Что относится к окислителям
Окислитель
Что такое окислитель
Окислителями могут быть нейтральные атомы или положительно заряженные ионы.
Нейтральные атомы. Окислителями могут быть только те из нейтральных атомов, которые, принимая электроны, переходят в отрицательно заряженные ионы, т. е. только нейтральные атомы неметаллов.
Рис. Перекись водорода окислитель.
Самые сильные окислители — атомы галогенов, так как они могут принимать только один электрон. Самые слабые окислители— атомы неметаллов четвертой группы.
В группах (4 — 7) окислительные свойства падают с возрастанием величин радиусов нейтральных атомов. Следовательно, из нейтральных атомов самый сильный окислитель — фтор, а самый слабый — свинец. Неметаллы могут быть не только окислителями, т. е. принимать электроны, но и отдавать электроны, т. е. быть восстановителями.
Положительно заряженные ионы как металлов, так и неметаллов также могут быть окислителями, так как они принимают электроны от других атомов или ионов. В процессе реакции они переходят: а) в положительные ионы низшей зарядности, б) в нейтральные атомы и в) в отрицательно заряженные ионы. Например:
Чем больше энергии было затрачено на отрыв электронов, тем сильнее они будут притягиваться образовавшимися ионами. Поэтому к сильным окислителям относятся, например, ионы „благородных» металлов, их ионизационные потенциалы довольно высокие: Au — 9,18 V, Ag — 7,54 V, Pd —8,3 V, Pt —8,88 V.
Необходимо заметить, что, хотя такие многозарядные положительные ионы в растворе существуют только в виде сложных анионов типов ЭO‘3, ЭO»4, ЭO‘4 и др., это, однако, нисколько не понижает их окислительной способности. Они являются сильными окислителями. К наиболее сильным окислителям принадлежат: фтор, озон, двуокись свинца, ионы «благородных» металлов и многовалентные положительные ионы.
Применяемые окислители в технике и лабораторной практике делятся на нейтральные, кислые и щелочные.
Нейтральные окислители
1. Кислород применяется для интенсификации производственных процессов в металлургической и химической промышленности (например, в доменном процессе, в производстве серной и азотной кислоты и т. д.). В нейтральной среде реакция окисления кислородом протекает по уравнению: O2 + 2Н2O + 4ē ⇄4OН‘, а в кислой среде:
2. Озон отличается от кислорода более сильной окислительной способностью: он многие красящие вещества обесцвечивает, металлы (за исключением Au, Pt и др.) окисляет, аммиак окисляет в азотистую и азотную кислоты, сернистые соединения — в сернокислые и т. д. В нейтральной среде реакция окисления озоном протекает по уравнению: O3 + H2O + ē → O2 + 2H‘, в кислой среде: O3 + 2Н • + 2ē → O2 + Н2O.
3. Электрический ток широко используется в технике не только как восстановитель, но и как окислитель для получения различных химически чистых веществ.
Кислые окислители
1. Хромовая и двухромовая кислоты известны только в растворе, поэтому вместо свободных кислот пользуются их устойчивыми солями (К2Сr2O7 и К2СrO4), которые и применяются в промышленности и лабораторной практике для окисления различных веществ. Обычно пользуются для этой цели смесью бихроматов калия или натрия с серной кислотой (60 ч. К2Сr2O7 +80 ч. конц. H2SO4 + 270 ч. Н2O).
2. Азотная кислота—один из сильнейших окислителей. Она окисляет очень многие металлы. Ею относительно легко окисляются и многие неметаллы, например: сера (при кипячени) до H2SO4, фосфор —до Р3РО4 углерод —до СО2 и т. д.
3.Азотистая кислота хотя и является окислителем, но при взаимодействии с более сильными окислителями сама проявляет восстановительные свойства, окисляясь до азотной кислоты. Азотистая кислота и её соли (KNО2 и NaNО2) применяются в качестве окислителей главным образом в производстве органических красителей.
4. Серная кислота концентрированная—сравнительно сильный окислитель, особенно при высокой температуре. Она окисляет С до СО2, S до SO2, HJ и НВr (частично) до свободных галогенов (J2 и Вr2). Серная кислота окисляет также многие металлы: Cu, Ag, Hg и др. Однако такие металлы, как Au, Pt, Ru, Os и др., устойчивы по отношению к ней. Проявляя окислительные свойства, H2SO4 обычно восстанавливается до SO2, с более сильными восстановителями— до S и даже до H2S. Разбавленной серной кислотой окисляются только активные металлы, стоящие в ряду напряжений выше пары водорода.
5. Хлорноватая кислота — в растворе является энергичным окислителем. Так, например, 40% водный раствор её окисляет горючие вещества (например, бумагу и др.) с воспламенением. Соли её, хлорноватокислые или хлораты, в растворе окислительных свойств не проявляют, но, будучи в кристаллическом состоянии при сплавлении, являются сильными окислителями. Наиболее важной солью из них является хлорноватокислый калий (бертолетова соль).
6. Перекись водорода, являясь сильным окислителем, используется в тех случаях, когда требуется окислить вещество, сравнительно легко разрушающееся от других окислителей. В технике Н2O2 применяется для отбеливания тканей, слоновой кости, соломы, мехов, перьев и т. д. Разрушая красящие вещества, перекись водорода почти не затрагивает отбеливаемого материала. В медицине Н2O2, сильно разбавленная, применяется для полоскания горла и промывки ран. Она применяется также для обновления потускневших картин, написанных масляными красками. В реакциях с более сильными окислителями Н2O2 сама проявляет восстановительные свойства. Она способна также к реакциям самоокисления-самовосстановления.
7. Двуокись марганца в кислой среде применяется при получении хлора из соляной кислоты, в стекольной промышленности, для окисления различных сернистых соединений и производных железа, при изготовлении гальванических элементов типа Лекланше и т. д.
8. Двуокись свинца является исключительно сильным окислителем. Она широко применяется в работе свинцовых аккумуляторов.
Щелочные окислители
1. Марганцовокислый калий (перманганат калия)— сильный окислитель, применяется для окисления многих органических соединений. Перманганат калия в кислой среде окисляет соли двухвалентного олова и железа в соли четырёх- и трёхвалентные. Он также окисляет: сульфиты — в сульфаты, нитриты — в нитраты, йодистый калий — до свободного йода, соляную кислоту — до хлора, перекись водорода— до кислорода и т. д. Характер восстановления КМnO4 зависит от среды, в которой протекает реакция.
2. Хлорная (или белильная) известь относится к числу наиболее сильных окислителей, широко применяется
для отбелки тканей и бумаги, для дезинфекции и т. д. В военное время хлорная известь используется для дегазации местности, заражённой отравляющим веществом.
3. Растворы гипохлорита калия и натрия
2KOH + Cl2 = KOCl + KCl + H2O
2NaOH + Cl2 = NaOCl + NaCl + H2O
применяются для отбелки тканей, главным образом хлопчатобумажных и льняных, а также бумаги.
Особое место занимают ионы так называемой промежуточной зарядности, которые в зависимости от условий реакции могут быть как окислителями, так и восстановителями. Таковы, например:
Следовательно, подразделение веществ на восстановители и окислители имеет до некоторой степени условный характер и преследует цель — указать на преобладание окислительных или восстановительных свойств у данного вещества в определённых условиях.
Статья на тему Окислитель
Похожие страницы:
Понравилась статья поделись ей
Окислитель
Окисли́тель — вещество, в состав которого входят атомы, присоединяющие во время химической реакции электроны, иными словами, окислитель — это акцептор электронов.
В зависимости от поставленной задачи (окисление в жидкой или в газообразной фазе, окисление на поверхности) в качестве окислителя могут быть использованы самые разные вещества.
Содержание
Распространённые окислители и их продукты
Окислитель | Полуреакции | Продукт | Стандартный потенциал, В |
---|---|---|---|
O2 кислород | Разные, включая оксиды, H2O и CO2 | +1,229 (в кислой среде) |
+0,401 (в щелочной среде)
с активными металлами, концентрированная
с тяжёлыми металлами, разбавленная
c тяжёлыми металлами, концентрированная
с активными металлами
SO2; окисляет металлы до сульфатов с выделением сернистого газа или серы
Мнемонические правила
Для запоминания свойств окислителей и восстановителей существует несколько мнемонических правил:
Зависимость степени окисления от концентрации окислителя
Чем активнее металл, реагирующий с кислотой, и чем более разбавлен её раствор, тем полнее протекает восстановление. В качестве примера — реакция азотной кислоты с цинком:
Сильные окислители
Сильными окислительными свойствами обладает «царская водка» — смесь одного объема азотной кислоты и трёх объёмов соляной кислоты.
HNO3 + 3HCl ↔ NOCl + 2Cl + 2H2O
Образующийся в нём хлористый нитрозил распадается на атомарный хлор и монооксид азота:
Царская водка является сильным окислителем благодаря атомарному хлору, который образуется в растворе. Царская водка окисляет даже благородные металлы — золото и платину.
Ещё один сильный окислитель — перманганат калия. Он способен окислять органические вещества и даже разрывать углеродные цепи:
Сила окислителя при реакции в разбавленном водном растворе может быть выражена стандартным электродным потенциалом: чем выше потенциал, тем сильнее окислитель.
Очень сильные окислители
Условно к «очень сильным окислителям» относят вещества превышающие по окислительной активности молекулярный фтор. К ним, например, относятся: гексафторид платины, диоксидифторид, дифторид криптона, гексафтороникелат(IV) калия. Перечисленные вещества, к примеру, способны при комнатной температуре окислять инертный газ ксенон, что неспособен делать фтор (требуется давление и нагрев) и тем более ни один из кислородсодержащих окислителей.
См. также
Полезное
Смотреть что такое «Окислитель» в других словарях:
окислитель — – реагент (атом, молекула, ион), который в окислительно восстановительной реакции присоединяет электроны, т.е. восстанавливается. Общая химия : учебник / А. В. Жолнин [1] Окислитель – реагент в окислительно восстановительной реакции, принимающий… … Химические термины
ОКИСЛИТЕЛЬ — ОКИСЛИТЕЛЬ, вещество, вызывающее реакции ОКИСЛЕНИЯ. Так, при образовании УГАРНОГО ГАЗА путем окисления углерода, 2С+О2=2СО, кислород является окислителем. Среди окислителей можно назвать АЗОТНУЮ КИСЛОТУ, ПЕРЕКИСЬ ВОДОРОДА, озон, бихромат калия,… … Научно-технический энциклопедический словарь
ОКИСЛИТЕЛЬ — ОКИСЛИТЕЛЬ, окислителя, муж. (хим.). Вещество, способное производить окисление. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ОКИСЛИТЕЛЬ — ОКИСЛИТЕЛЬ, я, муж. (спец.). Вещество, способное производить окисление. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Окислитель — компонент топлива, окисляющий горючее при сгорании в камере ракетного двигателя. О. должен реагировать с горючими элементами с выделением максимального количества теплоты. В жидких ракетных топливах в качестве О. используют жидкий кислород,… … Энциклопедия техники
окислитель — сущ., кол во синонимов: 3 • металлург (435) • нитробензол (3) • фотоокислитель (2) … Словарь синонимов
Окислитель — составная часть двухкомпонентного ракетного топлива, применяемого в жидкостных ракетных двигателях. В качестве окислителя часто используют жидкий кислород и четырехокись азота. Некоторые типы топлива при соприкосновении с соответствующим… … Морской словарь
окислитель — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN oxygen carrier … Справочник технического переводчика
окислитель — 3.2.8 окислитель (oxidant): вещество (О2/О3), которое после осаждения на поверхность или продукт приводит к образованию оксидов или участвует в реакции окисления. Источник … Словарь-справочник терминов нормативно-технической документации
Окислители и восстановители
Окислителями называют соединения или простые вещества, которые в процессе химической реакции присоединяют к себе электроны.
Восстановителями называют соединения или простые вещества, отдающие свои электроны.
Окислительные и восстановительные реакции идут параллельно, так что количество отсоединенных и присоединенных электронов одинаково. При этом окислитель восстанавливается, а восстановитель — окисляется.
Окислителем или восстановителем могут быть атом, ион и вещества:
В химии существует такое понятие, как степень окисления, также называемое окислительным числом. Это условная величина, она оценивает активность атома при окислении или восстановлении. Эта величина используется для описания свойств соединений или ионов, помогает правильно написать уравнение хим. реакции, составить формулу вещества. Она применяется для указания количества передаваемых или принимаемых электронов.
Йод кристаллический | Марганец двуокись 80% (45 мкр) | Калий двухромовокислый «Ч» |
Обращая внимание на окислительное число, нужно помнить, что это не заряд атома!
Окислительное число определяется по числу электронов, которые нужно добавить иону с положительным зарядом, чтобы атом стал нейтральным, или числу электронов, которые нужно отнять у иона с отрицательным зарядом, чтобы он стал нейтральным.
Самое большое окислительное число +7. Ион +7 проявляет исключительно сильные окислительные свойства и нуждается в семи электронах, чтобы стать нейтральным. Пример вещества с окислительным числом +7 — марганец в перманганате калия.
Окислительное число на письме указывают числовым индексом со знаком над символом элемента. Для того, чтобы не перепутать степень окисления с зарядом, у окислительного числа знак ставится перед числом, а у заряда — после. Кроме этого, заряд ставится не над элементом, а в правом верхнем углу:
(NH 4 )2SO 4 — формула вещества с окислительными числами элементов;
(NH_4^(1+)) 2 SO_4^(2-) — формула вещества с указанием зарядов ионов.
К популярным окислителям относятся кислород и озон, галогены (F, Br, Cl, I), пероксиды, гипохлориты, хлораты, азотная, серная и селеновая кислота, «царская водка», хром (VI), дихромат калия, перманганаты, атомарный водород, фториды, оксиды и хлориды неметаллов и переходных металлов.
Сильные восстановители это щелочные и щелочноземельные металлы, углерод, кремний, аммиак, аммиачные растворы щелочных и щелочноземельных металлов, гидриды металлов, молекулярный водород.
Существует множество веществ, обладающих свойствами и окислителя, и восстановителя. Они содержат молекулы со средними значениями окислительного числа; могут и отсоединять, и присоединять электроны. Будут они отдавать или принимать электроны — зависит от того, с чем взаимодействуют, например, вода при контакте со фтором восстановитель, а с железом — окислитель.
Восстановители востребованы:
Химия
План урока:
Основные термины
Если реакция рассматривается как ОВР-процесс, в ней обязательно присутствует окислитель и восстановитель.
Характеристика окислителей
Это все неметаллы, кислоты, пероксиды и некоторые соли. Способность отщеплять электроны изменяется в зависимости от положения элемента в таблице Менделеева: в периоде увеличивается слева направо, в группе – с низу вверх. Самым сильным окислителем считается фтор. Так же, к этой группе относятся высшие оксиды элементов. Сила способности отнять электроны сложных веществ зависят от степени окисления нужного атома и от концентрации.
Такие свойства выражаются стандартным электродным потенциалом. Чем он выше, тем выше окислительные свойства. Все окислители делятся на четыре группы.
Таблица. Группы окислителей и их характеристика
ОВР кислот
От растворимости зависят свойства азотной и серной кислот.
Чем ближе концентрация HNO3 к 100%, тем больше электронов получит азот.
Продукты реакции, также, зависят от положения металла в ряду активности.
Таблица. Продукты реакции разбавленной и концентрированной азотной кислоты с металлами с различной активностью.
H2SO4
Серная кислота одно из сильных веществ, отнимающих электроны. Продукт реакции, так же, как и с азотной, зависят от концентрации кислоты и активности первоначального металла. Растворимая серная кислота не дает специфических продуктов и реагирует только с металлами до водорода в ряду активности. При этом, образуется соль металла и водород:
Продукты H2SO4(конц.) с металлами перечислены в таблице.
Таблица. Продукты реакции концентрированной серной кислоты с металлами с различной активностью.
Зависимость окисления от реакционной среды
ОВР может проходить в щелочной, нейтральной или кислой среде. При этом, один и тот же атом может проявлять разные свойства. Ярким примером являются реакции KMnO4и K2Cr2O7
Особенности KMnO4 как окислителя
Таблица. Продукты реакции перманганата калия в зависимости от реакционной среды.
Особенности K2Cr2O7 как окислителя
Бихромат калия – один из распространенных веществ с указанными свойствами, продукты восстановления которого, так же, зависят от среды.
Таблица. Продукты реакции перманганата калия в зависимости от кислотности среды.
Запись ОВР процесса
При отображении такого процесса записывают не только реакцию, но и преобразования окислителя и восстановителя. Так, первая строчка – само уравнение c расставленными степенями окисления:
Если у элемента н изменилась степень окисления, он не является участником ОВР (у нас это водород)
Далее записывается процесс его восстановления:
S 2- – 2е → S 0 (окислитель, восстановление)
Уравнивание ОВР-реакций
Одним из самых сложных действий в написании ОВР является уравнивание молекул. Существует два способа: метод электронного баланса и метод электронно-ионного баланса (полуреакций).
Метод электронного баланса
Метод основан на определении баланса между количеством отданных и принятых электронов:
Al 0 – 3e → Al +3 (окисление)
Cu +2 + 2e → Cu 0 (восстановление)
Количество принятых и переданных электронов должно быть одинаковым. Поэтому: умножаем цифры между собой (находим общее кратное): 3×2=6.
Если разделить общее кратное на число переданных алюминием электронов(6/3=2), то найдем коэффициент перед этой молекулой в уравнении (ставим перед Al).
То же действие позволит найти коэффициент для второго реагента: 6/2=3 (ставим перед Cu).
В результате получаем основные цифры в записи реакции:
Если в уравнении больше реагентов и продуктов, остальные находятся математическим уравниванием.
Проверку правильности коэффициентов всегда осуществляем по кислороду.
Метод полуреакций
Чтобы уравнять и написать уравнение методом полуреакций, нужно использовать определенный алгоритм:
Виды уравнений окислительно-восстановительных реакций
Окислитель и восстановитель не всегда находятся в разных молекулах. Иногда это один атом, участвующий сразу в двух процессах или разные молекулы с одним и тем же элементом и т.д. в зависимости от этого выделяют несколько вариантов ОВР:
Окислитель и восстановитель являются разными молекулами.
Mn +7 + 5 ē → Mn +2 – 5 – 2 (окислитель восстанавливается)
Внутримолекулярные– взаимодействия, в которых окислитель и восстановитель находятся в одной молекуле.
2 Cr +6 +6 ē → 2 Cr +3 – 6 – 1 (окислитель восстанавливается)
Атомы с противоположными свойствами находятся в одной молекуле
Диспропорционирование – ОВР, в котором и оба свойства проявляет один и тот же атом, образуя несколько продуктов с разными степенями окисления.
Репропорционирование – противоположный процесс, когда один элемент из разных состояний переходит в одно.
При кажущейся сложности, ОВР-процессы одни из самых распространенных в природе. Например – ржавление железа, скисание молока и даже дыхание являются примерами этих процессов.
ОКИСЛИТЕЛИ И ВОССТАНОВИТЕЛИ В ХИМИЧЕСКИХ РЕАКЦИЯХ
Окислители и восстановители в химии — интересный, но очень часто вызывающий затруднения, вопрос.
К примеру, превращение с помощью нитрифицирующих бактерий атмосферного азота в легко усваиваемую растениями форму, фотосинтез, дыхание живых организмов (от бактерий до высших растений и животных) — это ОВР в природе.
А вот выплавка стали, промышленное получение аммиака из азота и водорода, гальванические процессы, электролиз – эти и огромное количество других процессов являются примерами ОВР в технике.
Так что же такое окислительно-восстановительные реакции (процессы)?
Понятие окислительно-восстановительной реакции
Окислительно-восстановительные реакции (ОВР) – это процессы, в ходе которых изменяются степени окисления атомов химических элементов.
Окисление и восстановление сопровождают друг друга. Один процесс без другого просто не существует. Почему?
Изменение степени окисления всегда означает переход электронов от одних частиц к другим. То есть одни частицы отдают электроны в ходе химического или электрохимического взаимодействия, а другие частицы принимают. Здесь срабатывает закон сохранения материи.
Окислители, восстановители. Окисление, восстановление
Итак, окисление – это процесс, в ходе которого частица передает свои электроны другой частице. В качестве таких частиц могут выступать отдельные атомы или ионы, а также молекулы.
Переход электронов принято показывать с помощью полуреакций:
Как не сложно заметить из представленных полуреакций, окислительный процесс приводит к увеличению степени окисления.
Частица, принимающая электроны, является окислителем.
Восстановление всегда сопровождается уменьшением степени окисления!
Способность к окислению и восстановлению: как определить
Существует несколько закономерностей, которые помогают определить наличие у частицы (атома, иона, молекулы) способности окисляться или восстанавливаться. Обратимся к периодической таблице химических элементов.
1) В периодах слева направо (т.е. с повышением порядкового номера элемента) восстановительные свойства простых веществ уменьшаются, а окислительные увеличиваются:
То есть в начале периода находятся явные восстановители, а в конце – окислители. Например, в III периоде активным восстановителем является натрий, а активным окислителем – хлор.
А причина данной закономерности кроется в строении атомов элементов.
У атомов элементов одного периода:
В связи с этим растет и сила притяжения электронов к ядру. В результате радиус атома уменьшается.
У элементов конца периода эта сила велика. Поэтому атомы очень трудно отдают свои электроны в химических взаимодействиях и легче принимают их от других атомов, стремясь завершить внешний энергетический уровень. Так проявляются их окислительные свойства.
Атомам элементов начала периода для завершения внешнего уровня до устойчивого 8-электронного состояния легче отдать свои немногочисленные электроны, проявив тем самым восстановительные свойства.
2) Элементы побочных подгрупп (это металлы четных рядов больших периодов) на внешнем уровне имеют 2 или 3 (реже 1 в случае «провала») электрона, поэтому легко могут их отдавать, являясь, таким образом, восстановителями:
3) Элементы одной главной подгруппы имеют одинаковое число электронов на внешнем энергетическом уровне (например, элементы VI группы – шесть электронов). Число же энергетических уровней увеличивается и, соответственно, радиусы атомов тоже увеличиваются. Это приводит к тому, что электроны внешних уровней удаляются от ядра и притяжение их к нему ослабевает.
Вот именно поэтому, восстановительная способность (способность отдавать электроны) у элементов главных подгрупп сверху вниз растет, а окислительная способность (способность принимать электроны) снижается:
Так, среди элементов главной подгруппы VI группы окислительная способность сильнее всего проявляется у кислорода, а теллур в некоторых взаимодействиях способен проявлять восстановительные свойства.
4) Определить, чем будет являться частица (или вещество, в состав которого она входит) в окислительно-восстановительном процессе, можно по значению степени окисления (с.о.).
Если атомы имеют самую наименьшую с.о., то проявят они восстановительные свойства. Если самую высокую – то окислительные. А если с.о. является промежуточной по значению, то проявят как те, так и другие свойства (в зависимости от конкретных условий химической реакции). Например:
Сильные или слабые окислители и восстановители: как определить
Часто говорят: сильный окислитель, слабый окислитель, сильный восстановитель, слабый восстановитель. А что это значит? И как определить эту самую силу?
Мерой окислительно-восстановительной способности вещества служит значение стандартного электродного потенциала: чем оно больше, тем и окислительные свойства проявляются сильнее.
Обратимся к таблице стандартных электродных потенциалов. В ней значения потенциалов расположены в порядке уменьшения:Значения восстановительных стандартных потенциалов фтора и лития таковы:
Анализируя эти полуреакции и значения восстановительных потенциалов, приходим к выводу, что сильнее других окисляют атомы фтора: они, восстанавливаясь, легче других принимают электроны. А ионы лития восстанавливаются с большим трудом.
Окислительные потенциалы фтора и лития будут иметь противоположные значения.
А говорить они будут о том, что ион фтора окисляется с очень большим трудом, а атом лития, наоборот, легко превращается при окислении в ион.
Пример . Используя таблицу стандартных электродных потенциалов, определите, какая из частиц проявляет более сильные окислительные свойства:
Решение:
Наиболее сильным окислителем будет та частица, которая лучше всего восстанавливается, а, значит, имеет более высокий восстановительный электродный потенциал.
Сравним значения восстановительных потенциалов:
Таким образом, наиболее сильным окислителем из представленных является нитрат-ион.
Основные окислители и восстановители в химии
В технике применяется огромное количество окислителей и восстановителей с разной окислительной и восстановительной способностью.
Важнейшие из них представлены в таблице:
Итак, окисление и восстановление – два взаимосвязанных процесса. Они широко представлены в природе и играют огромную роль в промышленных производствах. Окислители и восстановители очень разнообразны. Чем будет являться частица (или вещество, в состав которого она входит): окислителем или восстановителем, – можно определить, используя некоторые закономерности.