Что относится к межзвездной среде
Межзвёздная среда
Пространственное распределение межзвёздной среды нетривиально. Помимо общегалактических структур, таких как перемычка (бар) и спиральные рукава галактик, есть и отдельные холодные и тёплые облака, окружённые более горячим газом. Основная особенность МЗС — её крайне низкая плотность — 0,1..1000 атомов в кубическом сантиметре.
Содержание
История открытия
После создания современной электромагнитной теории некоторые физики постулировали, что невидимый светоносный эфир является средой для передачи световых волн. Они также полагали, что эфир заполняет межзвёздное пространство. Р. Паттерсон в 1862 году писал [3] : «Это истечение является основой вибраций или колебательных движений в эфире, который заполняет межзвёздное пространство».
Применение глубоких фотографических обзоров ночного неба позволило Э. Барнарду получить первое изображение тёмной туманности, которое силуэтом выделялось на фоне звёзд галактики. Однако, первое открытие холодной диффузной материи было сделано Д. Гартманом в 1904 году после обнаружения неподвижного спектра поглощения в спектре излучения двойных звёзд, наблюдавшихся с целью проверки эффекта Доплера.
В своём историческом исследовании спектра Дельты Ориона Гартман изучал движение по орбите компаньонов системы Дельты Ориона и свет, приходящий от звезды и понял, что некоторая часть света поглощается на пути к Земле. Гартман писал, что «линия поглощения кальция очень слаба», а также, что «некоторым сюрпризом оказалось то, что линии кальция на длине волны 393.4 нанометров не движутся в периодическом расхождении линий спектра, которое присутствует в спектроскопически-двойных звёздах». Стационарная природа этих линий позволила Гартману предположить, что газ, ответственный за поглощение не присутствует в атмосфере Дельты Ориона, но, напротив, находится вне звезды и расположен между звездой и наблюдателем. Это исследование и стало началом изучения межзвездной среды.
Дальнейшие исследования линий «H» и «K» кальция Билзом [5] (1936) позволили обнаружить двойные и несимметричные профили спектра Эпсилон и Дзета Ориона. Это были первые комплексные исследования межзвёздной среды в созвездии Ориона. Асимметричность профилей линий поглощения была результатом наложения многочисленных линий поглощения, каждая из которых соответствовала атомным переходам (например, линия «K» кальция) и происходила в межзвёздных облаках, каждое из которых имело свою собственную лучевую скорость. Так как каждое облако движется с разной скоростью в межзвёздном пространстве, как по направлению к Земле, так и удаляясь от неё, то в результате эффекта Доплера, линии поглощения сдвигались, либо в фиолетовую, либо в красную сторону соответственно. Это исследование подтвердило, что материя не распределена равномерно по межзвёздному пространству.
В тот же год Виктор Гесс открыл космические лучи, энергичные заряженные частицы, которые бомбардируют Землю из космоса. Это позволило заявить некоторым исследователям, что они также наполняют собой межзвёздную среду. Норвежский физик Кристиан Биркланд в 1913 году писал: «Последовательное развитие нашей точки зрения заставляет предполагать, что всё пространство заполнено электронами и свободными ионами всякого рода. Мы также склонны полагать, что все звёздные системы произошли от заряженных частиц в космосе. И совершенно не кажется невероятным думать, что большая часть массы Вселенной, может быть найдена не в звёздных системах или туманностях, но в „пустом“ пространстве» [7]
Наблюдательные проявления
Перечислим основные наблюдательные проявления:
Структура МЗС крайне нетривиальна и неоднородна: гигантские молекулярные облака, отражательная туманность, протопланетная туманность, планетарная туманность, глобула и т. д. Это приводит к широкому спектру наблюдательных проявлений и процессов происходящих в среде. Далее в таблице приведены свойства основных компонентов среды для диска:
| Фаза | Температура (К) | Концентрация ![]() | Масса облаков ( ) | Размер (пк) | Доля занимаемого объёма | Способ наблюдения |
|---|---|---|---|---|---|---|
| Корональный газ | ≈5·![]() | Рентген, линии поглощения металлов в УФ | ||||
| Яркие области HII | ≈![]() | Яркая линия Hα | ||||
| Зоны HII низкой плотности | ≈![]() | Линия Hα | ||||
| Межоблачная среда | ≈![]() | Линия Lyα | ||||
| Тёплые области HI | Излучения HI на λ=21 см | |||||
| Мазерные кондесации | ![]() | Мазерное излучение | ||||
| Облака HI | ≈80 | Поглощения HI на λ=21 см | ||||
| Гигантские молекулярные облака | ||||||
| Молекулярные облака | ≈10 | Линии поглощения и излучения молекулярного водорода в радио и инфракрасном спектре. | ||||
| Глобулы | ≈10 | Поглощение в оптическом диапазоне. |
Мазерный эффект
В 1965 г. в ряде спектров радиоизлучения были обнаружены очень интенсивные и узкие линии c λ=18 см. Дальнейшие исследования показали, что линии принадлежат молекуле OH, а их необычные свойство — результат мазерного излучения. В 1969 открывает мазерные источники от молекулы воды на λ=1,35 см, позже были обнаружены мазеры работающие и на других молекулах. Для мазерного излучения необходима инверсная населённость уровней (количество атомов на верхнем резонансном уровне больше чем на нижнем). Тогда проходя сквозь вещество свет с резонансной частотой волны усиливается, а не ослабевает (это и называется мазерным эффектом). Для поддержания инверсной населённости необходима постоянная накачка энергией, поэтому все космические мазеры делятся на два типа:
Физические особенности
Отсутствие локального термодинамического равновесия (ЛТР)
В межзвёздной среде концентрация атомов мала и оптические толщи малы. Это значит, что температура излучения — это температура излучения звёзд (
5000 К) и никак не соответствует температуре самой среды. При этом электронная и ионная температуры плазмы могут сильно отличаться друг от друга, поскольку обмен энергии при соударении происходит крайне редко. Таким образом, не существует единой температуры даже в локальном смысле.
Распределение числа атомов и ионов по населённостям уровней определяется балансом процессов рекомбинации и ионизации. ЛТР требует, чтобы эти процессы были в равновесии, чтобы выполнялось условие детального баланса, однако, в межзвёздной среде прямые и обратные элементарные процессы имеют разную природу, и поэтому детальный баланс установиться не может.
И наконец, малая оптическая толщина для жёсткого излучения и быстрых заряженных частиц приводит к тому, что энергия, выделяющаяся в какой-либо области пространства, уносится на большие расстояния. И охлаждение идёт по всему объёму сразу, а не в локальном пространстве, расширяющемся со скоростью звука в среде. Аналогично и идёт нагрев. Теплопроводность не способна передать тепло от удалённого источника и в дело вступают процессы, нагревающие большие объёмы сразу.
Однако, несмотря на отсутствие ЛТР, даже в очень разреженной космической плазме устанавливается максвелловское распределение электронов по скоростям, соответствующее температуре среды, поэтому для распределения частиц по энергиям можно пользоваться формулой Больцмана и говорить о температуре. Происходит так из-за дальнодействия кулоновских сил за довольно короткое время (для чисто водородной плазмы это время порядка 
Для описания состояния газа введём объёмный коэффициент нагревания 




При тепловом равновесии dQ/dt=0, а значит равновесную температуру среды можно найти из соотношения Γ=Λ.
Механизмы нагрева
Говоря, что среда нагревается, мы подразумеваем рост средней кинетической энергии. При объёмном нагреве увеличивается кинетическая энергия каждой частицы. И каждая частица в единицу времени может увеличить свою энергию на конечную величину, а при отсутствии термодинамического равновесия, это означает, что скорость нагрева среды прямо пропорционально количеству частиц в единице объёма, то есть концентрации Γ(n,T)=nG(T). Функция G(T)[эрг/c]называется эффективностью нагрева и рассчитывается через элементарные процессы взаимодействия и излучения.
Ультрафиолетовое излучение звёзд (фотоионизация)
Классический фотоэффект: энергия кванта уходит на ионизацию атома с произвольного уровня i и кинетическую энергию электрона. Потом электроны соударяются с различными частицами и кинетическая энергия переходит в энергию хаотического движения, газ нагревается.
Однако не все так просто. Межзвёздный газ состоит из водорода, ионизовать который можно только жёстким УФ. И основными «перехватчиками» УФ-квантов оказываются атомы примесей: железа, кремния, серы, калия и др. Они играют важную роль в установлении теплового баланса холодного газа.
Ударные волны возникают при процессах, идущих со сверхзвуковыми скоростями (для МЗС это 1-10 км/с). Так происходит при вспышке сверхновой, сбросе оболочки, столкновения газовых облаков между собой, гравитационный коллапс газового облака и т. д. За фронтом ударной волны кинетическая энергия направленного движения быстро переходит в энергию хаотического движения частиц. Порой температура может достигать огромных значений (до миллиарда градусов внутри остатков сверхновой), причём основная энергия приходится на движение тяжёлых ионов (ионная температура). Поначалу температура легкого электронного газа значительно ниже, но постепенно благодаря кулоновским взаимодействиям ионная и электронная температура выравнивается. Если в плазме есть магнитное поле, то роль первой скрипки в выравнивании ионной и электронной температуры берет на себя турбулентность.
Проникающая радиация и космические лучи
Ионизация и нагрев с помощью мягкого диффузного рентгена от горячего газа ничем принципиально не отличается от нагрева космическими лучами. Всё различие в скорости нагрева (она у космических лучей на порядок выше) и в намного большем сечении фотоионизации с внутренних оболочек у рентгеновского излучения.
Жёсткое электромагнитное излучение (рентгеновские и гамма-кванты)
Осуществляется в основном вторичными электронами при фотоионизации и при комптоновском рассеянии. При этом передаваемая энергия покоящемуся электрону равна
для 

Механизмы охлаждения
Как уже говорилось, межзвёздная среда оптически тонка и имеет невеликую плотность, а раз так, то основной механизм охлаждения — это излучение фотонов. Испускание же квантов зависит с бинарными процессами взаимодействия (частица-частица), поэтому суммарную скорость объёмного охлаждения можно представить в виде 
Свободно-свободное (тормозное) излучение
Свободно-свободное (тормозное) излучение в космической плазме вызвано кулоновскими силами притяжения или отталкивания. Электрон ускоряется в поле иона и начинают излучать электромагнитные волны. Электрон начинает переходить с одной орбиты на другую, но оставаясь свободным. При этом излучается весь спектр от рентгена до радио. Выделяющаяся при этом энергия из единицы объёма внутри телесного угла в ед. времени равна:

Где 



Однако космическая плазма не чисто водородная, в ней есть тяжёлые элементы, благодаря большому заряду которых, увеличивается эффективность охлаждения. Для полностью ионизированной среды с нормальным космическим содержанием элементов 

Возникает при запрещённых резонансных переходах с уровней 


Обратное комптоновское рассеяние
Если рассеяние фотона с энергией 



В случае теплового распределения электронов с концентрацией 


Комптоновское охлаждение обычно доминирует в высокоионизированной и сильно нагретой плазме вблизи источников рентгеновского излучения. Благодаря ему среда не может нагреться выше 
Ионизация электронным ударом
Если все остальные механизмы охлаждения излучательные, энергия уносится фотонами, то этот безызлучательный. Тепловая энергия расходуется на отрыв электрона и запасается в виде внутренней энергии связи ион-электрон. Потом она высвечивается при рекомбинациях.
Излучение в спектральных линиях
Основной механизм охлаждения МЗС при Т



)










10^6″ border=»0″ />
)



. Запишем уравнение ионизационного баланса, необходимое чтобы узнать населённость уровней. Решая, получим равновесную температуру T(n). Учитывая то, что вещество в межзвёздной среде крайне разряжено, то есть представляет из себя идеальный газ, подчиняющийся уравнению Менделеева-Клапейрона, найдём равновесное давление P(n). И обнаружим, что зависимость больше напоминает уравнение состояни газа Ван-дер-Вальса: существует область давлений, где одному значению p соответствует три равновесных эначения n. Решение на участке с отрицательной производной неустойчиво относительно малых возмущений: при давлении больше чем у окружающей среды она(неустойчивость?) будет расширяться до установления равновесия при меньшей плотности, а при меньшем картина с точностью до наоборот. Это объясняет наблюдаемое динамическое равновесие разреженной межзвёздной среды и более плотных облаков межзвёздного газа.
уровня водорода, связанными с наличием спина у электрона и протона. Вероятность этого перехода
(То есть 1 раз в 11 млн лет). Возбуждение происходит благодаря столкновению нейтральных атомов водорода. Расчёт населённости уровней даёт
,
. При этом объёмный коэффициент излучения:
— профиль линии, а фактор 4π предполагает изотропное излучение.

