Что относится к немембранным органоидам
Биология. 11 класс
§ 12. Гиалоплазма. Цитоскелет. Немембранные органоиды
Как вы уже знаете, внутреннее содержимое клетки, за исключением ядра, называется цитоплазмой. Ее основой является гиалоплазма, в которую погружены компоненты цитоскелета и органоиды.
Гиалоплазма *(цитозоль)* объединяет в целостную систему все клеточные структуры и обеспечивает взаимодействие между ними. Основным ее компонентом является вода, в которой растворены белки, аминокислоты, углеводы, нуклеотиды, соли и другие соединения. В гиалоплазме протекают различные процессы метаболизма, она участвует во внутриклеточном транспорте веществ *и передаче сигналов от плазмалеммы к ядру и органоидам*. Небольшие молекулы и ионы перемещаются в гиалоплазме путем диффузии. Крупные молекулы биополимеров и органоиды транспортируются при участии цитоскелета.
Цитоскелет — это трехмерная сеть, образованная белками и пронизывающая гиалоплазму клетки. Это своеобразный механический каркас, обеспечивающий пространственную организацию цитоплазмы. Основными компонентами цитоскелета эукариот являются микротрубочки и микрофиламенты (рис. 12.1).
Микротрубочки участвуют в транспорте веществ и органоидов внутри клетки. *Вдоль них с помощью специальных моторных (двигательных) белков — динеинов и кинезинов — перемещаются различные клеточные структуры. Молекула моторного белка прикрепляется к поверхности микротрубочки двумя участками, напоминающими своеобразные «ноги». К другой части молекулы присоединяется груз, например лизосома или митохондрия (рис. 12.3). «Ноги» моторного белка способны поочередно «шагать» по молекулам тубулина, используя для движения энергию АТФ. При этом динеины осуществляют транспорт от плюс-конца микротрубочки к ее минус-концу, а кинезины, наоборот, перемещаются от минус-конца к плюс-концу.* Микротрубочки также входят в состав клеточного центра, *жгутиков и ресничек*. Во время деления клетки из них формируются нити так называемого веретена деления, которые обеспечивают расхождение хромосом между образующимися дочерними клетками.
Микрофиламенты — это белковые волокна (фибриллы), более тонкие, чем микротрубочки. Они *обычно имеют диаметр около 7 нм и* образованы двумя нитями, спирально закрученными одна вокруг другой. Каждая нить состоит из молекул белка актина (рис. 12.4). *Так же как и микротрубочки, микрофиламенты построены из глобул, имеют плюс- и минус-концы и участвуют во внутриклеточном транспорте. Перемещение вдоль микрофиламентов происходит с помощью моторного белка миозина и сопровождается гидролизом АТФ.*
Микротрубочки и микрофиламенты — динамичные структуры. Они могут быстро распадаться на отдельные белковые молекулы и снова собираться в зависимости от потребностей клетки. Компоненты цитоскелета взаимодействуют между собой и с биологическими мембранами. Они обеспечивают поддержание формы клетки, движение цитоплазмы, внутриклеточный транспорт, пульсацию сократительных вакуолей у протистов. Благодаря взаимодействию компонентов цитоскелета плазмалемма клеток может изменять свою форму, что лежит в основе таких процессов как эндо- и экзоцитоз, амебоидное движение клеток (например, амеб и лейкоцитов). Кроме того, цитоскелет участвует в процессах клеточного деления, которые будут подробно рассмотрены в § 17–18.
*В состав цитоскелета многих животных также входят промежуточные филаменты. Они тоньше микротрубочек, но толще, чем микрофиламенты. Волокна промежуточных филаментов состоят из молекул фибриллярных белков, например кератина. Они не имеют плюс- и минус-концов и являются самыми стабильными компонентами цитоскелета. Промежуточные филаменты не участвуют в клеточных движениях и внутриклеточном транспорте. Их главные функции — поддержание формы клеток, защита от механических повреждений и обеспечение межклеточных контактов. Больше всего промежуточных филаментов содержится в клетках, которые подвергаются значительным механическим воздействиям. Примером могут служить клетки эпидермиса кожи.*
Строение клетки
Цитоплазма
Вопрос 1.
Цитоплазма — одна из составных частей клетки. Она представляет собой внеядерную часть протоплазмы клеток живых организмов и является рабочим аппаратом клетки, в котором протекают основные метаболические процессы. В ней находится целый ряд оформленых структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несет определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получи¬ли название органоиды, или органеллы. Есть органоиды, свойственные всем клеткам, — это митохондрии, клеточный центр, аппарат Гольджи, рибосомы, эндоплазматическая сеть, лизосомы, и есть органоиды, свойственные только определенным типам клеток: миофибриллы, реснички и ряд других. Органоиды — жизненно важные составные части клетки, постоянно присутствующие в ней. В цитоплазме откладываются различные вещества — включения.
Вопрос 2.
Органоидами называют постоянно присутствующие в цитоплазме, специализированные для выполнения определенных функций структуры. По структуре выделяют мембранные и немембранные органоиды клетки.
Мембранные органоиды клетки
Немембранные органоиды клетки
Вопрос 3.
К самовоспроизводящимся органоидам клетки относятся: митохондрии, пластиды, а также клеточный центр и базальные тельца.
В митохондриях и пластидах имеется кольцевидная молекула ДНК, сходная по строению с хромосомой прокариот. Самовоспроизведение этих структур основано на редупликации ДНК и выражается в делении надвое.
Центриоли способны к самовоспроизведению по принципу самосборки. Самосборка — образование при помощи ферментов структур, подобных существующим.
Вопрос 4.
В цитоплазме клеток находятся непостоянные компоненты – включения, которые могут быть трофические, секреторные и специальные. Трофические или запасающие клеткой вещества, которые необходимы для питания. Например, капли жира, белковые гранулы, гликоген (который накапливается в клетках печени). Секреторные – это как правило различные секреты. Например, секреты молочных, потовых и жировых желез. Специальные – это пигменты. Например, гемоглобин в эритроцитах, липофусцин (пигмент старения), меланин в меланоцитах кожи.
Вопрос 5.
Эндоцитоз и экзоцитоз. Макромолекулы и крупные частицы, которые не транспортируются через плазматическую мембрану, проникают внутрь клетки путем эндоцитоза, а удаляются из нее – экзоцитозом. Различают два типа эндоцитоза – фагоцитоз и пиноцитоз.
Эндоцитоз может осуществляться по разному, но неизменно зависит от плазматической мембраны, служащей «перевозочным средством» для проникновения внутрь клетки. Каким бы ни был захваченный клеткой объект, он всегда входит в нее, окутанный мембранозным мешком, образованным от впячивания (инвагинации) плазматической мембраны.
Фагоцитоз (греч. рhagos – пожирать, cytos – вместилище) – это захват и поглощение клеткой крупных частиц (иногда целых клеток и их частиц). При этом плазматическая мембрана образует выросты, окружает частицы и в виде вакуолей перемещает их внутрь клетки. Этот процесс связан с затратами мембраны и энергии АТФ. Фагоцитоз был впервые описан И.И. Мечниковым при изучении деятельности лейкоцитов и макрофагов, которые защищают организм от патогенных микроорганизмов и других нежелательных частиц. Благодаря фагоцитарной деятельности, организм оказывается невосприимчивым к ряду инфекционных заболеваний. Это явление легло в основу его фагоцитарной теории иммунитета. Путем фагоцитоза осуществляется внутриклеточное пищеварение у простейших и низших беспозвоночных. У высокоорганизованных животных и человека фагоцитоз играет защитную роль (захват лейкоцитами и макрофагами патогенных микроорганизмов).
Пиноцитоз (гр. pino – пить) – поглощение капелек жидкости с растворенными в ней веществами. Осуществляется за счет образования впячиваний на мембране и формирования пузырьков, окруженных мембраной, и перемещения их внутрь. Этот процесс также связан с затратами мембраны и энергии АТФ. Всасывающая функция эпителия кишечника обеспечивается путем пиноцитоза. Если клетка перестает синтезировать АТФ, то процессы пино- и фагоцитоза полностью прекращаются.
Экзоцитоз – выведение веществ из клетки. Путем экзоцитоза выводятся из клетки гормоны, белки, жировые капли, не переваренные частицы. Эти вещества, заключенные в пузырьки, подходят к плазмалемме, обе мембраны сливаются, содержимое пузырька выводится наружу, а мембрана пузырька встраивается в оболочку клетки.
Научная электронная библиотека
§ 3.1.4. Строение клетки
Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).
Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения
Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.
1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.
Повреждение наружной оболочки приводит к гибели клетки (цитолиз).
2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране
участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).
Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.
Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.
3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).
транспортировка питательных веществ и утилизация продуктов обмена клетки;
буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;
поддержание тургора (упругость) клетки;
все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.
4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).
Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления
Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.
При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери
Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.
В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.
В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.
Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.
– хранение генетической информации;
– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.
4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.
Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.
5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.
Функция рибосом: обеспечение биосинтеза белка.
6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).
Функции эндоплазматической сети:
– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;
– транспортировка продуктов синтеза ко всем частям клетки.
Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).
7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).
Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент
Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1
При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:
АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.
Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.
АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].
Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).
Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).
Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!
8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.
Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.
9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).
Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.
10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:
Пластиды бывают трех типов:
1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.
2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.
3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).
Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.
11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.
Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:
– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);
– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;
– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).
Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).
Более общая классификация клеток представлена на рис. 3.16.
Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.
Особенности немембранных органоидов клетки
Любая живая клетка состоит из трех основных компонентов: ядра, цитоплазматической мембраны и цитоплазмы. Цитоплазма — внутренняя часть клетки — занимает наибольший объем и включает в себя гиалоплазму и непосредственно органоиды.
Сами органоиды тоже можно разделить на несколько типов:
Немембранные органоиды
Органоиды — это постоянные функциональные структуры клетки. Каждый из них выполняет свою, строго определенную функцию. Почему они получили такое название? Дело в том, что немембранные органоиды, в отличие от остальных, лишены собственной замкнутой мембраны и, соответственно, не имеют четкой границы с жидкой средой.
К немембранным органоидам клетки принято относить:
Рибосомы
По своей форме рибосомы напоминают сферу. Массовая их доля от массы всей клетки достаточно велика и порой может насчитывать четверть. Основная функция рибосом — биосинтез белка. Рибосомы представляют собой сложные рибонуклепротеиды, в их состав входят белки и рибосомальные РНК. Молекулы РНК составляют большую часть и образуют каркас органоида. Условно рибосомы можно разделить на большую и малую субъединицы, которые способны к диссоциации. В нерабочем состоянии эти субъединицы находятся раздельно и соединяются, когда рибосома активна. В процессе соединения в цитоплазме обязательно должны присутствовать ионы кальция или магния.
В клетке рибосомы располагаются как свободно, так и в связи с эндоплазматической сетью. Чаще всего рибосомы бывают единичными, но возможны случаи, когда с молекулой информационной РНК ассоциируются две или более рибосом. Такую структуру называют полисомой. Полисомы состоят из одной молекулы иРНК и группы рибосом. Они выполняют функцию «считывания» информаци иРНК и создания полипептидных цепей в соответствии с нуклеотидной последовательностью.
Существуют два типа рибосом: прокариотические и эукариотические. Прокариотические характерны в основном для организмов-прокариотов, эукариотическое — для эукариотов. И те и другие имеют в своем составе все те же субъединицы и выполняют одни и те же функции. Примечательно, что рибосомы эукариот имеют больший размер, чем рибосомы прокариот.
Реснички и жгутики
И реснички, и жгутики служат для передвижения и состоят в основном из сократительных белков. Ресничками обладают простейшие одноклеточные, такие как инфузории-туфельки; жгутики характерны для сперматозоидов и хламидомонад. Располагаются они с внешней стороны цитоплазматической мембраны.
Микротрубочки
Микротрубочки находятся непосредственно в цитоплазме любой эукариотической клетки и представляют собой полые трубки из белка тубулина. Способны легко распадаться и собираться заново; такая нестабильность в динамике исключительно важна. Например, в процессе клеточного деления микротрубочки растут в разы быстрее, способствуют образованию веретена деления и правильной ориентации хромосом. В длину эти органоиды не превышают нескольких микрометров.
Микротрубочки выполняют строительную функцию, помогая создавать каркас клетки, поддерживают ее форму, а также участвуют в транспорте различных частиц, играя роль своеобразных рельсов: способствуют легкому перемещению митохондрий внутри клетки. Аксонема — центральная структура ресничек и жгутиков — также образована микротрубочками. Помимо перечисленного, они участвуют и в информационных процессах: входят в состав центриолей и веретена деления, играют роль в расхождении хромосом при митотическом и мейотическом делениях.
Микрофиламенты
Микрофиламенты — сократимые элементы цитоскелета, состоящие из актиновых нитей и прочих сократительных белков. Обнаружены во всех клетках эукариот, но особенно высокое их содержание приходится на мышечные волокна. Встречаются во всей цитоплазме и находятся в ней в виде пучков из параллельно расположенных нитей или трехмерной сети. Принимают участие в построении цитоскелета, изменении формы и передвижении, эндомитозе, участвуют в процессах фагоцитоза, образования перетяжки во время деления хромосом и расхождения их к полюсам.
Микрофибриллы
Микрофибриллы в большинстве своем сосредоточены в подмембранном слое цитоплазмы. Они представляют из себя тонкие, неветвящиеся и напоминающие нити элементы, состоящие из белка. В зависимости от класса клеток белок имеет свою, отличную от других структуру. Микрофибриллы так же, как и микротрубочки, принимают участие в формировании каркаса и выполняют опорную функцию. В совокупности с микротрубочками и микрофиламентами отбразуют цитоскелет.
Клеточный центр
Клеточный центр обязательно присутствует в любой животной клетке, но, согласно наблюдениям, отсутствует у высших растений, водорослей и некоторых видов простейших. Он включает в себя две центриоли — структуры, напоминающие полые цилиндры, стенки которых образованы микротрубочками. Центриоли располагаются перпендикулярно друг другу и образуют диплосому. Одна из них, материнская, в отличие от дочерней, имеет дополнительные образования, например, сатиллиты, а также является источником образования микротрубочек. Снаружи центриоли окружены матриксом, который имеет собственную ДНК и РНК.
При митотическом делении центриоли отвечают за правильное распределение хромосом между двумя новыми клетками. В процессе деления ядра в клетках эукариот образуется веретено деления, построенное из микротрубочек. Эта структура обеспечивает расхождение хромосом к полюсам. По завершении процесса деления каждая новая клетка имеет по две центриоли, в результате чего образуется два новых клеточных центра. Каждый клеточный центр содержит в себе две центриоли.
Клеточный центр участвует во множестве процессов. Так, именно он отвечает за управление абсолютно всеми микротрубочками, имеющимися в клетке, образование ресничек, жгутиков и нитей веретена деления. При делении клеточный центр располагается рядом с полюсами, так как участвует в образовании веретена деления. В клетках, которые в данный момент не делятся, его расположение приходится на центр клетки, рядом с ядром или комплексом Гольджи.