Что относится к коллоидам
Что относится к коллоидам
Выбор первичных средств замещения плазмы ограничен. Кровь и препараты крови имеются в ограниченном количестве. Все большее беспокойство вызывает опасность инфекционных и иммунологических заболеваний, продолжают увеличиваться затраты, связанные с получением, хранением, перекрестными пробами, обработкой и распространением крови и препаратов крови.
Заменители крови и плазмы являются экономически эффективной альтернативой препаратам крови.
Рекомендации по применению альбумина и небелковых коллоидных и кристаллоидных растворов приведены в таблице ниже.
Кристаллоиды
Растворы электролитов, содержащие натрий (такие кристаллоиды, как изотонический раствор и лактатный раствор Рингера), не обладают онкотическим давлением и поэтому относительно неэффективны с точки зрения увеличения объема крови.
Пониженное осмотическое давление благоприятствует движению жидкости в интерстициальное пространство, способствуя развитию интерстициального отека легких. После интраваскулярной инфузии эти препараты распределяются по всей внеклеточной жидкой среде.
Только около 25 % введенного объема остается внутри сосудов. Если их вводят отдельно для поддержания объема крови, они вызывают серьезную гипоальбуминемию. Для эффективного увеличения объема плазмы требуются большие объемы препаратов. Исследования, которые проводили Shoemaker и соавт., показали, что коллоидная терапия может улучшить сердечную деятельность и транспорт кислорода.
Shoemaker и соавт. полагают, что главным становится конечная цель, а не тип применяемой жидкости. Основная проблема заключается в том, как увеличить транспорт кислорода на клеточном уровне у тяжелобольного.
Цель — увеличить сердечный индекс на 50 % больше нормы (> 4,5 л/мин/м 2 ), поглощение кислорода на 30 % выше нормы (> 170 мл/мин/м 2 ), подачу кислорода выше нормы (>600 мл О2/мин/м 2 ) и увеличить объем крови на 500 мл относительно нормы (3,2 л/м 2 для мужчин и 2,8 л/м 2 для женщин). Wagner и D’Amelio представили обстоятельный обзор по этим темам.
Коллоиды
Применение синтетических коллоидов ограничено главным образом внутрисосудистым пространством, поскольку они содержат коллоидные осмотические частицы, которые из-за своих размеров в значительной степени удерживаются нормальными капиллярными эндотелиальными клетками в базальной мембране.
Вследствие осмотического давления, оказываемого молекулами через капиллярный эндотелий, раствор находится во внутрисосудистом пространстве. Эти коллоидные макромолекулы пребывают во взвешенном состоянии в электролитном растворе, концентрация натрия в котором близка к концентрации натрия в плазме.
Три основные группы синтетических коллоидов — декстраны, желатины и гидроксиэтиловый крахмал. Для медиков-токсикологов основные проблемы, возникающие вследствие применения плазмозаменителей, разделяются на 4 главные категории: анафилактоидные реакции, отек легких, почечная недостаточность и проблемы со свертываемостью крови.
Физиологические и химические свойства некоторых коллоидов приведены в таблице ниже.
Рекомендации Ассоциации университетских клиник по применению альбумина, небелковых коллоидов и кристаллоидных растворов
При начальной реанимации в первую очередь следует применять кристаллоиды. В отсутствие препаратов крови коллоиды могут быть применены в совокупности с кристаллоидами.
С точки зрения экономической эффективности*, небелковые коллоиды предпочтительнее альбумина, за исключением следующих случаев:
• если необходимо ограничить натрий, рекомендуется использовать 25 % альбумин, разбавленный до 5 % пятипроцентным раствором декстрозы;
• если небелковые коллоиды противопоказаны, рекомендуется использовать 5 % раствор альбумина**
В тех случаях, когда способность переноса кислорода подавлена и/или необходимо восполнить факторы свертывания крови или тромбоциты, кристаллоидные и коллоидные растворы нельзя рассматривать как заменители крови или компоненты крови.
Пациенты с симптомами шока в процессе гемодиализа также учтены в этом пункте рекомендаций и должны получать кристаллоидные растворы как наиболее предпочтительную реанимационную среду.
Эффективность коллоидных растворов при лечении сепсиса не установлена при проведении клинических испытаний; однако при капиллярном истечении с легочным или периферическим отеком или после того, как введение по меньшей мере 2 л кристаллоидного раствора оказалось безуспешным, можно применить небелковый коллоид.
Если небелковые коллоиды противопоказаны, можно использовать альбумин
В зависимости от функционирования оставшейся части печени и гемодинамического статуса целесообразно также применение небелковых коллоидных растворов и альбумина.
Если кристаллоиды не применяются, в качестве наиболее экономически эффективной альтернативы рекомендуются небелковые коллоиды.
Кристаллоидные растворы следует применять в начальном периоде реанимации, осуществляемой с введением жидкости (в течение первых 24 ч).
Коллоиды следует вводить в сочетании с кристаллоидами, если имеют место все три указываемых ниже обстоятельства:
• ожоги покрывают > 50 % поверхности тела пациента;
• с момента ожога прошло по меньшей мере 24 ч;
• с помощью кристаллоидной терапии не удалось скорректировать гиповолемию
Из соображений экономической эффективности рекомендуется применять небелковые коллоиды. Если последние противопоказаны, можно применять альбумин
Коллоидные растворы неэффективны, и их не следует применять при лечении ишемического инсульта или субарахноидального кровоизлияния.
От их применения по данным показаниям следует отказаться, за исключением тех случаев, когда гематокритное число у пациента при госпитализации ниже 40 %.
Пациенты, у которых при госпитализации было повышенное гематокритное число, должны получать кристаллоидные растворы для увеличения внутрисосудистого объема, при этом развивается состояние гиперволемии и гемодилюции (гематокритные показатели порядка 30 % обеспечивают максимальную церебральную перфузию).
В таких случаях может возникнуть необходимость в принятии дополнительных мер (например, кровопускание).
Из соображений экономической эффективности следует отказаться от коллоидных растворов (как небелковых, так и альбумина).
Альбумин не следует применять в качестве дополнительного источника белковых калорий для пациентов, нуждающихся в лечебном питании; однако для пациентов с диареей и непереносимостью энтерального питания введение альбумина может оказаться благоприятным, если имеют место все три указанных ниже условия:
• сильная диарея (> 2 л/день);
• уровень альбумина в сыворотке ниже 20 г/л (2,0 г/100 мл);
• диарея не прекращается, несмотря на применение короткоцепочечных пептидов и лекарств на основе отдельных элементов; следует рассмотреть возможность других причин диареи и исключить их
Использование небелковых коллоидов в дополнение к кристаллоидам можно рекомендовать в тех случаях, когда чрезвычайно важно избежать скопления интерстициальной жидкости в легких.
Для увеличения объема крови в послеоперационном периоде в первую очередь рекомендуется применять кристаллоиды, затем небелковые коллоиды и, наконец, альбумин.
Применение небелковых коллоидов целесообразно в том случае, если требуется уменьшить системный отек.
Альбумин нельзя применять в сочетании с фототерапией. Альбумин нельзя вводить до обменного переливания крови.
Альбумин с переменным успехом применяли в качестве адъюванта при обменных переливаниях крови, и его следует вводить только одновременно с переливанием крови.
Кристаллоиды и небелковые коллоиды не обладают билирубинсвязывающими свойствами, и их нельзя использовать в качестве альтернативных альбумину средств.
Альбумин, вводимый отдельно или в сочетании с модифицированной диетой и диуретиками, не следует использовать при лечении цирроза с удалением асцитической жидкости в объеме менее 4 л.
Наиболее предпочтительным вариантом является введение кристаллоидов, так как это позволяет предотвратить осложнения, связанные с парацентезом больших объемов, например такие, как пониженный эффективный объем плазмы и дисфункция печени.
Небелковые коллоиды и альбумин следует рассматривать как средства второго ряда, применяемые для предупреждения осложнений, обусловленных удалением 4 л или большего объема асцитической жидкости.
Нельзя считать окончательно установленной эффективность введения альбумина и/или небелковых коллоидов во время или после хирургической трансплантации почек.
Альбумин может быть полезен после пересадки печени как средство контроля асцитической жидкости и периферического отека, если справедливы все приводимые ниже условия:
• уровень сывороточного альбумина ниже 25 г/л (2,5 г/100 мл);
• давление заклинивания в легочных капиллярах ниже 12 мм рт.ст.;
• гематокрит больше 30 %
В этих случаях после трансплантации печени альбумин может также использоваться для возмещения потери асцитической жидкости через дренажные катетеры.
Применение альбумина при трансплантации печени не имеет достаточных документальных подтверждений в биомедицинской литературе.
Применение альбумина целесообразно в сочетании с плазмаферезом больших объемов.
Плазмаферез большого объема определяется как более 20 мл/кг за одну процедуру или более, чем 20 мл/кг в неделю при проведении повторных процедур.
При проведении плазмафереза в малом объеме экономически эффективными альтернативами являются кристаллоидные растворы и комбинации альбумина и кристаллоидов.
Гранулоцитоферез: небелковые коллоидные растворы пригодны в качестве осаждающих агентов при донорстве гранулоцитов и при острой редукции количества клеток в случаях хронической миелоидной лейкемии (хронической гранулоцитарной лейкемии).
Криоконсервация стволовых клеток: небелковые коллоидные растворы целесообразно использовать как часть криоконсервирующего раствора для хранения в замороженном виде гематопоэтических стволовых клеток:
• предварительная обработка дакроновых трансплантатов аорты: альбумин обеспечивает непроницаемость трансплантатов для крови перед пересадкой;
• отделение красных кровяных телец в случаях несовместимости основных групп крови при трансплантации костного мозга: показано применение небелковых коллоидов;
• тяжелый некротизирующий панкреатит: показано применение альбумина.
Тяжелая гипоальбуминемия; угрожающий почечно-печеночный синдром; возрастающая эффективность лекарственного средства; панкреатит без осложнений.
* Терапевтическая эквивалентность продуктов определялась в нескольких руководствах. В этих случаях продукты были рекомендованы на основании экономических соображений.
Так, небелковым коллоидам (которые в последнее время дешевле альбумина) отдавалось предпочтение при сопоставлении с альбумином. Изменения в относительной стоимости этих продуктов (например, альбумин становится менее дорогостоящим, чем небелковые коллоиды) должны находить отражение в новых редакциях этих руководств.
** Относительные противопоказания к использованию небелковых коллоидов включают следующие факторы (хотя число их, возможно, больше):
1) предшествующая сверхчувствительность к компонентам раствора;
2) расстройства, связанные с кровоточивостью;
3) риск серьезного внутричерепного кровоизлияния и
4) почечная недостаточность с олигурией или анурией.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Что относится к коллоидам
Гемодинамический эффект инфузионной терапии зависит от выбора плазмозаменителя, сосудистого тонуса и функционального состояния сердца. Сравнение гемодинамических эффектов кристаллоидов и коллоидов проводилось в целом ряде исследований. В исследовании Shoemaker проведено сопоставление эффекта инфузии 500 мл цельной крови, 500 мл 5 %-ного альбумина, 500 мл декстрана-70, 500 мл 10 %-ного декстрана-40 и 1000 мл раствора Рингера-лактата у пациентов, находящихся в критическом состоянии. Все растворы вводились в течение часа. Цельная кровь и коллоиды значительно увеличивали ОЦК, СВ, ударный индекс, индекс ударной работы левого желудочка, ЦВД и давление заклинивания в легочной артерии. Однако, несмотря на то, что объем введенного кристаллоидного раствора был в 2 раза больше, достоверных изменений вышеперечисленных параметров получено не было.
Таким образом, при возникновении артериальной гипотензии, обусловленной выраженной гиповолемией, для более быстрой стабилизации гемодинамики большинство авторов отдает предпочтение не кристаллоидным, а коллоидным растворам.
По нашему мнению, необходим индивидуальный подход к назначению кристаллоидных и коллоидных растворов с учетом степени дефицита ОЦК, причины, его вызвавшей, общего состояния пациента и сопутствующих заболеваний и осложнений.
Необходимо учитывать следующие основные особенности кристаллоидных растворов:
• кристаллоиды не имеют коллоидно-осмотического давления, что приводит к переходу жидкости во внеклеточное пространство;
• быстрое выведение почками;
• ограниченный волемический эффект и его продолжительность;
• сложность восполнения гиповолемии, превышающей 30 %;
• риск переполнения интерстициального пространства с развитием отека легких и гипоксии, а также периферических отеков и отека внутренних органов;
• у пациентов с заболеваниями сердца и почек объем вводимых кристаллоидных растворов должен быть ограничен.
Таким образом, основными показаниями к введению кристаллоидных растворов являются:
• восполнение объема внеклеточной жидкости;
• поддержание объема внеклеточной жидкости во время операции и в послеоперационном периоде;
• лечение умеренной гиповолемии (препараты для первичного восполнения ОЦК).
Показания к введению коллоидных растворов:
• лечение выраженной гиповолемии и шока (первичное восполнение ОЦК при кровотечении, травме и сепсисе);
• использование кровесберегающих технологий — намеренная нормоволемическая гемодилюция или компонентное кровевосполнение;
• профилактика относительной гиповолемии во время спи-нальной и эпидуральной анестезии;
• первичное заполнение аппарата ИК. Коллоидным плазмозаменителям отдается предпочтение в случае развития гиповолемического шока.
Объемы переливаемых коллоидных плазмозаменителей необходимо расчитывать, основываясь на значениях шокового индекса в соответствии с классификацией степени кровопотери. В случаях, когда уровень водного баланса организма невозможно оценить, следует стремиться к восполнению ОЦК, избегая при этом накопления коллоидных растворов в интерстициальном пространстве. Они должны приводить к стабилизации состояния пациента в течение нескольких часов, но не иметь большой продолжительности действия, чтобы не усложнять проведения лечебного процесса в условиях стационара. Коллоидные плазмозаменители не должны влиять на свертывающую систему крови, определение группы крови и crossmatch-реакции. При введении коллоидных плазмозаменителей необходимо учитывать количество содержащихся в них электролитов. При проведении сбалансированного восполнения дефицита ОЦК коллоидные растворы вводят в сочетании с кристаллоидными во избежание обезвоживания интерстнциального пространства организма.
Холодный утренний туман, оседающий на землю, столб дыма над костром, взвешенные частицы в воде рек и озер — все это мы видели множество раз.
Нас постоянно окружают дисперсные системы
Понимание коллоидных систем важно для общего понимания образования гидроокиси железа в водоочистке и принципов фильтрации. Этот старый советский обучающий фильм отлично рассказывает о том, что такое коллоиды, как они образуются и взаимодействуют с окружающей средой. СМОТРИМ! Если смотреть не получается — читаем.
Они состоят из вещества в мелкораздробленом состоянии — дисперсной фазы и среды в которой эта фаза распределеа и которую называют дисперсионной средой.
Величина частиц и степень их дисперсности может быть различной. Сравнительно большие размеры частиц имеют грубодисперсные системы — взвеси и эмульсии.
В истинных растворах вещество находится в виде молекул или оинов распределенных равномерно среди молекул растворителя.
Частицы грубодисперсных систем хорошо видны в микроскоп. Например, молоко, представляющее эмульсию капелек жира в сыворотке, дым — это множество твердых частиц, взвешенных в воздухе.
Грубодисперсные системы неустойчивы и со временем дисперсная фаза отделяется от дисперсионной среды (выпадает в осадок).
По размеру частиц промежуточной положение между истинными растворами и взвесями занимают коллоидные растворы — золи.
Коллоидные частицы очень малы. И все же они могут состоять из сотен и тысяч молекул.
Свойства коллоидных растворов
Коллоидные частицы настолько малы, что не видны в обычный микроскоп. По внешнему виду коллоидный раствор нельзя отличить от истинного. Однако, если на освещенный коллоидный раствор посмотреть сбоку, то свет луча будет виден, как светлая дорожка, образовавшаяся от рассеивания света частицами. Это явление используют для распознавания коллоидных растворов.
В истинном растворе свет луча не виден, так как молекулы и ионы истинного раствора слишком малы и не рассеивают его.
В коллоидном — свет хорошо заметен. Он образует так называемый конус Тиндаля. Частицы коллоидных растворов под уадарами молекул растворителя совершают непрерывные хаотические перемещения. Это явление носит название Броуновского движения.
Из-за очень малых размеров коллоидные частицы имеют огромную суммарную поверхность.
Поверхность кубика с длинной ребра в 1 см составляет всего 6 квадратных сантиметров.. Но если 1 кубический сантиметр вещества раздробить на части объемом в 1 кубический микрон, то общая их поверхность увеличится в 10 тысяч раз. Поэтому и поглотительные свойства у коллоидных частиц проявляются значительно сильнее, чем у нераздробленного вещества.
Что относится к коллоидам
С.Г. Решетников, А.В. Бабаянц, Д.Н. Проценко, Б.Р. Гельфанд
Кафедра анестезиологии и реаниматологии ФУВ РГМУ,
Городская клиническая больница №7, Москва
Введение
Инфузионная терапия является серьезным инструментом анестезиолога-реаниматолога и может дать оптимальный лечебный эффект только при соблюдении двух непременных условий: врач должен четко понимать цель применения препарата и иметь представление о механизме его действия. Нарушение водно-электролитного обмена может привести к тяжелым расстройствам сердечно-сосудистой и центральной нервной систем. В связи с этим рациональной можно считать только ту программу инфузионной терапии, которая основывается на четких знаниях водно-электролитного обмена.
Инфузионная терапия при длительных хирургических вмешательствах является неотъемлемой и важной частью анестезиологического пособия. Современное анестезиологическое пособие включает в себя не только введение наркотических анальгетиков, гипнотиков и других средств используемых для подавления болевой импульсации из зоны операции, но и управление функциями организма, в первую очередь дыханием и кровообращением. Эти задачи реализуются применением искусственной вентиляцией легких для обеспечения функции внешнего дыхания и инфузией жидкостей для обеспечения нормального минутного объема кровообращения.
Инфузионная терапия во время операции преследует несколько целей в зависимости от объема и длительности оперативного вмешательства и соматического состояния пациента.
Во-вторых, большие по объему операции сопровождаются более или менее значимой кровопотерей.
В-третьих, необходимо учитывать перспирацию жидкости из зоны операции. Открытая лапаротомная рана сама по себе является источником водных потерь.
Учитывая вышеизложенное, сбалансированная инфузионная терапия занимает важное место в профилактике и лечении периоперационных осложнений, наиболее грозным из которых считается нестабильная гемодинамика со всеми вытекающими из нее негативными последствиями.
Но, даже при малотравматичных и не особо длительных операциях, обходясь без инфузии, при, казалось бы, стабильной анестезии, в послеоперационном периоде могут возникнуть проблемы с заживлением операционного шва, развиться инфекционные осложнения и затянуться реабилитационный период. Такие осложнения не принято связывать с инфузией, однако ее вклад несомненен. Во многом это зависит не только от инфузии, но и от других факторов (адекватность анестезии, кровопотеря, травматичность операции и т.д.). В то же время рациональная инфузионная терапия является компонентом анестезиологического пособия, поддерживающим гомеостаз.
Основные принципы водно-электролитного обмена
Вода, количественно наиболее важная составная часть тела, имеет для организма основополагающее значение в качестве среды и участника обмена веществ (4, 5, 6). Содержание воды у людей индивидуально различно. Она, в частности, обеспечивает многообразные обменные процессы в организме:
1) Окружает в клетках внутриклеточные структуры и обеспечивает их общую деятельность.
2) Осуществляет обмен между клетками.
3) Яляется транспортной средой в обмене веществ между внешним миром и действующими клетками.
4) Участвует в терморегуляции.
Общую воду организма принято разделять на несколько секторов:
Распределение воды в организме
Обмен воды тесно связан с обменом солей. Около 90% веществ, растворенных во внеклеточной среде, приходятся на электролиты. В физиологическом понимании наиболее важными из них, являются ионы натрия, калия, хлора, бикарбоната. Электролиты диффундируя между секторами, способствуют поддержанию постоянного ионного градиента, а не диффундирующие коллоиды, не проникающие через капиллярную мембрану, определяют направление, скорость диффузии и количество перемещающихся ионов.
Распределение ионов по водным секторам
Передвижение воды в жидкостных пространствах подчиняется нескольким физиологическим принципам:
Осм=1.86Na+глюкоза+2 Азот мочевины+9. (12)
Давление, необходимое для противодействия движению воды по концентрационному градиенту через полупроницаемую мембрану, называется осмотическим давлением:
ОД=осмоляльность х 19.3
Общее осмотическое давление, которое создается обычными концентрациями компонентов плазмы, составляет 5620 мм рт.ст. (291,2 мОсм/кг х 19,3 мм рт.ст./мОсм/кг Н20). Если сравнивать осмотическое давление раствора Рингер-лактата (5268 мм рт.ст.) и физиологического раствора хлорида натрия (5944 мм рт.ст.), то становится ясно, что раствор Рингер-лактата замещает несколько меньший объем плазмы, чем физиологический раствор, поскольку меньшее осмотическое разведение плазмы приводит к движению воды из внеклеточного пространства во внутриклеточное в соответствии с осмотическим градиентом.
Вещества определяющие осмоляльность плазмы
Белки плазмы, альбумины и гамма-глобулины определяют коллоидно-осмотическое давление плазмы (онкотическое давление). Онкотическое давление составляет менее 1 % от общего осмотического давления, но белки осмотически активны и очень важны в плане поддержания ОЦП. Альбумин ограничивает движение воды в интерстициальное пространство, несмотря на большой концентрационный градиент (40 г/л и 10 г/л). Это позволяет поддерживать ОЦП и объем интерстициальной жидкости.
Тесная связь между водным, электролитным и кислотно-щелочным равновесием обусловливается физико-химическим законом электронейтральности. Этот закон заключается в том, что сумма положительных зарядов во всех водных пространствах равна сумме отрицательных зарядов. Постоянно возникающие изменения концентрации электролитов в водных средах сопровождаются изменением электропотенциалов с последующим восстановлением. Таким образом, при динамическом равновесии образуются стабильные концентрации катионов и анионов. Графическое изображение этого закона может быть представлено в виде диаграммы Гембла (13):
Содержание анионов в любом водном секторе равно содержанию катионов. Нарушение этого принципа приводит к водно-электролитному и кислотно-щелочному дисбалансу. Например, увеличение концентрации хлора, уменьшает концентрацию бикарбоната (основной буфер), что приводит к метаболическому ацидозу. Если принять, что сумма концентраций малых плазменных катионов (калий, кальций, магний), пределы колебаний не велики, составляет примерно 11 мэкв/л и равна сумме концентраций остаточных анионов, то электролитное равновесие можно представить следующим образом:
[Na+]=[Cl-]+сумма оснований,
В клинической практике, водно-электролитный баланс в основном зависит от распределения таких электролитов как натрий, хлор, бикарбонат.
Распределение воды и электролитов подчиняется не только законам осмоляльности. Наличие градиента концентрации натрия во вне- и внутриклеточном пространствах и отрицательный внутриклеточный заряд могли бы обеспечить силу, способную двигать натрий в сторону клетки. В действительности этого не происходит, поскольку такая сила оказывается сбалансированной другой, действующей в обратном направлении и называемой натриевым насосом. Энергия натриевого насоса, являющегося специфическим свойством клеточной мембраны, обеспечивается гидролизом АТФ и направлена на выталкивание натрия из клетки. Эта же энергия способствует движению калия в клетку (14,15).
Постоянство объема и осмоляльности внеклеточной жидкости поддерживается регуляторными механизмами, главным эффекторным органом которых являются почки. Раздражение осморецепторов гипоталамической области (при повышении осмолярности крови), а также волюморецепторов левого предсердия (при уменьшении объема крови) усиливает освобождение вазопрессина (АДГ) супраоптическим и паравентрикулярным ядрами гипоталамуса. Вазопрессин усиливает реабсорбцию воды в канальцах нефронов.
Раздражение рецепторов приводящей артериолы почки (при уменьшении почечного кровотока, кровопотере) и натриевых рецепторов плотного пятна юкстагломерулярного комплекса (при дефиците натрия) усиливает синтез и освобождение ренина. Образующийся под влиянием ренина ангиотензин-II увеличивает выброс надпочечниками альдостерона, который повышает реабсорбцию натрия. Уменьшение объема внеклеточной жидкости и ангиотензин стимулируют также центр жажды, расположенный в латеральной области гипоталамуса.
Антидиуретическим и антинатрийуретическим механизмам противостоят диуретические и натрийуретические. Главными действующими факторами этих механизмов являются реномедуллярные почечные простагландины и атриальный натрийуретический фактор (АНФ, атриопептид). АНФ вырабатывается в клетках предсердия и является пептидом из 28 аминокислот. Он повышает диурез и натрийурез, расслабляет гладкие мышцы сосудов и снижает артериальное давление. Содержание АНФ в предсердии и секреция его в кровь увеличивается под влиянием приема избытка воды и поваренной соли, растяжения предсердий, при повышении кровяного давления, а также при стимуляции а-адренорецепторов и рецепторов вазопрессина (16, 17, 18, 19).
Регуляция водного обмена тесно связана с состоянием волемии и интенсивностью периферического кровообращения, с проницаемостью сосудов, соотношением гидростатического и коллоидно-осмотического давления в просвете капилляра и интерстициальном пространстве.
Динамика баланса жидкости в организме определяется уравнением Старлинга:
Применительно к практике из уравнения Старлинга следует, что объем каждого водного сектора зависит от изменений гидростатического и коллоидно-осмотического давлений. Гипопротеинемия (гипоальбуминемия) с одной стороны приводит к снижению онкотического давления и уменьшению ОЦП, а с другой к интерстициальному отеку. Увеличение гидростатического давления, например при высокообъемных инфузиях кристаллоидов, приведет так же к интерстициальному отеку при нормальном или увеличенном ОЦП.
Классификация инфузионных растворов
Существуют различные классификации инфузионных растворов. По механизму лечебного действия они делятся на следующие группы: гемодинамические кровезаменители; дезинтоксикационные кровезаменители; препараты для парентерального питания; регуляторы водно-солевого обмена и КОС баланса; кровезаменители с функцией переноса кислорода; инфузионные антигипоксанты и кровезаменители комплексного действия. Согласно одной из современных классификаций (21) все инфузионные растворы делятся на следующие виды :
2) Базисные инфузионные растворы глюкозы и электролитов. Применяются для поддержания водно-электролитного баланса.
3) Корригирующие инфузионные растворы, в том числе молярные растворы электролитов и гидрокарбаната натрия, предназначенные для коррекции нарушений гидроионного и кислотно-щелочного баланса.
5) Растворы переносчики кислорода (перфторан, мафусол), увеличивающие кислородную емкость крови и нормализующие нормальный кислородный режим организма и метаболизм.
6) Средства парентерального питания, являющиеся субстратами для энергообеспечения.
Т.к. в данной работе речь идет об инфузионных растворах используемых во время оперативного вмешательства, растворы для парентерального питания, переносчики кислорода и диуретики не рассматриваются.
Например, раствор Рингер-лактат (осмоляльность 273 мОсм/кг) умеренно гипотоничен по сравнению с плазмой крови. Каждый литр этого раствора содержит 114 мл свободной воды. В противоположность гопотоническим, гипертонические растворы создают гиперосмолярность, тем самым увеличивают ОЦК. Например, 300 мл 7,5% NaCl увеличивает ОЦК на 1000 мл за счет привлечения в сосудистое русло тканевой жидкости (22).
Растворы глюкозы являются водными и предназначены в основном для восполнения внутриклеточного сектора и энергообеспечения. После метаболизма глюкозы, вода раствора распределяется между всеми водными секторами равномерно. Но учитывая, что внутриклеточный сектор составляет 2/3 общей воды организма, в плазме крови остается мизерное количество раствора. Применение растворов глюкозы, при нарушениях мозгового кровообращения и хирургических вмешательствах, в настоящее время не рекомендуется, поскольку они усугубляют ацидоз в тканях головного мозга (23)
Резюмируя вышесказанное, дилюционный ацидоз предсказуем и определяется как ятрогенное нарушение, вызываемое разбавлением бикарбоната во всем внеклеточном пространстве, которое может быть связано с гиперхлоремией или гипохлоремией в зависимости от того, была ли гемодилюция вызвана вливанием гиперхлоремического или гипохлоремического раствора (24).
Метаболический алкалоз всегда ятрогенный. В хирургии посттравматический алкалоз считается ятрогенным (25): из 1414 пациентов в тяжелом состоянии 12,5% имели артериальное pH более 7,55. Алкалоз является достаточно частым нарушением кислотно-основного баланса: 66% всех нарушений кислотно-основного баланса представляют собой метаболический или сочетание метаболического и респираторного ятрогенного алкалоза. При pH 7,58 или выше смертность среди этих пациентов составляет приблизительно 50% (26).
Коллоидные растворы хорошо возмещают ОЦП при нормальной проницаемости стенок капилляров. Каждый грамм введенного коллоида добавляет в кровоток примерно 20 мл воды (14-15 мл на 1 грамм альбумина, 16-17 мл на 1 грамм гидроксиэтилированного крахмала, 20-25 мл на 1 грамм декстрана) (27,28,29,30). После уравнивания онкотического давления возмещение ОЦП в первую очередь определяется дозой введенного коллоида в граммах, а не объемом и концентрацией вводимого раствора.
Наиболее часто используемые кристаллоидные растворы
Фармакологические характеристики ГЭК
При назначении препаратов ГЭК необходимо учитывать некоторые физико-химические характеристики. Чем ниже молекулярный вес и чем больше в полидисперсном препарате находится низкомолекулярных фракций, тем выше коллоидно-осмотическое давление.
Коллоиды или кристаллоиды в периоперационном периоде?
Приемущества и недостатки коллоидов и кристаллоидов
По данным мета-анализа восьми рандомизированных клинических исследований сравнения инфузионной терапии с применением коллоидов или кристаллоидов, выяснилось, что разница в смертности у больных травматологического профиля составила 12.3% (больше в группе где применяли коллоидные растворы), и 7,8% (больше в группе, где применяли кристаллоиды) у больных без травм.
Был сделан вывод, что у больных с заведомо повышенной проницаемостью капилляров назначение коллоидов может быть опасным, во всех остальных случаях оно эффективно. На большем количестве экспериментальных моделей и в клинических исследованиях не была получена четкая связь между коллоидно-онкотическим давлением, видом вводимого раствора и количеством внесосудистой воды в легких (46).
Основные аргументы в пользу выбора того или иного раствора должны основываться на правильной интерпритации различных показателей, характеризующих данную клиническую ситуацию,и сопоставимость с ней физико-химических свойств препарата:
Критерии выбора растворов для инфузионной терапии: проницаемость эндотелия, транспорт кислорода, факторы свертывания, онкотическое давление, отек тканей, баланс электролитов, кислотно-основное состояние, метаболизм глюкозы, мозговые нарушения.
В недавних публикациях об использовании кристаллоидов и коллоидов для жидкостной терапии, включая человеческий альбумин, оценивается и пересматривается (47, 48, 49, 50). В последний год использование альбумина как средства для реанимационной инфузии стало оспариваться. В системном обзоре Сochrane (51) сообщается, что риск смерти пациента в леченой альбумином группе выше чем в сравниваемой группе. Этот обзор предполагает, что терапия альбумином критических больных пациентов увеличивает летальность. Однако данный мета-анализ имеет ряд методологических слабостей, что ограничивает значение некоторых выводов из его данных.
Влияние инфузионных растворов на систему гемостаза
При длительных хирургических вмешательствах, когда объем и качество инфузионной терапии имеет принципиальное значение, а так же у пациентов с заболеваниями крови, необходимо считаться с влиянием инфузионных растворов, прежде всего синтетических коллоидов на систему гемостаза.
В настоящее время известно несколько механизмов гемостазиологического действия инфузионных растворов (53):
Таким образом, в большинстве случаев применение синтетических коллоидных плазмозаменителей приводит к снижению гемостатического потенциала крови, однако в ряде случаев инфузия коллоидов приводит к его повышению (54, 55, 56, 57, 58, 59, 60, 61, 62, 63).
Наиболее выраженное действие на систему гемостаза выявлено при использовании препаратов декстрана и ГЭК 200/0,5. Действие проявлялось угнетением и коагуляционного и сосудисто-тромбоцитарного звеньев.
Наиболее грубые нарушения гемостаза отмечены у декстрана. Снижение показателей функции тромбоцитов, уровня VIII фактора, и удлинение в связи с ним времени показателя коагулограммы, АЧТВ превышали те жи показатели в группе ГЭК 200/0,5. Подобный эффект декстрана хорошо освещен в литературе (53, 64).
Влияние растворов ГЭК на систему гемостаза различно. Наименее выраженным действием на гемостаз обладает ГЭК 130/42 (Венофундин). В рандомизированном двойном слепом исследовании группы Сандера (Sander et al.) исследовалось влияние различных групп ГЭК на гемостаз. Авторы пришли к выводу, что минимальное воздействие на гемостаз проявлялось у «Венофундина»(65). Также незначительное действие на гемостаз оказывает ГЭК 130/0,4 (66, 67). По данным большинства исследований из всех приведенных выше механизмов воздействия синтетических коллоидов на гемостаз для ГЭК 130/0,4 отмечена только гемодилюция, что отличает его от других препаратов ГЭК.
М.Jamnicki и соавт. (58) обнаружили равную степень повреждения системы гемостаза при применении ГЭК 200/0,5 и 130/0,4 в плане активации фибринолиза для обоих препаратов выявлено укорочение времени лизиса эуглобинового сгустка.
Бутров А.В. и соавт. исследовали свойства 6% ГЭК 200/0,5 (инфукол) в составе инфузии при плановых операциях экстирпации матки (69). Применение инфукола не выявило никаких изменений с системе гемостаза. Увеличение протромбинового времени несмотря на его достоверность, в отсутствие изменений других параметров коагулограммы однозначного обоснования не имели, кроме того, эти изменения находились в интервале нормы.
Еще одна группа плазмозамещающих препаратов используемых в составе инфузии при хирургических операциях, так называемые препараты модифицированного желатина (МЖ).
В литературе есть указания на влияние препаратов желатина на систему гемостаза (70, 71, 72, 73, 74). Существует мнение, что отрицательные свойства МЖ на гемостаз проявляются в усилении агрегационных свойств тромбоцитов. S.Karoutsos и соавт. при анализе динамики тромбоэластограмм на фоне применения раствора МЖ, у 42 пациентов выявили увеличение коагуляционного потенциала крови, при этом у одного больного отмечено развитие тромбоза глубоких вен голени. В тоже время имеются исследования, опровергающие положение о тромбогенности желатинов (75). Возможно имеется дозозависимое действие МЖ на тромбоцитарный гемостаз.
Долгое время аксиомой ситалось инертность криссталоидов по отношению к системе гемостаза, что называлось в числе существенных достоинств этого типа объемозамещающих растворов. Однако исследования последних если не разрушили, то по крайней мере серьезно пошатнули подобные представления. Целый ряд работ показал, в основном по данным тромбоэластографии, значимое повышение коагуляционного потенциала крови в связи с инфузией кристаллоидов, что отмечалось как в клинических исследованиях, так и в опытах in vitro. В особенности тромбогенные изменения сопровождают быструю инфузию больших доз кристаллоидных растворов. Одним из объяснений гиперкоагуляционных изменений, связанных с гемодилюцией, является развитие дисбаланса между анти-и прокоагулянтными механизмами. Наряду с внутрисосудистой гиперкоагуляцией инфузия большых доз кристаллоидов за счет наводнения внесосудистого пространства ухудшает местный гемостаз в тканях.
Резюме:
Венофундин и Волювен могут быть названы препаратами выбора среди крахмаллов при инфузионной терапии во время длительных хирургических вмешательствах, как препараты минимально влияющие на гемостаз.
2. Наиболее грубые изменения в системе гемостаза характерны для производных декстрана, что не позволяет их рекомендовать в больших объемах.
Обьем инфузионной терапии во время операции
На объем инфузионной терапии во время операции влияет много факторов (76). Гиповолемия часто сочетается с хронической артериальной гипертензией, вызывающей увеличение общего сосудистого сопротивления. На объём сосудистого русла также влияют различные лекарственные препараты, которые больной принимал длительное время до операции или которые использовались в качестве предоперационной подготовки.
Если у больного имеются такие нарушения, как тошнота, рвота, гиперосмолярность, полиурия, кровотечение, ожоги или нарушения питания, то следует ожидать предоперационной гиповолемии. Часто она остается нераспознанной вследствие перераспределения внутрисосудистого объема жидкости, хронической кровопотери, а также неизменной, а иногда даже и растущей массы тела. Причинами волемических нарушений в такой ситуации могут быть: нарушения функции кишечника, сепсис, синдром острого лёгочного повреждения, асцит, плевральный выпот и выброс гормональных медиаторов. Все эти процессы часто сопровождаются повышением проницаемости капилляров, в результате чего происходит потеря внутрисосудистого объёма жидкости в интерстициальное и другие пространства.