Что относится к гигиеническим свойствам ткани
Гигиенические свойства тканей
Для производства тканей широко используются волокнистые вещества растительного (хлопок, лен), животного (шерсть, шелк) происхождения, а также искусственные (шелк, штапельное полотно) и синтетические (капрон, лавсан). Эти волокна характеризуются тем, как они относятся к теплу (теплозащитность), к воздуху (воздухопроницаемость) и к воде (гигроскопичность, паропроницаемость, водоемкость, испаряемость влаги). Эти показатели находятся в зависимости от веса, толщины и пористости ткани.
Под теплозащитными свойствами подразумевается способность к поддержанию теплопотерь организма в окружающую среду на определённом уровне, что во многом зависит от покроя, количества слоёв одежды, тепловых показателей отдельных тканей, плотности прилегания одежды к телу.
Поскольку неподвижный (без конвекционных токов) пододежный воздух обладает крайне низкой теплопроводностью, то одежда куда лучше «греет» при увеличении числа ее слоёв независимо от теплопроводности материалов, из которых она сделана.
Изучение теплозащитности тканей проводится на человеке с учётом всех факторов внешней среды, а также на манекенах специальными приборами. В качестве эталона теплозащитных свойств одежды предложена единица «кло» (теплоизоляция комнатной одежды, равная 0,18 градус ккал/м 2 • час. При температуре воздуха 21°С, относительной влажности 50% и скорости движения воздуха 10 см/сек одна единица теплоизоляции «кло» обеспечивает комфорт спокойно сидящему человеку, одетому в рабочий костюм и обычное белье (если теплообразование у него составляет 50 ккал/м 2 • час и из них 38 ккал/м 2 • час тепла проходит через одежду).
Воздухопроницаемость необходима для поддержания теплового баланса организма с внешней средой и удаления из пододёжного пространства углекислоты, влаги и кожных выделений. Но чем выше воздухопроницаемость, тем ниже теплозащитные свойства.
Воздухопроницаемость ткани зависит в основном от ее строения, толщины, способа переплетения, количества и величины пор.
Циркуляция воздуха через ткань и одежду происходит под влиянием конвекции (связанной с нагревом воздуха у поверхности тела и с движениями человека), а также разности давлений наружного и пододежного воздуха при ветре.
Показателем вентиляционной способности одежды является содержание углекислоты в пододёжном пространстве, особенно в слое воздуха, непосредственно прилегающем к коже. «Поставщиками» углекислоты являются кожа и загрязненная одежда (в «условиях комфорта» содержание углекислоты колеблется от 0,06 до 0,09%).
Гигроскопичность. К свойствам ткани относится их способность сорбировать (поглощать) на своей поверхности водяные пары. Количество поглощаемой гигроскопичной влаги тканями зависит от природы волокон. Это играет важную роль для сохранения теплового равновесия организма человека.
Под влиянием гигроскопичной влаги ткани укорачиваются и утолщаются, в результате чего увеличивается их теплопроводность. Все это сказывается на нашем состоянии и самочувствии. Так, в условиях жаркого сухого климата высокая гигроскопичность (при наличии повышенной паропроницаемость) ткани способствует испарению пота.
Количество гигроскопической влаги, поглощаемой одеждой из воздуха, может достигать 10% веса одежды, причём шерстяные ткани это делают лучше, чем хлопчатобумажные.
Способность отдавать промежуточную воду путём испарения называется испаряемостью. Она у разных тканей различна (более быстро высыхают тонкие и гладкие, шерсть теряет воду медленнее, чем хлопчатобумажная материя, почему и меньше охлаждает тело).
Испаряемость зависит от температуры, влажности, скорости движения воздуха внешней среды, а также от содержания влаги в тканях. Это очень важно, особенно в условиях высоких температур, где необходимо, чтобы одежда хорошо впитывала и быстро отдавала влагу в окружающую среду.
Таким образом, влияние одежды на организм человека в значительной степени определяется свойствами тканей, из которых она изготовлена.
Гигиенические свойства тканей
Гигиенические свойства тканей
Гигроскопичность— способность ткани впитывать влагу из окружающей среды. Наибольшей гигроскопичностью обладают чистошерстяные изделия. Гигроскопичность очень важна для изделий бельевого и летнего ассортимента. Способностью быстро впитывать влагу и быстро ее отдавать обладают льняные ткани, ткани из натурального шелка, вискозы, хлопка. Синтетические волокна обычно обладают небольшой гигроскопичностью. Отделка ткани может существенно влиять на гигроскопичность ткани: водоотталкивающие пропитки, пленочные покрытия, отделка лаке, противоусадочное и противосминаемое пропитывание снижают гигроскопичность тканей. Гигроскопичность ткани определяет многие свойства ткани (электризуемость, паропроницаемость, водоупорность).
Воздухопроницаемость – способность ткани пропускать воздух, она определяет вентилирующие свойства ткани. Низкая воздухопроницаемость означает хорошую ветростойкость ткани. Воздухопроницаемость зависит от волокнистого состава, плотности и отделки ткани.
Ткани из натуральных волокон, которые состоят из тонких ворсинок, обладают более высокой воздухопроницаемостью, чем ткани из монолитных химических волокон. Однако ткани, переплетение которых имеет большое количество сквозных пор обладают хорошей воздухопроницаемостью, независимо от типа волокон, входящих в состав.
Теплозащитные свойства – определяются способностью ткани проводить тепло (менять свою температуру в зависимости от температуры окружающей среды). Теплозащитные свойства зависят от теплопроводности образующих ткань волокон, плотности, толщины и отделки ткани. Самым холодным волокном считается лен, так как он имеет высокие показатели теплопроводности, теплопроводность). Низкая теплопроводность шерсти определяется наличием в центре волокон шерсти канала с воздухом.
Использование толстой пряжи, увеличение линейного заполнения ткани, применение многослойных переплетений, ворсирования увеличивают теплозащитные свойство ткани.
Паропроницаемость – способность ткани пропускать водяные пары. Это свойство обеспечивает выход излишней парообразной и капельно-жидкой влаги (пота) из пододежного слоя.
Паропроницаемость зависит от гигроскопических свойств волокон, от плотности ткани, вида переплетения и характера отделки.
Водоупорность – способность ткани сопротивляться первоначальному проникновению воды. Это свойство важно для демисезонных курток, плащей, пальто.
Электризуемость – способность ткани накапливать на своей поверхности статистическое электричество. При трении постоянно идет процесс возникновения и рассеивание электрических зарядов. Если заряды возникают и не рассеиваются на поверхности образуется определенный электрических потенциал – происходит электролизация. Синтетические волокна, имеющие низкие показатели гигроскопичности, обладают способностью сильно электролизоваться, т. е. имеют высокие электроизоляционные свойства.
Величина образующегося на поверхности ткани электрического заряда и его знак (положительный или отрицательный) оказывают биологическое воздействие на организм. Натуральные, вискозные и полиамидные (нейлон) волокна способствуют созданию на коже человека отрицательно электрического поля, которое благотворно действует на человека. Существуют специальные синтетические волокна, из которых изготовляется лечебное белье, действие которого основано именно на высокой электризуемости. Большинство синтетических волокон создают положительное электрическое поле, которое неблаготворно действует на человека. При разработке новых текстильных материалов электризуемость можно менять рациональным подбором компонентов, входящих в состав смеси волокон. Например, сочетание волокон, накапливающих заряды противоположного знака, снижает электризуемость.
Пылеемкость – способность материалов удерживать пыль. Наибольшую пылеемкостью обладают ткани из рыхлых пушистых нитей (бархат, велюр, вельвет).
Физико-механические и эксплуатационные свойства ткани
Прочность, т. е. способность ткани сопротивляться разрыву, выражается в килограммах или граммах. Прочность определяют как по основе, так и по утку при разрыве полосок ткани шириной 5 см. на специальном приборе – разрывной машине. Начальное состояние между зажимами разрывной машины для испытания большинства тканей устанавливают равным 20 см. (при испытании шерстяных тканей и тканей из стекловолокна – 10 см.).
Растяжимость, или удлинение – увеличение длины образца при действии на него растягивающей нагрузки. Обычно удлинение выражается в процентах от начальной длины образца. Общее удлинение ткани при растяжении слагается из упругого, эластического и пластического. Упругим называется такое удлинение, которое почти мгновенно исчезает при снятии растягивающей нагрузки. Эластическим называется такое удлинение, которое исчезает спустя некоторое время после снятия растягивающей нагрузки. Пластическим называется такое удлинение, которое не исчезает после снятия растягивающей нагрузки. При эксплуатации тканей наиболее полезными являются упругие и эластические удлинения.
Жесткость – сопротивление ткани изменению формы. Для тканей наибольшее значение имеет жесткость при изгибе. Обычно жесткость тканей при изгибе оценивается обратной характеристикой – гибкостью.
Драпируемость – способность ткани к образованию округлых складок. Эта характеристика в значительной мере зависит от гибкости ткани.
Сминаемость – способность ткани сохранять складку в месте изгиба. Одежда из тканей менее сминаемых имеет более красивый вид. Образующиеся на ткани при смятии складки и морщины не только портят внешний вид одежды, но и ускоряют ее износ, так как по сгибам и складкам происходит более сильное истирание.
Трение и цепкость оцениваются величиной сопротивления при скольжении ткани по некоторой поверхности. Трение и цепкость имеют большое значение при эксплуатации ткани в качестве одежды. Например, подкладочные ткани должны обладать меньшей цепкостью и трением, так как при этих условиях будут меньше стеснять движения человека и лишь незначительно изменять внешний вид изделия.
Сопротивление истиранию – способность ткани противостоять истирающим воздействиям. Этот показатель определяют на специальных приборах, где образец ткани подвергается трению о шероховатую поверхность. В отдельных случаях образец при испытаниях перетирают до обрыва, и по числу оборотов вала прибора судят о величине сопротивления ткани истиранию. При другом методе образец ткани подвергают определенному числу истирающих воздействий и о сопротивлении ткани по потере прочности образца. Величина сопротивления истиранию зависит от трения и цепкости, вида волокнистого материала и структуры ткани.
Усадка – сокращение размеров ткани при эксплуатации (в результате стирки, утюжки и других факторов). Большая усадка ткани является отрицательным явлением. Она приводит к значительному сокращению размеров изделия и даже к непригодности их для дальнейшей носки.
Носкость, т. е. стойкость ткани к разрушающим воздействиям, возникающим при использовании одежды. Для оценки носкости учитывают влияние погоды, чистки, стирки, глажения и других факторов. Определяют это свойство ткани опытной ноской.
Гигиенические свойства
Гигиеническими принято считать ряд физических свойств тканей, которые учитываются при изготовлении одежды определенного назначения. К гигиеническим свойствам относятся гигроскопичность, воздухопроницаемость, паропроницаемость, водоупорность, капиллярность, водопоглощаемость, намокаемость, пылеемкость, электризуемость, теплозащитные свойства и др. Эти свойства зависят от волокнистого состава, параметров строения и характера отделки тканей.
Гигроскопичность характеризует способность ткани впитывать влагу из окружающей среды (воздуха). Гигроскопичность (Й^) — влажность материала при 100%-й относительной влаж-
ности воздуха и температуре 20 ± 2 °С. Ее можно определить по формуле, %: |
При оценке гигроскопических свойств текстильных материалов часто пользуются характеристикой их фактической влажности.
Влажность фактическая (И^) показывает содержание влаги в материале при фактической влажности воздуха и определяется
по следующей формуле, %:
Наибольшей гигроскопичностью обладают чистошерстяные изделия.
Гигроскопичность очень важна для изделий бельевого и летнего ассортимента. Способностью быстро впитывать влагу и быстро ее отдавать обладают льняные ткани, гигроскопичность которых около 12%. Хорошей гигроскопичностью обладают ткани из натурального шелка, вискозных волокон, хлопка, ацетатных волокон. Синтетические и триацетатные ткани имеют низкие значения показателей гигроскопичности.
Коэффициент воздухопроницаемости подсчитывается по формуле
Воздухопроницаемость очень важна для тканей бельевого и летнего ассортимента. Малоплотные ткани, имеющие большое количество сквозных пор, обладают хорошей воздухопроницаемостью и, следовательно, вентилирующей способностью. Плотные ткани из синтетических и триацетатных волокон, ткани со спецпропитками и отделками, создающими на поверхности материала пленочные покрытия и слои резины, не обладают воздухопроницаемостью или имеют низкий показатель этого свойства. Вместе с тем материалы с низкой воздухопроницаемостью обладают хорошей ветростойкостью. Именно поэтому ткани с пленочными покрытиями широко используются для изготовления штормовок, курток, стеганых пальто.
Паропроницаемость является важнейшим гигиеническим показателем материала, т. к. она обеспечивает выход излишней парообразной и капельно-жидкой влаги (пота) из пододежного слоя.
Паропроницаемость зависит от гигроскопических свойств волокон и нитей, составляющих ткань, и от пористости ткани, т. е. от ее плотности, вида переплетения и характера отделки.
Капиллярность характеризуется высотой (А, мм), на которую поднимается за определенное время
по полоске ткани размером 50 х 300 мм. Капиллярность непосредственно связана с волокнистым составом, пористостью и отделкой ткани.
Водопоглощаемость характеризуется процентным отношением массы влаги, поглощенной погруженным в воду образцом, к массе сухого образца:
Электризуемо сть различается по величине и полярности заряда. Установлено, что ткани, содержащие в своем составе различные синтетические волокна, могут быть сильно- или малоэлектризующимися, а также иметь положительную или отрицательную полярность. Природные волокна при трении накапливают положительные заряды, что благоприятно влияет на гигиенические свойства одежды.
Пылеемкость портит внешний вид ткани и способствует загрязнению одежды. Наибольшей пылеемкостью обладают ткани из рыхлых пушистых текстурированных нитей, материалы с вертикально стоящим ворсом (бархат, велюр, плюш, искусственная замша, вельветы и др.), рыхлые шерстяные ткани с начесом.
Колористическое оформление. По цветовому оформлению ткани могут быть отбеленными, гладкокрашеными, меланжевыми, пестроткаными, набивными (печатными), отваренными, кисло-ванными и суровыми.
При оценке текстильного рисунка определяют не только его художественный уровень, новизну, гармоничность формы и цветового оформления, но и соответствие назначению одежды и технологичность, т. е. возможность производственного исполнения.
По тематике рисунки на тканях делят на геометрические, орнаментальные, абстрактные, национальные, детские.
Прозрачность тканей связана с их способностью пропускать лучи видимой части спектра. Чем больше поверхностное заполнение и толщина нитей, чем темнее окраска ткани, тем меньше ее просвечиваемость. Прозрачность имеет большое значение для блузочных, платьевых, сорочечных тканей и других текстильных изделий. В зависимости от степени прозрачности ткани можно подразделить на высокопрозрачные, прозрачные, полупрозрачные и непрозрачные.
Мягкость ткани зависит от многих факторов: свойств волокон, крутки пряжи, плотности, переплетения и отделки ткани.
и отражается на его износостойкости, т. к, деформированная ткань быстрее изнашивается.
Волокнистый состав, строение и отделка тканей определяют ее сминаемость. Наибольшей сминаемостью обладают ткани из растительных волокон: хлопчатобумажные, вискозные, полиноз-ные и особенно чистольняные.
Ткани из волокон животного происхождения и ряда синтетических волокон (полиамидные, полиэфирные, полиуретановые, поли-олефиновые), обладающих высокой упругостью и эластичностью, слабо сминаются и восстанавливают первоначальную форму без влажно-тепловой обработки.
Увеличение крутки пряжи, повышение плотности тканей препятствуют смещению и деформации волокон при кручениях и сжатиях, поэтому уменьшают сминаемость тканей.
Сминаемость можно определить визуально (сжимая ткань в руке) при сравнении с эталонами или на приборах по углу восстановления складок в ткани после смятия.
Технологические свойства характеризуют способность ткани подвергаться обработке на разных стадиях процесса изготовления изделий. В процессе пошива изделий важны следующие свойства тканей: характер внешнего оформления (удобство раскроя), пластичность при влажно-тепловой обработке, драпируемость, осыпаемость и раздвижка нитей, прорубаемо сть, жесткость, мягкость, размерные показатели (ширина, длина), поверхностная плотность.
способность ткани к усадке и фиксированному удлинению при влажно-тепловой обработке.
Поц, раздвижкой понимают смещение нитей в тканях при эксплуатации под воздействием внешних сил. Раздвижка нитей чаще всего происходит около швов, а также в тех местах, где ткани в из-
делии испытывают многократные напряжения (пройма, спинка, локтевой шов, задний шов брюк и др.).
Прорубаемоспгь возникает при повреждении нитей иглой швейной машины. При пошиве изделий игла, прокалывая ткань, может пройти между нитями, повредить часть нити или разорвать ее. Степень прорубаемости зависит от подвижности нитей в ткани, их толщины, крутки и плотности расположения. На прорубаемость влияют толщина иглы и заостренность ее конца.
К технологическим свойствам следует отнести также сопротивляемость ткани загрязняемо сти, легкость очистки, восстановление формы тканей в изделиях после эксплуатации, стирки и химической чистки.
Факторы, влияющие на скорость и степень загрязнения волокон и тканей, несомненно, важны и при удалении загрязнений. При оценке способности волокон очищаться под действием стирки или химической чистки необходимо учитывать физические и химические свойства волокна, структуру ткани, характер загрязнителя и в зависимости от этого применять те или иные моющие средства или растворители, температуру, характер обработки, режим сушки и глаженья. Как правило, гидрофильные волокнистые материалы (хлопок, лен, вискоза) сравнительно легко загрязняются, но легко очищаются при стирке.
Усадку определяют всегда отдельно по основе и утку и вычисляют по формулам, %:
L2 и L2 » размеры ткани по основе и утку после замачивания или стирки.
Усадка тканей зависит от их волокнистого состава, плотности и характера отделки.
Наибольшую усадку дают шерстяные изделия, высыхающие в свободном состоянии после замачивания или обработки в водных растворах моющих средств. Поэтому рекомендуется сухая химическая чистка одежды из шерстяных тканей.
Дата добавления: 2016-03-27 ; просмотров: 835 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Гигиенические свойства тканей
Основное количество тканей, выпускаемых промышленностью, используется для производства одежды. Одежда необходима человеку для защиты тела от неблагоприятных воздействий внешней среды — низкой и высокой температуры, чрезмерной радиации, ветра, дождя, снега и др. Кроме этого она защищает от механических и химических повреждений кожного покрова, предохраняет поверхность тела человека от пыли, грязи, микроорганизмов, защищает от укусов насекомых и животных.
Основными показателями гигиенических свойств тканей являются: отсутствие в тканях вредных для человеческого организма веществ, сорбционные свойства тканей, проницаемость, теплозащитные свойства, пылеемкость и др.
Гигроскопичность — способность ткани поглощать водяные пары из окружающей атмосферы и удерживать их при определенных условиях. Это одно из важнейших свойств тканей. Гигроскопичность тканей изменяется с изменением относительной влажности воздуха и температуры, не оставаясь постоянной. Если бы содержание влаги в ткани не изменялось при изменении температуры и влажности, то гигроскопические свойства тканей потеряли бы свое значение в гигиеническом отношении. Ткани с определенной гигроскопичностью являются регулятором тепла между телом человека и окружающей средой.
Известно, что относительная влажность воздуха в закрытом помещении ниже, чем на открытом воздухе, особенно зимой и осенью (40—50 % — в помещении, 90—100 % — на улице). Благодаря этому поглощение влаги одеждой в помещении будет меньше, чем на открытом воздухе. Процесс адсорбции и кон
денсации водяных паров сопровождается выделением большого количества тепла, которое должно компенсировать снижение температуры воздуха при переходе из закрытого помещения на открытый воздух.
Количество выделенного при этом тепла эквивалентно тому количеству тепла, которое выделяется человеком за 3—4 ч. Следует отметить, что выделение тепла происходит не мгновенно, а в течение нескольких часов.
Гигроскопичность тканей зависит от их волокнистого состава, структуры, отделки и др.
Намокаемость — способность тканей впитывать капельно жидкую влагу. Это свойство является важным для бельевых, сорочечных, платьевых, полотенечных, простынных и других тканей. Намокаемость тканей характеризуется ее капиллярностью и водопоглощаемостью.
Капиллярность определяют по высоте подъема жидкости за один час в полоске ткани шириной 50 мм и длиной 300 мм, опущенной одним концом в кристаллизатор с раствором эозина (2 г/л) в спирте,
Водоупорность — способность текстильных материалов противостоять смачиванию. Водонепроницаемость — способность текстильных материалов противостоять смачиванию и проникновению воды.
Для придания тканям водоупорности их поверхность подвергается специальной обработке гидрофобными составами. Поскольку поры при этом не заполняются, такие ткани способны пропускать воздух и водяные пары.
В водонепроницаемых тканях поры заполнены специальным составом, образующим непрерывный слой или пленку, благодаря чему ткани не пропускают пары влаги, воздух, что значительно ухудшает гигиеничность тканей. Показатель водоупорности имеет большое значение для плащевых, пальтовых и костюмных шерстяных тканей. Водонепроницаемость важна для брезентов, палаточных тканей, зонтичных, плащевых и др.
Воздухопроницаемость — способность тканей пропускать воздух и обеспечивать вентилируемость одежды, создавая определенных газовый и влажностный состав пододежного пространства. Известно, что в воздушном пространстве содержится 0,03—0,04 % углекислого газа, а в пододежном пространстве
его может накапливаться 0,06—0,08 %. Гигиенисты утверждают, что при содержании углекислого газа в пододежном пространстве более 0,1 % наступает утомление и обморочное состояние. Чем больше пористость, тем больше воздухопроницаемость. Воздухопроницаемость ткани при данном давлении определяют по следующей формуле:
Паропроницаемость — способность тканей пропускать водяные пары, непрерывно образующиеся в пододежном пространстве. При определенных условиях (обильном потоотделении) количество водяных паров достигает больших размеров. При нормальных условиях человеческий организм выделяет 1 л водяных паров, при работе — 5—б л, интенсивной работе — 12 л.
Паропроницаемость характеризуется количеством миллиграммов паров воды, проходящих через 1 см 2 ткани за 1 ч (мг/1 см 2 /ч). Этот показатель является важной характеристикой определяющих потребительскую ценность бельевых, платьевых, блузочных, костюмных, пальтовых, подкладочных тканей.
Лучепроницаемостъ — наиболее важна проницаемость ультрафиолетовых лучей. Это свойство имеет большое значение, так как эти лучи в определенных количествах жизненно необходимы для жизнедеятельности человека. Это свойство тканей зависит от их волокнистого состава, структуры и отделки. Попадающие лучи могут не только проникать через одежду, но и отражаться и поглощаться ею.
Теплозащитность — способность сохранять тепло, выделяемое телом человека. Теплозащитные свойства являются одними из важных показателей для многих текстильных изделий, предназначенных для теплой одежды.
Обмен тепла между телом одетого человека и окружающей его средой — сложное и многообразное явление, в котором имеют место разные биологические и физические процессы, при этом сущность теплозащитного действия одежды не остается одинаковой. Она меняется в зависимости от рода одежды, климатических условий и условий труда, состояния организма человека и определяется различными свойствами тканей.
Передача тепла через ткань одежды может происходить: конвекцией, теплопроводностью, излучением, проведением паров влаги, выделяемой телом человека.
Теплоизолирующие свойства тканей зависят от многих факторов, но важнейшим является то, какое количество воздуха находится в закрытых порах ткани, которое зависит от волокнистого состава тканей, их структуры и характера отделки.
Пылеемкость — способность ткани воспринимать пыль и различные загрязнения из окружающей среды. Это — отрицательное свойство тканей, которое зависит от волокнистого состава тканей, ее структуры и отделки.