Что относится к газообразным диэлектрикам

Газообразные диэлектрики

Основными газообразными диэлектриками, применяющимися в электротехнике, являются: воздух, азот, водород и элегаз (гексафторид серы ).

По сравнению с жидкими и твердыми диэлектриками, газы обладают малыми значениями диэлектрической проницаемости и, высоким удельным сопротивлением и пониженной электрической прочностью.

Свойства газов по отношению к свойствам воздуха (в относительных единицах) приведены в таблице.

Свойства газов по отношению к свойствам воздуха

Что относится к газообразным диэлектрикамВоздух используется в качестве естественной изоляции между токоведущими частями электрических машин и линий электропередач. Недостатком воздуха является его окислительная способность из-за наличия кислорода и низкая электрическая прочность в неоднородных полях. Поэтому в герметизированных устройствах воздух используется редко.

Азот применяется в качестве изоляции в конденсаторах, высоковольтных кабелях и силовых трансформаторах.

Что относится к газообразным диэлектрикамВодород имеет пониженную электрическую прочность по сравнению с азотом и применяется в основном для охлаждения электрических машин. Замена воздуха водородом приводит к значительному улучшению охлаждения, так как удельная теплопроводность водорода значительно выше, чем у воздуха. Кроме того, при применении водорода снижаются потери мощности на трение о газ и вентиляцию. Поэтому водородное охлаждение позволяет повысить как мощность, так и КПД электрической машины.

Что относится к газообразным диэлектрикам

Что относится к газообразным диэлектрикамПреимуществами кабеля, заполненного элегазом, является малая электрическая емкость, то есть пониженные потери, хорошее охлаждение, сравнительно простая конструкция. Такой кабель представляет собой стальную трубу, заполненную элегазом, в которой при помощи электроизоляционных распорок укреплена проводящая жила.

Заполнение элегазом трансформаторов делает их взрывобезопасными.

Элегаз используется в высоковольтных выключателях, – элегазовых выключателях – так как обладает высокими дугогасящими свойствами.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Что относится к газообразным диэлектрикам

5. Газообразные диэлектрики.

Диэлектрики это вещества, основным электрическим свойством которых является способность поляризоваться в электрическом поле.

По агрегатному состоянию диэлектрики могут быть газообразными, жидкими, твёрдыми.

В зависимости от химического состава диэлектрические материалы подразделяются на органические и неорганические.

Что относится к газообразным диэлектрикам

Воздух − смесь азота, кислорода и инертных газов. Играет роль изолирующей и охлаждающей среды во многих электрических установках.

На воздушных электрических линиях, в распределительных устройствах, в коммутационной аппаратуре и других электрических изделиях воздух является единственной изоляцией между неизолированными проводами. Иногда в слое воздуха, непосредственно соприкасающемся с поверхностью проводов высокого напряжения, наблюдается светлое фиолетовое свечение – электрическая корона, которое сопровождается характерным шипением. Электрическая корона возникает при ухудшении электроизоляционных свойств воздуха или при воздействии на воздух повышенного напряжения и вызывает потери энергии.

Что относится к газообразным диэлектрикам

Воздух может находиться в твёрдой и жидкой изоляции электрооборудования при плохой пропитке изоляции и очистке пропитывающего материала. В этом случае могут произойти разрядные процессы при высоких напряжениях электрического поля. Кроме того, воздух, содержащий кислород, способствует возникновению окислительных процессов в других материалах.

Элегаз − гексафторид серы (шестифтористая сера). Электрическая прочность в 2,5 раза больше, чем у воздуха. Применяется как изолирующий и дугогасящий материал при изготовлении кабелей, конденсаторов и высоковольтных выключателей. Элегазовые кабели не горючи, хорошо охлаждаются, имеют малую электрическую ёмкость. Элегазовые выключатели имеют высокие дугогасящие свойства и малые габариты.

Что относится к газообразным диэлектрикам

Азот − в чистом виде используется как изолирующая среда в высоковольтных конденсаторах и электровакуумной технике, а также как защитная среда (микроэлектроника, трансформаторы).

Используется как охлаждающая среда мощных электрических машин. Применение водородного охлаждения снижает вентиляционные потери, увеличивает срок службы твёрдой изоляции вследствие отсутствия окислительных процессов.

Что относится к газообразным диэлектрикам

Недостаток − в смеси с кислородом воздуха может образовывать взрывоопасную смесь.

Инертные газы − аргон, гелий, ксеон, неон. Эти газы имеют очень низкий потенциал ионизации, поэтому их электрическая прочность низкая. Применяют их в технике слабых токов и газоразрядных приборах.

Источник

Содержание материала

Диэлек-
трическая
проницае-
мость

Электриче-ская прочность, квмакс /мм

Коэффициент те плопроводности

Коэффициент теплопередачи от твердого тела к газу

Электрические характеристики и плотность выражены в истинных значениях, соответствующих данному газообразному диэлектрику, а тепловые характеристики — в условных единицах.
Элегаз—электрический газ, представляет собой соединение фтора с серой (шестифтористая сера); применяется в некоторых электрических аппаратах.
Вследствие этого газ может превратиться из диэлектрика в проводник, что ослабит изоляцию всей системы. Ионизация газовых включении часто влечет за собой пробой твердой изоляции, что может вызвать выход из строя электрической машины, аппарата, кабеля и т. д. В нормальных же условиях работы газообразные диэлектрики имеют очень малую проводимость и незначительные диэлектрические потери (tgSsdO_6), поэтому они широко применяются в высоковольтных выключателях, конденсаторах и в других устройствах. Приведенные примеры показывают, что изучение электрических явлений в газах и, в частности, в воздухе представляет практический интерес.

§ 44. Электропроводность газов

Во всех газах еще до воздействия на них электрического напряжения всегда имеется некоторое количество электрически заряженных частиц — электронов и ионов, которые находятся в беспорядочном тепловом движении. Это могут быть заряженные частицы газа, а также заряженные частицы твердых и жидких веществ— примесей, находящихся, например, в воздухе.
Образование электрически заряженных частиц в газообразных диэлектриках вызывается ионизацией газа внешними источниками энергии (внешними ионизаторами): космическими и солнечными лучами, радиоактивными излучениями Земли и др.
Процесс ионизации газа внешними ионизаторами заключается в том, что они сообщают часть энергии атомам газа. При этом валентные электроны приобретают дополнительную энергию и отделяются от своих атомов, которые превращаются в положительно заряженные частицы — положительные ионы. Образовавшиеся свободные электроны могут длительно сохранять самостоятельность движения в газе (например, в водороде, азоте) или через некоторое время они присоединяются к электрически нейтральным атомам и молекулам газа, превращая их в отрицательно заряженные ионы. Появление электрически заряженных частиц в газе может быть также вызвано выходом электронов с поверхности металлических электродов при их нагревании или воздействии на них лучистой энергии.
Находясь в беспорядочном тепловом движении, некоторая часть противоположно заряженных (электронов) и положительно заряженных (ионов) частиц воссоединяется друг с другом и образует электрически нейтральные атомы и молекулы газа. Этот процесс называется восстановлением или рекомбинацией.
Что относится к газообразным диэлектрикам
Рис. 91. Вольтамперная характеристика для газообразного диэлектрика
Если между металлическими электродами (диски, шары) заключить какой-то объем газа, то при приложении к электродам электрического напряжения на, заряженные частицы в газе будут действовать электрические силы — напряженности электрического поля.
Под действием этих сил электроны и ионы будут перемещаться от одного электрода к другому, создавая электрический ток в газе.
Ток в газе будет тем больше, чем больше заряженных частиц образуется в нем в единицу времени и чем большую скорость приобретают они под действием сил электрического поля. Ясно, что с повышением напряжения, приложенного к данному объему газа, электрические силы, действующие на электроны и ионы, увеличиваются. При этом скорость заряженных частиц, а следовательно, и ток в газе возрастают.
Изменение величины тока в зависимости от напряжения, приложенного к объему газа, выражается графически в виде кривой, называемой вольтамперной характеристикой (рис. 91). Последняя показывает, что в области слабых электрических полей, когда электрические силы, действующие на заряженные частицы, относительно невелики (область / на графике), ток в газе возрастает пропорционально величине приложенного напряжения. В этой области изменение тока происходит согласно закону Ома.
С дальнейшим ростом напряжения (область II) пропорциональность между током и напряжением нарушается. В этой области ток проводимости не зависит от напряжения. Здесь происходит накопление энергии заряженными частицами газа — электронами и ионами. С дальнейшим же повышением напряжения (область III) скорость заряженных частиц резко возрастает, вследствие чего происходят частые соударения их с нейтральными частицами газа. При этих упругих соударениях электроны и ионы передают часть накопленной ими энергии нейтральным частицам газа В результате электроны отделяются от своих атомов. При этом образуются новые электрически заряженные частицы: свободные электроны и ионы.
Ввиду того что летящие заряженные частицы соударяются с атомами и молекулами газа очень часто, образование новых электрически заряженных частиц происходит весьма интенсивно. Этот процесс называется ударной ионизацией газа. В области ударной ионизации (область III на рис. 91) ток в газе интенсивно возрастает при малейшем повышении напряжения. Процесс ударной ионизации в газообразных диэлектриках сопровождается резким уменьшением величины удельного объемного сопротивления газа и возрастанием тангенса угла диэлектрических потерь (tg 6).
Естественно, что газообразные диэлектрики могут использоваться при напряжениях, меньших тех значений, при которых возникает процесс ударной ионизации. В этом случае газы являются очень хорошими диэлектриками, у которых удельное объемное сопротивление очень велико (рц— 1020 ом-см), а тангенс угла диэлектрических потерь очень мал (tg б — 10-с). Поэтому газы, в частности воздух, используются в качестве диэлектриков в образцовых конденсаторах, газонаполненных кабелях п высоковольтных выключателях.

Развитие процесса ударной ионизации в газе приводит к пробою данного объема газа (точка П на рис. 91). В момент пробоя газа ток в нем резко возрастает, а напряжение стремится к нулю. Пробой газа происходит в виде искрового разряда, т. е. светящихся помещенных в газовой среде (рис. 92).
Что относится к газообразным диэлектрикам
Рис. 92. Искровой разряд в воздухе между металлическими шарами диаметром 800 мм
искр, соединяющих поверхности металлических электродов,
Явление пробоя газообразных диэлектриков в однородном * электрическом поле выражается формулой (закон Пашена):
Uпр = A ph., (44)
где Уnp — пробивное напряжение слоя газа; р — давление газа; h — расстояние между электродами в газе; А — величина, зависящая от давления газа (Р) и толщины слоя газа (/г).

* Однородным электрическим полем называется такое поле, во всех точках которого силы электрического поля (напряженности Е) равны между собой, а плотность силовых линий всюду одинакова.

§ 46. Пробой газов на границе с твердыми диэлектриками

Что относится к газообразным диэлектрикам
Рис. 100. Зависимость пробивного напряжения воздуха от расстояния между электродами в присутствии твердого диэлектрика (переменное напряжение 50 Гц):
1 — пробой воздуха без твердого диэлектрика, 2 — пробой воздуха в присутствии цилиндров из парафина, 3 — пробой воздуха в присутствии цилиндров из фарфора, 4 — пробой воздуха в присутствии цилиндров из фибры (диаметр цилиндров твердых диэлектриков 50 мм)
Выше рассматривались явления пробоя газа при отсутствии в нем твердых диэлектриков. На практике же часто встречаются случаи пробоя газа на границе с твердым диэлектриком. Примером этого является поверхностное перекрытие (искрой) фарфорового изолятора (рис. 99). Оно представляет собой пробой слоя воздуха у поверхности твердого диэлектрика. Во всех случаях пробоя воздуха на границе с твердым диэлектриком величина пробивного напряжения меньше по сравнению с пробивным напряжением для такого же расстояния в газе при отсутствии твердого диэлектрика.
Кривые на рис. 100 показывают зависимость пробивного напряжения воздуха без твердого диэлектрика и в присутствии твердых диэлектриков. В этом опыте твердые диэлектрики представляли собой сплошные цилиндры, которые своими торцовыми поверхностями плотно соприкасались с поверхностью дисковых электродов, расположенных в воздухе (рис. 101),
Понижение пробивного напряжения газа при наличии в нем твердого диэлектрика вызывается искажением однородного электрического поля зарядами на поверхности твердого диэлектрика, которое обусловлено различием диэлектрической проницаемости твердого диэлектрика и окружающего его воздуха.
Если же твердый диэлектрик в виде тонкого листа расположить между электродами в газе (рис. 102), используя его в качестве барьера, то, естественно, он будет затруднять процесс ударной ионизации газа. Это приведет к повышению пробивного напряжения газового промежутка, особенно в случае резко неравномерных полем между электродами: острие—плоскость и др.
Что относится к газообразным диэлектрикам
Рис. 102. Расположение тонкого электроизоляционного барьера в резко неоднородном поле в газе (между электродами острие — плоскость)
Рис. 101. Расположение твердого диэлектрика в слое воздуха между металлическими дисковыми электродами:
1—образец твердого диэлектрика в виде сплошного цилиндра, 2-металлические электроды — латунный диски с закругленными краями
Как показывают исследования, наибольший эффект повышения пробивного напряжения воздуха между острием и плоскостью достигается при расположении твердого изоляционного барьера от острия (см. рис. 102) на расстоянии S, равном
Что относится к газообразным диэлектрикам(45)
Следует заметить, что электрическая прочность любого из газообразных диэлектриков меньше электрической прочности жидких и твердых диэлектриков. Поэтому расстояния между голыми металлическими частями, находящимися под высоким напряженней в воздухе, всегда выбираются несколько большими по сравнению с расстояниями в жидкой или твердой изоляции.

Источник

Виды, свойства и область применения электроизоляционных материалов

Любое электрическое оборудование, включая генераторы, силовые установки и распределительные устройства, состоит из токоведущих частей. Для надежной и безопасной эксплуатации последние должны быть защищены друг от друга и от воздействия окружающих компонентов. В этих целях используются электроизоляционные материалы.

Важно, чтобы обмотка на якоре была отделена от его сердечника, виток возбуждения – от аналогичной детали, полюсов и каркаса агрегата. Материалы, которые применяются для изоляции чего-либо от воздействия электрического тока, называются диэлектриками. Стоит отметить, что такие изделия бывают двух типов – одни абсолютно не пропускают ток, другие – хоть и делают это, но в мизерных количествах.

Что относится к газообразным диэлектрикам

При создании подобных материалов применяют органические и неорганические элементы вкупе с различными добавками, необходимыми при пропитке и склеивании. В последнее время широкую популярность набирает жидкая изоляция для проводов, часто используемая в выключателях и трансформаторах (например, трансформаторное масло). Не реже в электротехническом оборудовании применяют газообразные диэлектрики, вплоть до обычного воздуха.

Электроизоляционные материалы и сферы их применения

К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.

Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.

Что относится к газообразным диэлектрикам

Свойства диэлектриков

Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током.

Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

Что относится к газообразным диэлектрикам

Параметры изоляции

К числу основных относятся:

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

Что относится к газообразным диэлектрикам

Классификация диэлектрических материалов

Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

Классификация по агрегатному состоянию

По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

Твердые диэлектрики

Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

Что относится к газообразным диэлектрикам

Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

Что относится к газообразным диэлектрикам

Жидкие диэлектрики

Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

Что относится к газообразным диэлектрикам

Жидкие электроизоляторы можно разделить на три основные группы:

Газообразные диэлектрики

Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.

Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

Что относится к газообразным диэлектрикам

Классификация по происхождению

По происхождению диэлектрики делятся на органические и неорганические.

Органические диэлектрики

Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

Что относится к газообразным диэлектрикам

Неорганические диэлектрики

Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

Что относится к газообразным диэлектрикам

В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *