Что относится к магнитным носителям информации
Эволюция носителей информации. Часть 1: от перфокарт до DVD
С древнейших времен люди искали способы записи и хранения различной информации. Сначала они рисовали на скалах и глине. Затем появился пергамент, а позже — бумага. В XX веке с появлением первых компьютеров хранить информацию стало легче, но эволюция носителей информации лишь ускорилась. Казалось бы, еще вчера мы записывали нужные нам файлы на дискеты. А сегодня мы уже пользуемся 256-гигабайтными флешками! В общем, развитие технологий хранения информации не стоит на месте. Поэтому в этот раз мы вспоминаем, с чего же началась история компьютерных носителей информации, и расскажем о том, каких результатов добилась индустрия к концу XX века.
В таком виде сохраняли информацию в былые времена
Станок Жаккара. Перфокарты
История носителей информации берет свое начало в начале XIX века. Причем в роли прародителя запоминающих устройств выступает — кто бы мог подумать! — ткацкий станок. Автором первого изобретения в области хранения данных стал французский изобретатель Жозеф Мари Жаккар. Долгое время он работал со станками в качестве подмастерья, ткача и наладчика, поэтому богатый опыт значительно помог ему в дальнейшей изобретательской деятельности. Итак, в чем же заключалась инновационная идея Жаккара? Несмотря на то, что производство ткани в то время являлось довольно сложным процессом, по своей сути оно представляло собой постоянное повторение одних и тех же действий. Жаккар пришел к выводу, что этот процесс можно автоматизировать.
Жозеф Мари Жаккар — создатель ткацкого станка, использующего перфокарты
Французский изобретатель придумал такую систему, которая использовала в своей работе специальные твердые пластины с отверстиями. Они и являлись первыми в мире перфокартами. Прежде подобные пластины использовались в станках Вокансона и Бушона, однако эти устройства были слишком дороги в производстве и по этой причине так и не прижились. В своей же разработке Жаккар учел все недостатки этих аппаратов. В пластинах было увеличено количество рядов отверстий, что обеспечило обработку большего числа нитей, а, следовательно, и повышение производительности станка. Кроме этого, был значительно упрощен процесс подачи пластин в считывающее устройство — набор щупов, связанных со стержнями нитей. При проходе пластины щупы проваливались в отверстия, поднимая вверх соответствующие нити и образуя основные перекрытия в ткани. Таким образом, определенная комбинация отверстий на пластине позволяла создать ткань с нужным узором.
Ткацкий станок Жаккара
Первый автоматизированный станок Жаккар создал в 1801 году и на протяжении еще нескольких лет дорабатывал его. За свои достижения изобретатель получил пенсию в 3000 франков и одобрение Наполеона. Однако ни сам Жаккар, ни французский император не имели ни малейшего понятия, насколько важным станет это изобретение в будущем.
В 30-х годах XIX века на разработанные Жаккаром перфокарты обратил внимание английский математик Чарльз Бэббидж. В то время ученый ум трудился над созданием аналитической машины и решил использовать в ее конструкции перфокарты. Для этого англичанин даже совершил путешествие во Францию с целью подробно изучить станки Жаккара. Увы, но из-за низкого уровня технологий и недостатка финансовых средств аналитическая машина Бэббиджа так и не увидела свет. Тем не менее, ее конструкция стала впоследствии прообразом современных компьютеров.
Кроме этого, перфокарты использовались в табуляторе, разработанном в 1890 году Германом Холлеритом. Табулятор являлся механизмом для обработки статистических данных и использовался на благо Бюро переписи населения США. Кстати, созданная Холлеритом компания Tabulating Machine Company в конечном итоге была переименована в International Business Machines (IBM). На протяжении нескольких десятков лет IBM развивала и продвигала технологию перфокарт. В середине XX века они использовались повсеместно, получив особенно широкое распространение в компьютерной технике и различных станках. Закат эпохи перфокарт пришелся на 1980-е годы, когда на смену им пришли более совершенные магнитные носители информации. Интересно, что отдел исследования перфокарт компании IBM существовал вплоть до 2000-х годов. Например, в 2002 году в IBM изучали создание перфокарты размером с почтовую марку, которая могла бы содержать до 25 миллионов страниц информации.
Магнитные диски
Несмотря на то, что перфокарты отличались простотой изготовления, они обладали и целым рядом довольно существенных недостатков. Во-первых, это небольшая емкость. Стандартная перфокарта вмещала в себе около 80 символов, что соответствовало 100 байтам информации. Это очень мало. Судите сами: для хранения одного мегабайта данных потребовалось бы свыше десяти тысяч таких перфокарт. Во-вторых, это низкая скорость чтения и записи. Даже самые совершенные считывающие устройства могли обрабатывать не более одной тысячи перфокарт в минуту. То есть за секунду они считывали лишь 1,6 Кбайт данных. Ну и в-третьих, это невысокая надежность и невозможность повторной записи. Конечно, понятие «надежность» не совсем корректно использовать по отношению к перфокартам. Однако, согласитесь, повредить изготовленную из тонкого картона пластину не составляет никакого труда. Вдобавок к этому делать отверстия в картах нужно было очень аккуратно и внимательно: одна лишняя «дырка» — и перфокарта приходила в негодность, а хранящаяся на ней информация безвозвратно пропадала.
К хранению данных требовался новый подход. И в середине XX века были созданы первые магнитные носители информации. Эпоху данного типа накопителей открыла магнитная пленка, разработанная немецким инженером Фрицем Пфлюмером. Патент на это устройство был выдан еще в 1928 году, но немецкие власти так долго «скрывали» технологию внутри страны, что за пределами державы о ней стало известно лишь после окончания Второй мировой войны. Магнитная пленка изготавливалась из тонкого слоя бумаги, на который напылялся порошок оксида железа. При записи информации пленка попадала под воздействие магнитного поля, и на поверхности ленты сохранялась определенная намагниченность. Это свойство затем и использовали считывающие устройства.
Магнитная лента использовалась в компьютере UNIVAC-I
Впервые магнитная лента была применена в коммерческом компьютере UNIVAC-I, выпущенном в 1951 году. Кстати, его первый экземпляр попал в то же самое Бюро переписи населения США. Магнитная пленка, используемая в UNIVAC-I, была намного более емкой, нежели перфокарты. Ее объем равнялся емкости десяти тысяч перфокарт, то есть он составлял примерно 1 Мбайт.
Развитие технологии магнитных лент продолжалось до 1980-х годов. В течение этого времени подобные накопители использовались в основном в мейнфреймах и мини-компьютерах. Ну а с 80-х годов магнитная лента использовалась лишь для резервного хранения данных. Этому способствовало то, что ленточные картриджи оставались надежным и очень дешевым носителем информации. Но даже несмотря на эти преимущества, к концу 2000-х годов специалисты предрекали конец эпохи магнитных лент — цены на жесткие диски продолжали падать. Вдобавок они предлагали высокую плотность записи. Начиная с 2008 года, рынок ленточных накопителей уменьшался примерно на 14% в год, и даже ярые сторонники технологии признавали, что у нее нет шансов на выживание. Однако ситуация резко изменилась в 2011 году. В Таиланде произошло наводнение, продолжавшееся, по официальным данным, 175 дней. В результате наводнения было затоплено несколько индустриальных зон, где были расположены заводы по производству жестких дисков таких компаний, как Seagate, Western Digital и Toshiba. Как итог, цены на продукцию возросли на 60%, а объемы производства упали. Так магнитная лента получила вторую жизнь.
Магнитная лента IBM
Стоит отметить, что ленточные накопители, как правило, используются в тех сферах, где необходимо хранить очень большое количество информации. Например, в каких-либо крупных исследованиях. Так, магнитную ленту используют для записи результатов исследований на Большом адронном коллайдере. О преимуществах технологии в свое время рассказывал Альберто Пейс (Alberto Pace) — глава подразделения обработки и хранения данных CERN. Он отметил, что магнитная лента имеет четыре основных преимущества над жесткими дисками. Прежде всего, это скорость. Несмотря на то, что специализированному роботу требуется до 40 секунд, чтобы выбрать нужную кассету и вставить ее в считыватель, чтение данных из ленты происходит в четыре раза быстрее, чем с жесткого диска. Еще одним преимуществом магнитной ленты, по словам Пейса, является ее надежность. Если она рвётся, то ее можно легко склеить. В этом случае теряется лишь несколько сотен мегабайт данных. Когда выходит из строя жесткий диск, теряются абсолютно все данные. Глава подразделения CERN привел некоторые статистические данные, касающиеся надежности устройств. Так, в среднем за год в CERN из 100 петабайт данных, хранящихся на магнитных лентах, теряется лишь несколько сотен мегабайт. На жестких дисках располагается около 50 петабайт информации, и каждый год организация теряет до нескольких сотен терабайт в результате неисправностей HDD. Третьим преимуществом магнитной ленты является ее энергоэффективность, а точнее, экономичность. Сами ленты хранятся в неактивном состоянии, следовательно, они не потребляют энергию. Наконец, четвертое — это безопасность. Если злоумышленники получат доступ к жестким дискам, то они смогут уничтожить всю информацию за считанные минуты. В случае с магнитными лентами на это может уйти не один год.
Хранилище магнитных лент в CERN
Еще на два преимущества ленточных накопителей указал Эвангелос Элефтеро — руководитель отдела технологий хранения данных исследовательской лаборатории IBM в Цюрихе. Он отметил, что магнитные ленты все еще дешевле, чем жесткие диски. 1 Гбайт HDD стоит примерно 10 центов, тогда как стоимость аналогичной емкости магнитной ленты оценивается в 4 цента. Также Элефтеро обратил внимание на долговечность лент. Такой накопитель будет служить верой и правдой даже через 30 лет, в то время как рабочий цикл жесткого диска составляет всего 5 лет.
Тем не менее, стоит понимать, что магнитные ленты уже никогда не будут использоваться как единственная система хранения данных. Они занимают важное место в иерархической структуре хранения информации, но не являются (и не будут) ее основным звеном.
Дискеты
Следующей ступенью развития магнитных носителей информации стала дискета, которая была представлена в 1971 году. Над созданием девайса трудилась компания IBM. В 1967 году у «голубого гиганта» появилась необходимость рассылать клиентам обновления софта, и команда инженеров под руководством Алана Шугарта предложила идею компактного и быстрого гибкого диска. Спустя несколько лет в стенах IBM была создана 8-дюймовая дискета объемом 80 Кбайт с возможностью одноразовой записи. Решение получилось не очень удачным, поскольку притягивало много пыли и было чересчур хрупким для карманного девайса. Поэтому разработчики решили упаковать гибкий диск в защитный пластиковый кожух с тканевой прокладкой.
По своей конструкции дискета представляла собой диск из полимерных материалов, на который наносилось магнитное покрытие. Пластиковый кожух имел несколько отверстий. Центральное предназначалось для шпинделя дисковода, малое отверстие являлось индексным, то есть позволяло определить начало сектора. Наконец, через прямоугольное отверстие с закругленными углами магнитные головки дисковода работали непосредственно с диском.
Типы магнитных накопителей информации
Магнитные диски используются как запоминающие устройства,позволяющие хранить информацию долговременно, при отключенном питании. Для работы с Магнитными Дисками используется устройство, называемое накопителем на магнитных дисках (НМД).
Основные виды накопителей:
· накопители на гибких магнитных дисках (НГМД);
· накопители на жестких магнитных дисках (НЖМД);
· накопители на магнитной ленте (НМЛ);
· накопители CD-ROM, CD-RW, DVD.
Им соответствуют основные виды носителей:
· гибкие магнитные диски (Floppy Disk) (диаметром 3,5’’ и ёмкостью 1,44 Мб; диаметром 5,25’’ и ёмкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25’’, тоже прекращён)), диски для сменных носителей;
· жёсткие магнитные диски (Hard Disk);
· кассеты для стримеров и других НМЛ;
· диски CD-ROM, CD-R, CD-RW, DVD.
Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства.
Основные характеристики накопителей и носителей:
· скорость обмена информацией;
· надёжность хранения информации;
Принцип работы магнитных запоминающих устройств основан на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственно устройств чтения/записи информации и магнитного носителя, на который, непосредственно осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись производится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение величины напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.
Обычно НМД состоит из следующих частей :
Магнитный диск представляет собой основу с магнитным покрытием, которая вращается внутри дисковода вокруг оси.
Магнитное покрытие используется в качестве запоминающего устройства.
Кроме НЖМД и НГМД довольно часто используют сменные носители. Довольно популярным накопителем является Zip. Он выпускается в виде встроенных или автономных блоков, подключаемых к параллельному порту. Эти накопители могут хранить 100 и 250 Мб данных на картриджах, напоминающих дискету формата 3,5’’, обеспечивают время доступа, равное 29 мс, и скорость передачи данных до 1 Мб/с. Если устройство подключается к системе через параллельный порт, то скорость передачи данных ограничена скорость параллельного порта.
К типу накопителей на сменных жёстких дисках относится накопитель Jaz. Ёмкость используемого картриджа — 1 или 2 Гб. Недостаток — высокая стоимость картриджа. Основное применение — резервное копирование данных.
В накопителях на магнитных лентах (чаще всего в качестве таких устройств выступают стримеры) запись производится на мини-кассеты. Ёмкость таких кассет — от 40 Мб до 13 Гб, скорость передачи данных — от 2 до 9 Мб в минуту, длина ленты — от 63,5 до 230 м, количество дорожек — от 20 до 144.
Жесткий магнитный диск
Жесткие магнитные диски представляют собой несколько металлических либо керамических дисков, покрытых магнитным слоем. Диски вместе с блоком магнитных головок установлены внутри герметичного корпуса накопителя на жестких магнитных дисках (НЖМД), обычно называемого винчестером.
Термин «винчестер» возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973гю), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30″/30″ известного охотничьего ружья «винчестер». Жесткий диск представляет собой очень сложное устройство с высокоточной механикой и электронной платой, управляющей работой диска.
Структура жестких дисков имеет в целом такую же структуру, как и гибкие магнитные диски.
Магнитные пластины, установленные в накопителе, размещены на одной оси и вращаются с большой угловой скоростью. Обе стороны каждой пластины покрыты тонким слоем намагниченного материалазапись проводится на обе поверхности каждой пластины (кроме крайних).
У каждой магнитной стороны каждой пластины есть своя магнитная головка чтения/записи. Эти головки соединяются вместе и движутся радиально (по радиусу) по отношению к пластинам. Таки образом обеспечивается доступ к любой дорожке любой пластины
За счет использования нескольких магнитных пластин и гораздо большего количества дорожек на каждой стороне пластины информационная емкость жестких дисков может достигать 500 Гбайт.
Также как и НГМД, НЖМД относится к классу носителей с произвольным доступом к информации.
Основные характеристики винчестеров:
— быстродействие, определяемое временем доступа к нужной информации, временем ее считывания/записи и скоростью передачи данных
— емкость, то есть максимальданных, который можно записать на носитель;
— время безотказной работы (обычно составляет примерно 50 лет).
Во всех современных дисковых накопителях устанавливается кэш-буфер (память), ускоряющий обмен данными; чем больше его емкость, тем выше вероятность того, что в кэш-памяти будет необходимая информация, которую не надо считывать с диска (этот процесс в тысячи раз медленней); емкость кэш-буфера в разных устройствах может изменяться в границах от 64 Кбайт до 2Мбайт.
Существуют сменные жесткие диски и, соответственно, дисководы для них. Главным образом они используются для переноса больших объемов информации между компьютерами либо для хранения архивных данных.
Гибкие магнитные диски
Одним из наиболее распространенных носителей информации являются гибкие магнитные диски (дискеты), или флоппи-диски. Диски называются гибкими потому, что их рабочая поверхность изготовлена из эластичного материала и покрыта специальной, достаточно плотной пленкой, покрытой ферромагнитным слоем.
Дискета помещается в твердый защитный пластмассовый корпус. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри корпуса. Для доступа к магнитной поверхности диска в защитном конверте имеется закрытое шторкой окно.
Информация записывается с двух сторон диска на дорожках, которые представляют собой концентрические окружности. Каждая дорожка разделяется на секторы. Запись и чтение информации с дискеты возможна только при наличии на ней разметки на дорожки и секторы.
Для работы с гибкими магнитными дисками предназначено устройство, называемое дисководом, или накопителем на гибких магнитных дисках (НГМД). Нгмд относится к группе накопителей прямого доступа и устанавливается внутри системного блока.
НГМД приводится во вращение только при команде чтения или записи, в другое время он находится в покое. При обращении к НГМД для записи/чтения информации магнитная головка накопителя устанавливается над тем сектором диска, куда нужно записать или откуда требуется считать информацию.
Для этого один двигатель накопителя обеспечивает вращение диска внутри защитного конверта, а другой перемещает головку чтения / записи вдоль радиуса поверхности диска. Головка чтения-записи во время работы механически контактирует с поверхностью дискеты, что приводит к быстрому изнашиванию дискет.
Для того, чтобы на диске можно было хранить информацию, диск должен быть отформатирован, то есть должна быть создана физическая и логическая структура диска. Форматирование диска производится специальной программой, входящей в системное программное обеспечение.
Физическая структура диска
Основными элементами физической структуры диска являются:
Каждая дорожка делится на сектора. У диска на каждой дорожке одинаковое количество секторов. Нумерация секторов производится последовательно с 1 сектора нулевой дорожки до последнего сектора последней дорожки.
Каждый сектор имеет размер 512 байт. Поэтому плотность записи данных на дорожках, лежащих ближе к центру выше, чем на крайних.
Форматирование физической структуры диска состоит в магнитной разметке поверхности диска на дорожки и секторы. Для этого в процессе форматирования магнитная головка дисковода расставляет в определенных местах диска метки дорожек и секторов. После форматирования гибкого диска 3,5″, его стандартные параметры будут следующие:
-дорожек на одной стороне – 80
-количество секторов на одной дорожке – 18
-информационная емкость сектора – 512 байт
Логическая структура диска
Основными элементами логической структуры диска являются:
Файловая система отслеживает, какие из кластеров в настоящий момент используются, какие свободны, какие помечены, как неисправные.
При записи файла всегда будет занято целое число кластеров, соответственно минимальный размер файла равен размеру одного кластера.
Таблица размещения файлов (FAT-таблица), в которой содержится полная информация о кластерах, которые занимают файлы.
Корневой каталог. Файловая система организует кластеры в файлы и каталоги. Каталоги реально являются также файлами определенной структуры, содержащими список файлов и подкаталогов, принадлежащих данному каталогу. Для размещения корневого каталога и таблицы FAT на гибком диске отводятся сектора со 2 по 33.
Первый сектор отводится для азмещения загрузочной записи операционной системы. Сами файлы могут быть записаны, начиная с 34 сектора.
Основными параметрами дискеты является технологический размер (в дюймах), плотность записи и полная емкость. В настоящее время стандартом являются дискеты размером 3,5 дюйма, высокой плотности HD, имеющие емкость 1,44 Мбайта.
Что такое буфер обмена?
Буфер обмена — это временная область хранения информации, скопированной или перемещенной из одного места и предназначенной для вставки в другое место. Можно выбрать текст или графический объект и затем с помощью команд «Вырезать» или «Копировать» поместить выбранное в буфер обмена, где оно будет храниться до тех пор, пока не будет помещено в выбранное место с помощью команды «Вставить». Например, можно скопировать фрагмент текста с веб-узла, а затем вставить его в почтовое сообщение. Буфер обмена доступен в большинстве программ для Windows.
Файлы и каталоги
Файл (англ. file) — блок информации на внешнем запоминающем устройстве компьютера, имеющий определённое логическое представление (начиная от простой последовательности битов или байтов и заканчивая объектом сложной СУБД), соответствующие ему операции чтения-записи и, как правило, фиксированное имя (символьное или числовое), позволяющее получить доступ к этому файлу и отличить его от других файлов.
Катало́г (англ. directory — справочник, указатель) — объект в файловой системе, упрощающий организацию файлов. Типичная файловая система содержит большое количество файлов и каталоги помогают упорядочить её путём их группировки.
Каталог, прямо или косвенно включающий в себя все прочие каталоги и файлы файловой системы, называется корневым. В Unix-подобных ОС он обозначается символом / (дробь, слеш), в DOS и Windows исторически используется символ \ (обратный слеш), но с некоторого времени поддерживается и /.
Родительским каталогом называется каталог, в котором находится текущий. Он обозначается двумя точками (..).
Каталог в UNIX — это файл, содержащий несколько inode и привязанные к ним имена.[1] В современных UNIX-подобных ОС вводится структура каталогов, соответствующая стандарту FHS.
Все современные ОС обеспечивают создание файловой системы, которая предназначена для хранения данных на дисках и обеспечения доступа к ним.
Основные функции файловой системы можно разделить на две группы:
Функции для работы с файлами (создание, удаление, переименование файлов и т.д.)
Функции для работы с данными, которые хранятся в файлах (запись, чтение, поиск данных и т.д.)
Известно, что файлы используются для организации и хранения данных на машинных носителях. Файл – это последовательность произвольного числа байтов, обладающая уникальным собственным именем или поименованная область на машинных носителях.
Структурирование множества файлов на машинных носителях осуществляется с помощью каталогов, в которых хранятся атрибуты (параметры и реквизиты) файлов. Каталог может включать множество подкаталогов, в результате чего на дисках образуются разветвленные файловые структуры.Организация файлов в виде древовидной структуры называется файловой системой.
Принцип организации файловой системы – табличный. Данные о том, в каком месте на диске записан файл, хранится в таблице размещения файлов (File Allocation Table, FAT).
Эта таблица размещается в начале тома. В целях защиты тома на нем хранятся две копии FAT. В случае повреждения первой копии FAT дисковые утилиты могут воспользоваться второй копией для восстановления тома.
По принципу построения FAT похожа на оглавление книги, так как операционная система использует ее для поиска файла и определения кластеров, которые этот файл занимает на жестком диске.
Наименьшей физической единицей хранения данных является сектор. Размер сектора 512 байт. Поскольку размер FAT – таблицы ограничен, то для дисков, размер которых превышает 32 Мбайт, обеспечить адресацию к каждому отдельному сектору не представляется возможным.
В связи с этим группы секторов условно объединяются в кластеры. Кластер является наименьшей единицей адресации к данным. Размер кластера, в отличие от размера сектора, не фиксирован и зависит от емкости диска.
Сначала для дискет и небольших жестких дисков (менее 16 Мбайт) использовалась 12-разрядная версия FAT (так называемая FAT12). Затем в MS-DOS была введена 16-разрядная версия FAT для более крупных дисков.
Операционные системы MS DOS, Win 95, Win NT реализуют 16 – разрядные поля в таблицах размещения файлов. Файловая система FAT32 была введена в Windows 95 OSR2 и поддерживается в Windows 98 и Windows 2000.
FAT32 представляет собой усовершенствованную версию FAT, предназначенную для использования на томах, объем которых превышает 2 Гбайт.
FAT32 обеспечивает поддержку дисков размером до 2 Тбайт и более эффективное расходование дискового пространства. FAT32 использует более мелкие кластеры, что позволяет повысить эффективность использования дискового пространства.
В Windows XP применяется FAT32 и NTFS. Более перспективным направлением в развитии файловых систем стал переход к NTFS (New Technology File System – файловая система новой технологии)с длинными именами файлов и надежной системой безопасности.
Объем раздела NTFS не ограничен. В NTFS минимизируется объем дискового пространства, теряемый вследствие записи небольших файлов в крупные кластеры. Кроме того, NTFS позволяет экономить место на диске, сжимая сам диск, отдельные папки и файлы.
По способам именования файлов различают “короткое” и “длинное” имя.
Согласно соглашению, принятому в MS-DOS, способом именования файлов на компьютерах IBM PC было соглашение 8.3., т.е. имя файла состоит из двух частей: собственно имени и расширения имени. На имя файла отводится 8 символов, а на его расширение – 3 символа.
Имя от расширения отделяется точкой. Как имя, так и расширение могут включать только алфавитно-цифровые символы латинского алфавита. Имена файлов, записанные в соответствии с соглашением 8.3, считаются “короткими”.
В имени разрешается использовать пробелы и несколько точек. Имя файла заканчивается расширением, состоящим из трех символов. Расширение используется для классификации файлов по типу.
Несмотря на то, что данные о местоположении файлов хранятся в табличной структуре, пользователю они представляются в виде иерархической структуры – людям так удобнее, а все необходимые преобразования берет на себя операционная система.
-создание файлов и присвоение им имен;-создание каталогов (папок) и присвоение им имен;-переименование файлов и каталогов (папок);
-копирование и перемещение файлов между дисками компьютера и между каталогами (папками) одного диска;
-управление атрибутами файлов.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.