Что относится к магнитным явлениям в физике

Физические явления примеры магнитных, механических, звуковых, электрических и световых в таблице кратко

Физика — это наука об окружающей нас природе, она устанавливает самые общие закономерности, существующие между материальными объектами, и описывает их в виде физических законов. Любая из таких закономерностей проявляется в виде событий, называемых физическими явлениями. Поговорим об этих явлениях, рассмотрим их разнообразие и виды.

Что относится к магнитным явлениям в физике

Физические явления в природе

Природа — это всё, что нас окружает. Земля, Солнце, воздух, предметы, люди, космос — всё это природа. Природа вечна и бесконечна.

Что относится к магнитным явлениям в физике

Формой существования объектов в природе является движение в широком смысле — то есть всевозможные изменения, происходящие с ними. Не существует объектов, в которых бы никогда не происходило никаких изменений. Форма объекта, положение относительно других объектов, внутренняя структура, взаимодействия — хотя бы часть из этих характеристик любого предмета со временем всегда изменяется.

Изменения, происходящие с объектами в природе, объединяются под общим названием «явления». Большинство из них (но не все) изучает физика, поэтому такие явления называются физическими. Физическое явление — это явление, происходящее с материальными объектами, при котором предметы и вещества меняют своё состояние и характеристики, но при этом не появляется новых веществ.

Виды физических явлений

К физическим явлениям относятся механические, тепловые, звуковые электромагнитные, световые и некоторые другие процессы. Их можно представить в виде таблицы:

Что относится к магнитным явлениям в физике

Рис. 2. Таблица физических явлений.

Приведём примеры физических явлений разных видов.

Механические явления

Механика изучает движение в узком смысле. То есть изменение положения тел в пространстве со временем и взаимодействие между этими телами.

Примеры механических явлений — это движение и соударение предметов, разгон и торможение, уравновешивание весов, земное притяжение, движения планет, сжатие пружины, всплывание предметов в жидкости.

Тепловые явления

Термодинамика изучает физическую сущность тепла, его источники и перенос между телами.

Примеры тепловых явлений — нагрев и остывание, кипение и конденсация, плавление и затвердевание.

Звуковые явления

Акустика изучает закономерности появления звука и его распространения в различных средах.

К звуковым явлениям относится сам звук, его слышимость, звуковоспроизведение и звукоизоляция.

Электромагнитные явления

Электродинамика изучает все, что относится к особой форме материи — электромагнитному полю.

Примеры электромагнитных явлений — это молния, электризация предметов, работа электрических приборов, движение тока по проводам, магнитные взаимодействия, работа электронных устройств.

Световые явления

Оптика изучает законы распространения света.

К световым явлениям относятся появление теней и полутеней, увеличение линзы, разложение белого света в спектр.

Явления, не изучаемые физикой

В заключение приведём пример явлений, которые физика не изучает. В первую очередь, это явления, относящиеся к смежным наукам. Например, превращения одних веществ в другие изучаются химией. Законы количественных соотношения и закономерностей изучаются математикой. Математика — это фактически «язык физики», физические наблюдения становятся законами только тогда, когда они выражены количественно на языке математики.

Кроме того, вне интересов физики лежат явления, происходящие в обществе, мыслительные процессы, искусство, религия, интересы людей. Эти явления изучаются гуманитарными науками.

Что относится к магнитным явлениям в физике

Рис. 3. Гуманитарные науки.

Что мы узнали?

Физика изучает природные явления. Природа — это всё, что окружает нас. К физическим явлениям относятся механические, тепловые, звуковые, электромагнитные, световые процессы, происходящие в природе.

Источник

Магнетизм для чайников: основные формулы, определение, примеры

Что относится к магнитным явлениям в физике

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

Что относится к магнитным явлениям в физике

Изображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

Что относится к магнитным явлениям в физике

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

Что относится к магнитным явлениям в физике

Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

Что относится к магнитным явлениям в физике

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

Что относится к магнитным явлениям в физике

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

Что относится к магнитным явлениям в физике

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

Что относится к магнитным явлениям в физике

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

Что относится к магнитным явлениям в физике

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

Что относится к магнитным явлениям в физике

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

Что относится к магнитным явлениям в физике

Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

Что относится к магнитным явлениям в физике

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.

Что относится к магнитным явлениям в физике

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.

Что относится к магнитным явлениям в физике

При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.

Что относится к магнитным явлениям в физике

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

Что относится к магнитным явлениям в физике

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

Что относится к магнитным явлениям в физике

Формула для ЭДС самоиндукции:

Что относится к магнитным явлениям в физике

Энергия магнитного поля

Что относится к магнитным явлениям в физике

Объемная плотность энергии поля:

Что относится к магнитным явлениям в физике

Источник

Электромагнитные явления

Что такое электромагнитные явления в физике

Впервые электромагнитными явлениями заинтересовался Фарадей. С того времени электромагнетизм в естествознании и физике изучается достаточно долго. Однако принципы взаимодействия электролитов и электромагнитного поля начали исследовать сравнительно недавно ученые астрофизики. По их предположению, вся масса космической материи состоит из высокоионизированного газа, то есть плазмы. С помощью научных исследований удалось получить большое количество знаний, относительно электромагнитной динамики.

Электромагнетизм является разделом физики, изучающим электромагнитные силы, возникающие между электрически заряженными частицами.

Роль электромагнетизма в физике космоса сложно переоценить. Это связано с наличием массы магнитных полей, которые оказывают влияние на движение зарядов. В определенных обстоятельствах сила электромагнетизма превосходит силу гравитации. В XIX веке был создан телеграф, как пример применения электромагнетизма для передачи информации на расстояние. Телеграфия основана на том, что любые данные в виде цифр или букв перемещаются с помощью закодированных знаков.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Со временем в процессе изучения электромагнитных явлений в природе ученые определили ряд закономерностей, которые являются их характеристиками и отличаются от закономерностей, описывающих механику. В электронике электромагнетизм описывают по средствам сложных взаимодействий величин, определяемых временем и координатами в пространстве. Изучая непростые электронные устройства, ученые сталкиваются с обширными описаниями.

Электромагнетизм исследуют не автономно. В процессе изучения явлений ученые сделали вывод о том, что они связаны с механикой. На основании комплексных исследований была сформулирована теория относительности, где четырехмерное пространство со временем было представлено в виде единого многообразия, а время и пространство разделялись условно. Важным свойством, характерным для электромагнитных явлений, является изменение параметров образцов, начиная от полностью ферромагнитных и заканчивая вовсе немагнитными.

Исследования в области электромагнетизма продолжаются в настоящее время. Сформировать корректное материалистическое понимание явлений можно на основании отечественной литературы по физике. Изучение электромагнетизма позволило ученым определить, что пространство, которое окружает проводник с электрическим током, представлено в виде магнитного поля. Таким образом, при наличии электрического тока обязательно возникнет магнитное поле.

Развитие электромагнитной теории связано с исследованиями Фарадея и Максвелла. Ученым удалось сформулировать основополагающие понятия в этой области. Фарадей открыл электромагнитную индукцию, что позволило Максвеллу выдвинуть теорию электромагнитного поля. Исследования заключались в проведении опытов с магнитной стрелкой, которую помещали около заряженного проводника.

В результате экспериментов был сделан вывод о воздействии на магнитную стрелку особого состояния окружающей среды, а не конкретно движущихся по проводнику зарядов. С помощью данных наблюдений было введено понятие магнитного поля, которое состоит из магнитных линий, пронизывающих окружающее пространство и способных индуцировать электрический ток.

Какие есть виды, основные термины и формулы

Электрический заряд представляет собой величину, с помощью которой характеризуют свойство частиц взаимодействовать электромагнитным способом.

Виды электрических зарядов:

Известно, что ядро атома включает в состав нейтроны и протоны. Около него вращаются электроны. Атом может трансформироваться в ион в том случае, когда отдает или принимает один, либо несколько электронов.

Электризация — является процессом, при котором приобретается заряд в результате взаимодействия с микроскопическим телом.

Электризация может быть реализована двумя способами:

Электрическое поле представляет собой форму материи, которая образуется в зоне действия зарядов или тел и действует на иные заряженные частицы.

Основными законами электростатики являются:

Закон Кулона для неподвижных зарядов:

Закон сохранения заряда в замкнутой системе:

Электрический ток представляет собой упорядоченное движение заряженных частиц.

Некоторые условия, при которых существует электрический ток:

Характер действия электрического поля может проявляться по-разному:

Формированию электрического поля способствуют источники тока, которые функционируют по средствам разделения зарядов. Процесс обеспечен трансформацией других видов энергии в энергию электрического поля.

Характеристики электрической цепи:

Закон Ома для участка электрической цепи записывают, таким образом:

Способы подключения компонентов электроцепи:

В том случае, когда элементы электрической цепи подключены последовательно, справедливы следующие выражения:

Если компоненты электроцепи соединены параллельно, то в этом случае применимы следующие формулы:

Формула для определения работы электрического тока имеет вид:

Мощность электрического тока можно рассчитать по формуле:

Когда электрический заряд перемещается по проводнику, выделяется тепло. Его количество можно вычислить с помощью уравнения:

Среды, в которых может возникать электрический ток:

Магнитное поле представляет собой особую форму материи, образованную около движущихся заряженных частиц и воздействующую на заряды, которые перемещаются в данном поле.

Магнитное поле характеризуется линиями. Это условные линии, по которым становятся оси магнитных стрелок, после помещения их в магнитное поле.

Что было доказано электромагнитными явлениями

При исследовании электромагнетизма было выявлено существование магнитного поля около электрического тока. Данные понятия являются неотделимыми друг от друга. Теория электромагнитного поля Максвелла свидетельствует об образовании вихревого электрического поля в проводниках и в вакууме при изменении магнитного поля. Эта идея позволила открыть новый этап развития физики. Согласно теории Максвелла, весь мир является электродинамической системой, которая включает в себя заряды, взаимодействующие между собой с помощью электромагнитного поля.

Когда электрические заряды перемещаются, генерируется магнитная сила. Электромагнитная сила представляет собой соединение магнитной и электрической сил. Электрические силы можно наблюдать при условии движения или покоя зарядов. С другой стороны, магнитные силы возникают только в том случае, когда заряды перемещаются. Четыре уравнения Максвелла описывают поведение зарядов и электромагнитных сил. Данные закономерности в дальнейшем стали использовать, как основные уравнения классической электродинамики. Уравнения Максвелла позволили сформулировать закон Кулона, аналогично закону всемирного тяготения Ньютона.

Закон всемирного тяготения Ньютона:

Исходя из закона Кулона, можно сделать следующие выводы:

Открытие электромагнитных явлений позволило научному сообществу полностью изменить представление о материи.

Интересные факты применения электромагнитных явлений

Записи, которые сохранились с древних времен, свидетельствуют о лечении императора Нерона электрованнами, что позволяло ему избавиться от ревматизма. Принцип такой методики заключался в заполнении деревянной кадки водой и помещении в нее электрических скатов. Погружаясь в подготовленный резервуар, человек испытывал на себе действие электрического тока.

Еще одним интересным фактом применения электромагнетизма в жизни является создание электроняни в Швейцарии. Смысл изобретения заключался в подкладывании под детскую пеленку металлической сетки, дополненной низковольтным источником тока и электрическим звонком. При намокании пеленки механическое устройство срабатывало, раздавался характерный звук, оповещающий родителей о необходимости сменить пеленку.

В морозных регионах существует проблема, связанная со сливанием нефтепродуктов. Дело в том, что при низких температурах вязкость материала увеличивается. Ученым удалось разработать технологию электроиндукционного нагрева резервуаров, благодаря которой снижаются затраты энергии.

Источник

Магнетизм и его практическое применение

Огромный круг явлений природы определяется магнитными силами. Современная наука достаточно глубоко проникла в сущность магнитных явлений и вскрыла их основные закономерности.

Научные и технические применения магнетизма в наши дни столь обширны и многообразны, что делают физику магнитных явлений одним из важных разделов естествознания.

Магнитные свойства обнаруживаются во всем окружающем мире, от мельчайших элементарных частиц до безграничных космических просторов, заполненных магнитными полями.

Что относится к магнитным явлениям в физике

Что такое магнетизм

Магнетизм — особая форма материальных взаимодействий, возникающих между движущимися заряженными частицами. Если источником электрического поля являются электрические заряды, то источником магнитного поля является электрический ток.

Магнитные свойства присущи всем веществам, т. е. все они являются магнетиками. Все вещества реагируют на воздействие внешнего магнитного поля: одни создают диамагнитный эффект, другие — парамагнитный эффект.

В природе встречаются различные поля: гравитационное, магнитное, электрическое и др., обладающие характерными особенностями. Поля недоступны нашему восприятию, однако вид полей, получаемых с помощью спектров поля, исследование сил, действующих в поле, дают возможность представления поля в виде потока.

Магнитный поток в отличие от потоков других полей является всегда замкнутым. В качестве физической величины, характеризующей интенсивность магнитного потока, служит вектор магнитной индукции.

Графически магнитный поток является скалярной интегральной величиной и изображается линиями, расположенными таким образом, чтобы во всех точках касательные к ним совпадали по направлению с векторами магнитной индукции.

Что относится к магнитным явлениям в физике

Название магнит произошло от того места, где впервые были найдены железные руды, обладающие магнитными свойствами.

Магниты, являющиеся кусками руды магнитного железняка, называются естественными. Они способны притягивать к себе другие стальные предметы. При этом притянутые предметы приобретают способность сами намагничиваться. Такие магниты называются искусственными.

Отличительной особенностью магнита является то, что он притягивает к себе другие предметы неравномерно по всей поверхности. Наиболее сильно проявляется сила притяжения на концах магнита. Эти места называются полюсами магнита. Основным магнитным материалом является железо.

Наилучшими магнитными свойствами обладает железо без примесей. Хорошими магнитными свойствами обладает также электротехническая (легированная) сталь. Поэтому из нее изготавливаются магнитопроводы трансформаторов и других электрических аппаратов и машин.

По способу изготовления электротехническая сталь подразделяется на холоднокатаную и горячекатаную.

В качестве магнитных материалов применяются также специальные магнитные сплавы.

Магнитное поле электрического тока

При прохождении тока по проводнику в пространстве вокруг него возникает магнитное поле, обладающее энергией, которая воздействует на вещества. Для характеристики свойств магнитного поля его действия выражаются через так называемые магнитные линии. Направление их соответствует направлению вращения буравчика при его продвижении вдоль тока.

В отличие от электрических силовых линий, которые начинаются на одном электрическом заряде и заканчиваются на другом, магнитные линии являются замкнутым и. Фактически они распределены вдоль всего проводника. С увеличением тока происходит усиление магнитного поля. Чем ближе к проводнику, тем действие магнитного поля проявляется более сильно.

Если применить проводник в виде спирали виде спирали (соленоид, катушка), то при прохождении по нему тока магнитное поле будет значительно сильнее, чем в прямолинейном проводнике. При этом чем больше витков у этой катушки и чем больше ток, тем сильнее магнитное поле.

В катушке магнитные поля отдельных витков складываются, образуя общее магнитное поле. Для усиления его в катушку вводят железный сердечник, который, в результате воздействия магнитного поля катушки, сам намагничивается и значительно усиливает магнитный поток.

Катушка из изолированной проволоки, в которую вставлен сердечник, изготовленный из материала, хорошо проводящего магнитные линии, называется электромагнитом.

Большинство электромагнитов изготавливается с сердечниками, которые способны быстро намагнититься относительно небольшим током, но после прекращения протекания тока почти полностью размагничиваются. Электромагнит проявляет действие только при протекании по нему тока.

Электромагниты находят самое широкое практическое применение. Они используются для возбуждения магнитного потока в электрических машинах, в электромагнитных реле и т. д.

Подробно о том, как работают магниты и электромагниты смотрите здесь:

Что относится к магнитным явлениям в физике

В зависимости от значения и знака восприимчивости все вещества условно делят на диамагнетики, парамагнетики и ферромагнетики.

Диамагнетики имеют отрицательную магнитную восприимчивость, в большинстве случаев не зависящую от напряженности поля. Во внешнем магнитном поле диамагнетики намагничиваются в направлении, противоположном внешнему полю.

Диамагнетизм существует во всех веществах независимо от структуры их атомов и видов связи, т. е. в жидком, твердом и газообразном состояниях. Он проявляется в тех веществах, где имеет место полная компенсация как орбитальных, так и спиновых магнитных моментов.

Существует ряд диамагнетиков с аномальным поведением; их восприимчивость значительно больше указанной и зависит от температуры. К таким веществам относятся сурьма, висмут, галлий и таллий. В технике диамагнитный эффект ввиду его малости используется сравнительно редко.

Парамагнетики имеют положительную магнитную восприимчивость. К ним относятся большая часть газов, щелочные металлы, многие соли на основе железа, ферромагнетики при температуре выше точки Кюри.

Парамагнитный эффект возникает в веществах с наличием нескомпенсированных магнитных моментов. Результирующий магнитный момент парамагнетика равен нулю.

Под действием внешнего магнитного поля возникает результирующий магнитный момент, совпадающий с направлением поля. Для большинства парамагнетиков намагниченнсоть зависит от температуры, уменьшаясь с ее ростом (закон Кюри).

Разновидностью парамагнетизма является суперпарамагнетизм, обычно наблюдающийся в тонкодисперсных выделениях ферромагнитных частиц в какой-либо матрице, например в выделениях супермагнитных частиц в сплаве медь—железо (Cu+1%Fe). Кривые намагничивания суперпарамагнетиков существенно зависят от температуры.

Одним из признаков ферромагнетиков является высокое значение магнитной восприимчивости и ее сильная зависимость от напряженности магнитного поля.

Зависимость намагниченности от напряженности магнитного поля неоднозначна, и при всех температурах ниже точки Кюри наблюдается гистерезис.

Даже в отсутствие внешнего магнитного поля отдельные частицы ферромагнетика (домены) находятся в состоянии самопроизвольного намагничивания и имеют результирующий магнитный момент. При воздействии внешнего поля магнитные моменты доменов ориентируются в направлении этого поля и ферромагнитное вещество намагничивается.

Из чистых химических элементов ферромагнитными свойствами обладают элементы группы 3d — металлы (железо, кобальт, никель) и группы 4f — металлы (гадолиний, диспрозий, тербий, гольмий, эрбий, тулий). Практически необозримо число ферромагнитных материалов, причем это в основном металлы и их сплавы.

Существует группа материалов, называемая антиферромагнетиками. Антиферромагнитный эффект заключается в том, что в отсутствие внешнего магнитного поля магнитные моменты одинаковых соседних атомов направлены встречно, так что результирующий магнитный момент домена равен нулю.

Магнитное упорядочение сохраняется до температуры, называемой точкой Нееля. Выше этой температуры вещество переходит в парамагнитное состояние. При воздействии внешнего поля магнитные моменты атомов приобретают ориентировку в направлении этого поля и антиферромагнитное вещество намагничивается.

К антиферромагнетикам относятся чистые металлы: хром и марганец, редкоземельные металлы (церий, празеодим, самарий, неодим, европий).

Материалы с некомпенсированным антиферромагнетизмом называют ферримагнетиками. При температурах выше точки Кюри у ферромагнетиков и точки Нееля у антиферромагнетиков атомное магнитное упорядочение нарушается и вещество переходит в парамагнитное coстояние.

Ферримагнетики получили свое название от ферритов первой группы — некомпенсированных антиферромагнетиков. Сюда относятся соединения окиси железа Fe2O3 с окислами других металлов, например соединения с формулой МеОхFe2О3, где Me — металл (железо, никель, марганец, цинк, кобальт, медь, магний и др.).

Ферримагнетикам свойственна такая же, как и ферромагнетикам зависимость намагниченности от напряженности магнитного поля.

Подробно про диамагнетики:

Подробно про ферромагнетики:

Что относится к магнитным явлениям в физике

Универсальность магнетизма открыла широкие широкие возможности для его применения в науке и технике. Во-первых, это использование магнитных материалов для различных отраслей техники (энергетики, электроники, автоматики и т. д.). Во-вторых, используя информационный аспект магнетизма и измеряя магнитные характеристики, можно получить детальные сведения о физических свойствах веществ и их химическом составе.

Использование методов и средств магнитных измерений положено в основу широко применяемых в технике методов структурного анализа, магнитной дефектоскопии и дефектометрии — важнейших неразрушающих методов контроля качества промышленной продукции.

Непрерывно растет производство конструкционных и электротехнических сталей, низкокоэрцитивных сплавов со специальными свойствами (безгистерезисных, с прямоугольной петлей гестерезиса и др.), выоококоэрцитивных магнитных материалов.

Увеличивается применение миниатюрных магнитных сердечников и систем, энергоемких постоянных магнитов и магнитных пленок. Сейчас трудно найти отрасль техники, в которой не использовались бы магнитные системы, в том числе системы с постоянными магнитами.

В связи с этим контроль качества магнитных материалов и изделий из них, измерение параметров магнитных полей и исследование ферромагнитных материалов и магнитных систем в лабораторных условиях и производстве становятся важной задачей.

В последние годы достигнуты значительные результаты в создании автоматической магнитоизмерительной аппаратуры. Применение унифицированных блоков, узлов и микропроцессоров, серийно выпускаемых промышленностью, значительно ускоряет процесс создания магнито-измерительных систем и комплексов, обеспечивающих автоматическое управление процессом перемагничивания, измерение и обработку результатов с высокой точностью и производительностью.

Что относится к магнитным явлениям в физике

Неразрушающие методы контроля изделий из ферромагнитных материалов

Контроль качества изделий из ферромагнитных материалов неразрушающими методами в настоящее время охватывает многие отрасли промышленности. Широко применяется контроль рельсов на железных дорогах, контролируются сварные швы различных изделий, осуществляется проверка деталей машин и механизмов при их изготовлении.

При неразрушающем контроле изделий из ферромагнитных материалов используются магнитный и вихретоко-вый методы для оценки структурного состояния деталей при термообработке, для обнаружения дефектов в процессе эксплуатации и для определения характера развития трещин, возникающих в деталях под влиянием больших нагрузок.

При применении неразрушающего контроля обеспечивается необходимый запас прочности машин и механизмов и снижается их материалоемкость. Подробнее смотрите здесь: Магнитная дефетоскопия

Применение ферромагнитных материалов в электротехнических устройствах

Самым распространенным компонентом ферромагнитных материалов является железо. Поэтому естественно стремление его возможно шире использовать, но получить свободное от примесей железо практически невозможно.

Наибольшее распространение получило технически чистое железо (низкоуглеродистая электротехническая сталь). Его используют для изготовления сердечников электромагнитов постоянного и переменного тока, полюсных башмаков, магнитопроводов, реле и ряда других устройств, работающих в постоянных и низкочастотных магнитных полях.

Применение низкоуглеродистой стали для работы в переменных полях высокой частоты ограничено из-за низкого удельного сопротивления, обусловливающего большие потери на вихревые токи.

При изготовлении магнитопроводов асинхронных двигателей мощностью до 100 кВт основным требованием, предъявляемым к магнитным материалам, являются высокая проницаемость, малое значение коэрцитивной силы, возможно большее значение индукции насыщения.

Низкоуглеродистая сталь для этих целей выпускается горячекатаной и холоднокатаной. Механические напряжения, возникающие в результате обработки материала, в значительной степени ухудшают магнитные свойства. Внутренние напряжения, возникающие после обработки, снимают отжигом при 725—1000 °С.

При необходимости получения особо высоких магнитных свойств термообработку проводят в вакууме при высокой температуре. Для получения материалов с большим удельным электрическим сопротивлением и большой магнитной проницаемостью при индукции 1,2—1,7 Тл используют легирование железа кремнием (от 0,5 до 4%).

Такая электротехническая сталь нашла широкое применение при изготовлении магнитопроводов электрических машин, силовых трансформаторов и коммутирующей аппаратуры силовых электрических цепей.

В настоящее время холоднокатаные стали вытесняют стали, изготовленные горячей прокаткой. Это происходит из-за более высоких магнитных свойств первых.

Кроме того, более гладкая поверхность холоднокатаных сталей позволяет увеличить коэффициент заполнения объема изделий на 20—30% по сравнению с горячекатаными, а более высокая стоимость их компенсируется значительным уменьшением потерь и в конечном счете массы готовых изделий.

Что относится к магнитным явлениям в физике

Иные требования предъявляются к материалам магнитных систем электротехнических устройств, работающих на повышенных частотах (до единиц мегагерц). Эти материалы должны обладать большим электрическим сопротивлением. Наибольшее распространение здесь нашли никель-цинковые, марганец-цинковые, ферриты и магнитодиэлектрики.

Обычно параметрами, определяющими выбор типа ферритов и магнитодиэлектриков для этих целей, являются начальная магнитная проницаемость, тангенс угла потерь, удельное электрическое сопротивление.

В настоящее время магнитодиэлектрики вытесняются ферритами, характеризующимися лучшими магнитными свойствами, но имеющими худшие показатели по стабильности и чувствительности к внешним воздействиям.

Повышение стабильности ферритов и снижение их чувствительности к внешним воздействиям (температура, время, подмагничивание) ведет к еще более широкому их применению.

Применение ферромагнитных материалов:

Что относится к магнитным явлениям в физике

Ферромагнитные материалы специального назначения

В измерительной технике, электронике, технике связи часто требуются материалы с постоянной магнитной проницаемостью в заданных пределах изменения напряженности намагничивающегося поля (сердечники катушек постоянной индуктивности, дроссели фильтров, измерительные трансформаторы и т. д.). Здесь широко применяются перминвары, изопермы.

Для построения магнитных систем магнитоэлектрических приборов, микрофонов и т. п. широко используются пермендюр, имеющий индукцию насыщения 2,5 Тл. Этот материал используется также для магнитопроводов электромагнитов, силовых трансформаторов, сердечников роторов и статоров электрических машин.

Широкое использование получили магнитные материалы для экранирования устройств от внешних магнитных полей. Различают два вида экранирования: магнитостатическое и электромагнитное.

В первом случае экранируемый объект окружают кожухом из материала с высокой магнитной проницаемостью, через который проходят линии потока внешнего постоянного или медленно изменяющегося магнитного поля.

Электромагнитное экранирование основано на эффекте вытеснения линий потока внешнего переменного поля магнитным полем вихревых токов, индуцируемых в кожухе с высокой проводимостью. С увеличением частоты внешних возмущающих полей эффект магнитостатического экранирования уменьшается, а электромагнитного — возрастает.

Для электромагнитного экранирования применяют магнитные материалы с высокой проницаемостью, малой коэрцитивной силой и низким удельным электрическим сопротивлением, например пермаллой 79НМ. Иногда используют сплав 50Н или низкоуглеродистую сталь.

Подробно про электромагнитное экранирование смотрите здесь:

В области техники звуковых и ультразвуковых частот широко используются магнитострикционные материалы. К таким материалам предъявляются требования максимального коэффициента магнитострикции при возможно меньшей напряженности магнитного поля.

Наилучшими свойствами в этом смысле обладают сплавы на основе платины и кобальта, но их техническое применение ограничено высокой стоимостью. В настоящее время в основном в этой области применяются металлические материалы и реже ферриты.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *