O5), жидкие (SO3, H2O, Cl2O7) и газообразные ( CO2, N2O, NO, SO2).
По растворимости в воде оксиды делятся на растворимые (основные оксиды щелочных и щелочноземельных металлов, практически все кислотные оксиды(кроме SiO2)) и нерастворимые ( все остальные основные оксиды, амфотерные оксиды, SiO2).
Химические свойства оксидов.
Общими свойствами основных, кислотных и амфотерных оксидов являются кислотно-основные взаимодействия, которые можно выразить следующей схемой:
Основания – сложные вещества, молекулы которых состоят из атомов металлов и гидроксо-групп, способных замещаться на металл Ме(ОН)n, n- число гидроксо-групп. По современной номенклатуре их принято называть гидроксидами элементов с указанием степени окисления: NaOH – гидроксид натрия, КОН – гидроксид калия, Сu(OH)2 – гидроксид меди (II).
Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами) и нерастворимые в воде. Растворимые основания (щелочи) измненяют окраску индикаиорап лакмус-синий, нерастворимые основания не изменяют окраску индикатора. Все основания (гидроксиды металлов) – твердые вещества. Гидроксиды s-металлов бесцветны, гидроксиды многих d-металлов окрашены.
Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как растворимые, так и нерастворимые основания.
Щелочи в технике обычно получают электролизом водных растворов хлоридов:
Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:
Общим химическим свойством растворимых и нерастворимых гидроксидов является их способность взаимодействовать с водой – вступать в реакцию нейтрализации.
Щелочи взаимодействуют с кислотными оксидами.
Для щелочей характерны качественные реакции, т.е. реакции с помощью которых распознают вещества. Для щелочей это реакции с индикаторами (от лат слова «указатели). Если к раствору щелочи добавить 1-2 капли раствора индикатора, то он изменит свою окраску.
Окраска индикатора в кислотной среде
Соли – это сложные вещества, состоящие из ионов металлов и кислотных остатков.
Соли принято делить на три группы: средние, кислые и основные. В средних солях все атомы водорода соответствующей кислоты замещены на атомы металла, в кислых солях они замещены частично, а в основных солях группы ОН соответствующего основания частично замещены на кислотные остатки.
Средние соли образуются при взаимодействии:
1) Оснований с кислотами (реакция нейтрализации)
2) Кислот с основными оксидами
3) Солей с кислотами
4) Двух различных солей
5) Солей с кислотными оксидами (кислотный оксид должен быть менее летуч, чем образующийся в ходе реакции)
6) Оснований с кислотными оксидами
7) Оснований с солями
8) Основных оксидов с кислотными
9) Металлов с неметаллами
10) Металлов с кислотами
11) Металлов с солями
12) Амфотерных металлов с расплавами щелочей
13) Неметаллов со щелочами
14) Неметаллов с солями
15) При нагревании некоторых солей кислородсодержащих кислот образуются соли с меньшим содержанием кислорода или вообще не содержащие его
С какой группой веществ взаимодействует раствор серной кислоты?
В уравнении \(Ca(OH)_2 + H_2SO_4 \rightarrow\) основная соль +. сумма коэффициентов составляет
Для получения 44,8 л углекислого газа (н. у.) было израсходовано карбоната кальция
Формула оксида элемента Э, образующего хлорид состава \(ЭCl_5\)
Катализатор, применяемый для ускорения протекания второй стадии производства серной кислоты контактным способом
Из 585 г хлорида натрия в присутствии \(H_2SO_4\) (к.) (при комнатной температуре) был получен хлороводород, который далее растворили в 1460 г воды. Вычислите массовую долю НСl в растворе.
Сколько объема (мл) 2%-ной хлороводородной кислоты с плотностью 1 г/мл потребуется для нейтрализации 100 мл 1 М раствора гидроксида бария?
На первой ступени гидролиза хлорида магния образуется соль, тип и молярная масса которой (г/моль)
Масса вещества \(X_4\) из 0,25 моль \(FeS_2\) в результате превращений \(FeS_2\xrightarrow<+O_2>X_1<<+O_2>\over
Название соединения \(NaHSO_4\)
Для получения какого элемента из оксида может быть применена алюминотермия?
В цепочке превращений \(Al_4C_3\xrightarrow<+H_2O>X_1\xrightarrow<+Cl_2(свет)>X_2\xrightarrow<+2Na,CH3Cl>X_3\) масса 0,3 моль вещества \(X_3\) равна
Чему равна сумма молярных масс (г/моль) солей, которые гидролизуются по катиону: \(K_2S, ZnCl_2,Fe(NO_3)_2,Na_2CO_3,NaCl?\)
В уравнении реакции взаимодействия концентрированной серной кислоты и углерода коэффициент перед окислителем равен
Сульфиды 5-элементов 1-й группы периодической системы хорошо растворяются в воде. Какова среда их растворов и цвет лакмуса?
При взаимодействии 12,8 г меди с концентрированной серной кислотой выделяется газ объемом (н. у.)
При взаимодействии 1 кг 36,5% раствора соляной кислоты с оксидом марганца (IV) выделился хлор. Какова масса хлора, если известно, что кислота прореагировала полностью?
В результате обжига 100 г известняка выделилось 33 г оксида углерода (IV). Каково содержание карбоната кальция в этом образце?
Для получения 36,8 г вещества С (выход составляет 80%) в цепи превращений \(CaC_2\xrightarrow
Формула дигидроортофосфата кальция
В какой реакции продуктом является основная соль?
При взаимодействии \(AlBr_3\;и\;NaOH\) сумма коэффициентов в уравнении реакции образования нерастворимого основания равна
Какая реакция используется для получения хлорида железа (III)?
Известно, что раствор \(Na_2S\) был добавлен к растворам солей с содержанием катионов металлов. Какой катион не образует осадок?
Что образуется, если через избыток щелочи пропустить диоксид углерода?
Рассчитайте количество оксида углерода (II), затраченного для полного восстановления 4 г оксида железа (III).
Для нейтрализации кислоты, полученной при растворении в воде \(NO_2\) в присутствии кислорода, потребовалось 3,2 г гидроксида натрия. Чему равен объем \(NO_2\) в этой реакции (н. у.)?
В результате взаимодействия гидроксида железа с серной кислотой была получена основная соль. Чему равна сумма коэффициентов в уравнении реакции?
В какой реакции с оксидом железа (II) наблюдается процесс окисления вещества?
Чему равен объем выделившегося газа (н. у.), если смесь натрия (9,2 г) и оксида натрия (6,2 г) обработали избытком воды?
Чему равна масса железа в смеси, если при растворении в соляной кислоте 10,4 г смеси железа и магния выделилось 6,72 л водорода (н. у.)?
В замкнутом сосуде смешали два газа, один из которых получен разложением 68 г нитрата натрия, а другой – при действии избытка раствора соляной кислоты на 26 г цинка. Образовавшуюся смесь взорвали. Чему равна масса полученного вещества?
В замкнутом сосуде смешали два газа, один из которых получен разложением 12,25 г хлората калия, а другой – при действии избытка раствора соляной кислоты на 7,2 г магния. Образовавшуюся смесь взорвали. Чему равно количество полученного вещества?
При электролизе раствора, содержащего 53,4 г хлорида алюминия, выделяется хлор объемом (н. у.)
Определите продукт взаимодействия 13,35 г хлорида алюминия и 32 г гидроксида натрия.
Какое количество твердого продукта FеО получили при обжиге на воздухе 5,64 кг технического сульфида железа (II) со степенью чистоты 75%?
В замкнутом сосуде смешали два газа, один из которых получен разложением 79 г перманганата калия, а другой – при действии избытка воды на 39 г калия. Образовавшуюся смесь взорвали. Чему равна масса полученного вещества?
Чему равно соотношение масс солей железа в молекулярном уравнении второй ступени гидролиза нитрата железа (III)?
Укажите уравнение реакции первой стадии обжига пирита.
6 г щелочи и 2,8 л газа образовались на аноде при электролизе раствора соли одновалентного металла. Какая соль подверглась электролизу?
Известно, что на первой ступени гидролиза хлорида железа (II) образуется соль. Какой тип и молярная масса соли (г/моль)?
Чему равно мольное соотношение продуктов реакции к исходным веществам в молекулярном уравнении второй ступени гидролиза сульфата цинка?
В замкнутом сосуде смешали два газа, один из которых получен разложением 24,5 г хлората калия, а другой – при действии избытка раствора соляной кислоты на 14,4 г магния. Образовавшуюся смесь взорвали. Чему равна масса полученного вещества?
Чему равна масса 20%-ного раствора карбоната натрия, полученного из диоксида углерода (IV) количеством вещества 0,1 моль?
Какой выделился объем газа (н. у.), если на мрамор массой 40 г воздействовали избытком соляной кислоты?
Кислотными оксидами являются
Основным оксидом является
Гидроксид калия взаимодействует с
Соляная кислота взаимодействует с
Оксид бария реагирует с
Амфотерными оксидами являются
Оксид углерода (IV) взаимодействует с
Укажите название и массу соли, которая образуется при взаимодействии 20 г гидроксида натрия и 49 г серной кислоты.
Оксид кальция реагирует с
Только кислотные оксиды в ряду
При взаимодействии 508 мл 25%-ного раствора одноосновной неорганической кислоты (плотность составляет 1,15 г/мл) с барием выделилось 44,8 л газа (н. у.). Укажите формулу и название кислоты.
Кислая соль образуется, если смешать
Веществами X, Y, Z в схеме превращений Mg \(\xrightarrow<+HCl>\) X \(\xrightarrow<+KOH>\) Y \(\xrightarrow<+HNO_3>\) Z являются
Оксид углерода (IV) взаимодействует с
С водным раствором гидроксида натрия взаимодействует
Определите название и массу соли, которая образуется при взаимодействии 11,2 г гидроксида калия и 8,2 г сернистой кислоты.
При взаимодействии цинка с концентрированной серной кислотой может образовываться
Укажите формулы основных солей.
Металлы, образующие амфотерные оксиды со степенью окисления +2
К солеобразующим оксидам относятся
При взаимодействии 0,5 моль гидроксида калия и 1 моль серной кислоты образовалась соль. Формула соли, ее количество вещества и среда полученного раствора
Ортофосфат кальция можно получить реакцией
Раствор соляной кислоты взаимодействует со всеми соединениями в ряду