Что относится к форменным элементам крови

Форменные элементы крови

Что относится к форменным элементам крови

Кровь представляет собой жидкий вид соединительной ткани, находящийся в постоянном движении. Благодаря этому, обеспечиваются многие ее функции – питательная, защитная, регуляторная, гуморальная и другие. В норме форменные элементы крови составляют около 45%, оставшуюся часть занимает плазма. В статье рассмотрим, какие частицы включает жизненно важная соединительная ткань, а также их основные функции.

Функции крови

Клетки крови являются очень важными для нормального функционирования всего организма. Нарушение этого состава ведет к развитию различных заболеваний.

Все эти функции обеспечиваются, благодаря лейкоцитам, эритроцитам, тромбоцитам и некоторым другим элементам.

Эритроциты

Красные кровяные тела, или эритроциты, являются транспортными клетками с двояковыпуклой дисковидной формой. Состоит такая клетка из гемоглобина и некоторых других веществ, благодаря чему с током крови обеспечивается перенос кислорода по всем тканям. Красные кровяные тела берут кислород в легких, затем разносят его по органам, возвращаясь оттуда уже с углекислым газом.

Образование эритроцитов проходит в красном костном мозге длинных костей рук и ног (в детском возрасте) и в костях черепа, позвоночника и ребер (у взрослых людей). Общая продолжительность жизни одной клетки составляет около 90–120 суток, после чего тела поддаются гемолизу, проходящему в тканях селезенки и печени, выводятся из организма.

Под воздействием различных заболеваний происходит нарушение формирования эритроцитов и искажение их формы. Это вызывает снижение выполнения ими своих функций.

Важно! Исследование количества и качества эритроцитов выступает в роли важного диагностического значения.

Лейкоциты

Лейкоцитами называют белые кровяные тела, выполняющие защитную функцию. Выделяют несколько видов этих клеток, различающихся по назначению, строению, происхождению и некоторым другим характеристикам.

Образуются лейкоциты в красном костном мозге и лимфатических узлах. Их роль в организме – защита от вирусов, бактерий, грибов и прочих патогенных микроорганизмов.

Нейтрофилы

Нейтрофилы – это одна из групп кровяных тел. Эти клетки относятся к наиболее многочисленному виду. Они составляют до 96% от всех лейкоцитов.

Эозинофилы

Концентрация в крови эозинофилов меньшая, но они выполняют не менее важную защитную функцию. После попадания в организм чужеродных клеток эозинофилы быстро движутся для их устранения к пораженному участку. Они с легкостью проникают через ткани кровеносных сосудов, поглощают непрошенных гостей.

Еще одна важная функция – связь и поглощение некоторых медиаторов аллергии, включая гистамин. То есть эозинофилы выполняют противоаллергическую роль. Кроме этого, они эффективно борются с гельминтами и глистными инвазиями.

Моноциты

Главная роль этого вида лейкоцитов – поглощение мертвых тканей, устранение микробов, опухолевых процессов, паразитарных форм жизни. Часто эти клетки называют «дворниками организма». Такое название они получили из-за своей способности обновлять кровь, тем самым очищая ее.

Моноциты отвечают за синтез белка интерферона. Именно интерферон обеспечивает блокировку распространения вирусов, способствует разрушению оболочки болезнетворных микроорганизмов.

Базофилы

Как и другие форменные элементы крови, базофилы вырабатываются в тканях красного костного мозга. После синтеза они попадают в кровоток человека, где находятся около 120 минут, после чего переносятся в клеточные ткани, где выполняют свои главные функции, находятся от 8 до 12 суток.

Главная роль этих клеток – своевременно выявить и нейтрализовать аллергены, остановить их распространение по организму, призвать другие гранулоциты к месту распространения чужеродных тел.

Кроме участия в аллергических реакциях, базофилы несут ответственность за кровоток в тонких капиллярах. Роль клеток в защите организма от вирусов и бактерий, а также в формировании иммунитета очень мала, несмотря на то, что основная их функция – фагоцитоз. Этот вид лейкоцитов берет активное участие в процессе свертываемости крови, увеличивает проницаемость сосудов, активно участвует в сокращении некоторых мышц.

Лимфоциты

Лимфоциты представляют собой важнейшие клетки иммунной системы, выполняющие ряд сложных задач. К ним относятся:

Иммунные клетки делятся на Т-лимфоциты, В-лимфоциты и NK-лимфоциты. Каждая из групп выполняет свою функцию.

Т-лимфоциты

По уровню этих тел в составе крови можно определить те или иные иммунные нарушения. Увеличение их количества говорит о повышенной активности природной защиты, что свидетельствует об иммунопролиферативных нарушениях. Низкий уровень говорит о дисфункции иммунитета. Во время лабораторного исследования учитывается число Т-лимфоцитов и других форменных элементов, благодаря чему и удается установить диагноз.

В-лимфоциты

Клетки этого вида имеют специфическую функцию. Их активация происходит только в тех условиях, когда в организм проникают определенные типы возбудителей. Это могут быть штаммы вируса, тот или иной вид бактериальной инфекции, белки или другие химические вещества. Если возбудитель носит другой характер, В-лимфоциты не оказывают на него никакого воздействия. То есть, главная функция этих тел – синтез антител и выполнение гуморальной защиты организма.

NK-лимфоциты

Этот тип антител может реагировать на любые патогенные микроорганизмы, перед которыми Т-лимфоциты оказываются бессильными. Благодаря этому, NK-лимфоциты называют натуральными киллерами. Именно эти тела эффективно борются с онкологическими клетками. На сегодняшний день ведутся активные исследования этого форменного элемента крови в сфере лечения раковых заболеваний.

Тромбоциты

Тромбоцитами называют мелкие, но очень важные клетки крови, без которых остановка кровотечения и заживление ран было бы невозможным. Синтезируются эти тела путем отщепления небольших частиц цитоплазмы от больших структурных образований – мегакариоцитов, расположенных в красном костном мозге.

Тромбоциты берут активное участие в процессе свертываемости крови, благодаря чему раны и ссадины имеют свойство заживать. Без этого любое поражение кожи или внутренних органов было бы смертельным для человека.

При повреждении сосуда тромбоциты быстро склеиваются между собой, образовывая кровяные сгустки, которые предотвращают дальнейшее кровотечение.

Норма форменных элементов в крови

Для выполнения всех необходимых функций крови количество всех форменных элементов в ней должно отвечать определенным нормам. В зависимости от возраста эти показатели изменяются. В таблице можно найти данные о том, какие цифры считаются нормальными.

Любые отклонения от нормы служат поводом к дальнейшему обследованию пациента. Для исключения ложных показателей человеку важно соблюдать все рекомендации по сдаче крови на лабораторное исследование. Сдавать анализ следует утром на голодный желудок. Вечером перед посещением больницы важно отказаться от острой, копченой, соленой пищи и алкогольных напитков. Забор крови осуществляется исключительно в условиях лаборатории с использованием стерильных приборов.

Регулярная сдача анализов и своевременное выявление тех или иных нарушений поможет вовремя диагностировать различные патологии, провести лечение, сохранить здоровье на долгие годы.

Источник

Кровь – внутренняя среда организма

Кровь – внутренняя среда организма, образованная жидкой соединительной тканью.

Состоит из плазмы и клеток (лейкоцитов, эритроцитов и тромбоцитов). Циркулирует по системе сосудов под действием силы ритмически сокращающегося сердца и не сообщается непосредственно с другими тканями тела. В среднем, массовая доля крови к общей массе тела человека составляет 6,5-7 %.

Плазма крови – жидкая часть крови, которая содержит воду и взвешенные в ней вещества (белки и другие соединения). Основными белками плазмы являются альбумины, глобулины и фибриноген. Около 85 % плазмы составляет вода. Неорганические вещества составляют около 2-3 %; это катионы (Na+, K+, Mg2+, Ca2+) и анионы (HCO3-, Cl-, PO43-, SO42-). Органические вещества (около 9 %) в составе крови подразделяются на азотсодержащие (белки, аминокислоты, мочевина, креатинин, аммиак, продукты обмена пуриновых и пиримидиновых нуклеотидов) и безазотистые (глюкоза, жирные кислоты, пируват, лактат, фосфолипиды, триацилглицеролы, холестерин). Также в плазме крови содержатся газы (кислород, углекислый газ) и биологически активные вещества (гормоны, витамины, ферменты, медиаторы).

Эритроциты (красные кровяные тельца) – самые многочисленные из форменных элементов. Зрелые эритроциты не содержат ядра и имеют форму двояковогнутых дисков. Циркулируют 120 дней и разрушаются в печени и селезёнке. В эритроцитах содержится железосодержащий белок – гемоглобин. Он обеспечивает главную функцию эритроцитов – транспорт газов, в первую очередь – кислорода. Именно гемоглобин придаёт крови красную окраску. В лёгких гемоглобин связывает кислород, превращаясь в оксигемоглобин, который имеет светло-красный цвет. В тканях оксигемоглобин высвобождает кислород, снова образуя гемоглобин, и кровь темнеет. Кроме кислорода, гемоглобин в форме карбогемоглобина переносит из тканей в лёгкие углекислый газ.

Тромбоциты (кровяные пластинки) представляют собой ограниченные клеточной мембраной фрагменты цитоплазмы гигантских клеток костного мозга (мегакариоцитов). Совместно с белками плазмы крови (например, фибриногеном) они обеспечивают свёртывание крови, вытекающей из повреждённого сосуда, приводя к остановке кровотечения и тем самым защищая организм от кровопотери.

Лейкоциты (белые клетки крови) являются частью иммунной системы организма. Они способны к выходу за пределы кровяного русла в ткани. Главная функция лейкоцитов — защита от чужеродных тел и соединений. Они участвуют в иммунных реакциях, выделяя при этом Т-клетки, распознающие вирусы и всевозможные вредные вещества; В-клетки, вырабатывающие антитела, макрофаги, которые уничтожают эти вещества. В норме лейкоцитов в крови намного меньше, чем других форменных элементов.

Кровь относится к быстро обновляющимся тканям. Физиологическая регенерация форменных элементов крови осуществляется за счёт разрушения старых клеток и образования новых органами кроветворения. Главным из них у человека и других млекопитающих является костный мозг. У человека красный, или кроветворный, костный мозг расположен в основном в тазовых костях и в длинных трубчатых костях.

Функции крови в организме

Кровь непрерывно циркулирует в замкнутой системе кровеносных сосудов и выполняет в организме различные функции, такие как:

Что относится к форменным элементам крови

По общности некоторых антигенных свойств эритроцитов все люди подразделяются по принадлежности к определённой группе крови. У каждого человека группа крови индивидуальная. Принадлежность к определённой группе крови является врождённой и не изменяется на протяжении всей жизни. Наибольшее значение имеет разделение крови на четыре группы по системе «AB0» и на две группы по системе «резус фактор».

Что относится к форменным элементам крови

Соблюдение совместимости крови именно по этим группам имеет особое значение для безопасного переливания крови. Существуют и другие, менее значимые группы крови. Можно определить вероятность появления у ребёнка той или иной группы крови, зная группу крови его родителей.

Источник

МИКРОСКОПИЯ НАТИВНОЙ КРОВИ

Методические указания по МНК

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

О.О. Анисимова, О.Н. Морылева

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ЛАБОРАТОРНАЯ ДИАГНОСТИКА

МИКРОСКОПИЯ НАТИВНОЙ КРОВИ

Для медицинских работников различных специальностей, преподавателей и студентов медицинских вузов

МОСКВА

Утверждено
Редакционно-издательским советом факультета
повышения квалификации медицинских работников
Университета

Методические указания подготовлены
на факультете повышения квалификации
медицинских работников РУДН

Анисимова О.О., Морылева О.Н.
Лабораторная диагностика. Микроскопия нативной крови: методические указания.

В пособии рассматриваются наиболее актуальные вопросы метода микроскопии нативной крови, указания по методике проведения данного исследования и интерпретации его результатов.

Пособие предназначено для медицинских работников различных специальностей, преподавателей и учащихся медицинских образовательных учреждений.

Фотографии нативной крови, наглядно отражающие содержание методических указаний, опубликованы в пособии «Атлас нативной крови».

© Анисимова О.О., Морылева О.Н., 2010

Содержание

Список сокращений

— биологически активные добавки к пище

— биологически активные вещества

— микроскопия нативной крови

— полимеразная цепная реакция

Введение

Кровь – это уникальная субстанция нашего организма. От ее состава и физико-химических свойств зависит здоровье человека. В свою очередь, состояние крови является отражением всех обменных процессов, протекающих в организме, функциональной активности его органов и систем и, конечно же, патологических нарушений в них.

Со времен изобретения Антонием Левенгуком микроскопа, в изучении свойств крови наука прошла большой путь развития. За этот период создано колоссальное количество методов исследования этой важнейшей жидкой среды организма. Различные типы микроскопии, окраски препаратов, цитохимические и радиоизотопные методы, ИФА, ПЦР – это лишь очень неполный перечень существующих на сегодняшний день способов ее изучения. Но наиболее часто в клинической лабораторной практике для исследования крови используется микроскопия окрашенного мазка. Для этого мазок крови предварительно высушивается, фиксируется и окрашивается, а затем производится подсчёт форменных элементов и описывается морфология клеток. Нативную или живую кровь (без фиксации и окраски) микроскопируют достаточно редко. А между тем исследование «живой» капли – самый простой, информативный и минимально затратный метод исследования крови, который известен давно и широко использовался еще в прошлые века. В силу различных обстоятельств, на определенном этапе медицинская практика отошла от повсеместного использования данного метода. Но, как говорится, «все новое – это хорошо забытое старое».

И вот сегодня, в эру компьютеров и цифровых технологий, внимание к методу исследования нативной крови вновь возрастает и приобретает все большую популярность. Микроскоп удалось соединить с цифровой видеокамерой, телевизором и компьютером, что увеличило его разрешающую способность и дало возможность визуализировать на экране объекты крови, трудно различимые в обычный световой микроскоп, и, что очень важно, сохранять изображения для дальнейшей работы. Это позволило не только просматривать клеточные элементы крови, но и оценивать их динамические функциональные характеристики, выявлять биологические контаминанты в плазме, а также производить демонстрацию исследования пациенту. Последнее обстоятельство очень важно, поскольку включение пациента в диагностический процесс и получение им возможности оценки собственного состояния имеет огромное значение для привлечения его к эффективному сотрудничеству с врачом в вопросах восстановления его собственного здоровья.

В тоже время существуют определенные сложности с адаптацией исследования нативной крови к требованиям стандартизации и контроля качества по системе ФСФОК. В практическом же использовании метода возникает ряд вопросов по идентификации визуализируемых объектов вследствие недостаточного количества научно обоснованных данных по интерпретации результатов. Данные методические указания, опирающиеся на фундаментальную теоретическую базу и обширный исследовательский материал[1], в определенной мере восполнят существующий пробел и помогут упорядочить работу.

Вопросы терминологии

Метод исследования нативной крови под микроскопом не является новым в полном смысле этого слова. Обычная световая микроскопия, применяемая в лабораторной практике сегодня, максимально позволяет увеличивать просматриваемые объекты не более чем в 1500 раз. Этого достаточно для просмотра структуры окрашенных препаратов, но не дает возможности оценки динамических процессов в крови. Современная техника позволила модернизировать световую микроскопию и получить значительно больше информации о визуализируемых объектах. Но суть метода от этого не поменялась. Тем не менее целый ряд практикующих сегодня врачей называет это исследование по-разному: «темнопольник», функциональное гемосканирование и т.д. Эти формулировки ошибочны и затрудняют лицензирование деятельности.

Поэтому обращаем внимание специалистов на тот факт, что в приказах Министерства здравоохранения и социального развития РФ данный метод прописан и значится как микроскопия нативной крови, что полностью согласуется с общепринятой в лабораторной диагностике терминологией и отражает суть данного исследования. Таким образом, исследование под микроскопом капли интактной капиллярной крови в настоящих методических указаниях будет обозначаться в соответствии с официально принятой терминологией, как микроскопия нативной крови или МНК.

Общие вопросы

Метод микроскопии нативной крови подразумевает исследование образца крови сразу после взятия в течение не более 10-15 минут, после чего в крови происходят необратимые изменения. Капельку крови под покровным стеклом изучают сначала обзорно при малом увеличении, затем анализируют морфологию клеток и содержимое плазмы под иммерсией при максимальном увеличении. Важным отличием данного метода от обычных анализов является проведение исследования образца крови без какой-либо его предварительной обработки и в присутствии пациента. Пациент имеет уникальную возможность видеть свои клетки и в процессе исследования получать важнейшую для него информацию.

Перечень необходимого оборудования:

— световой микроскоп с увеличением в 1000-1500 раз с тринокуляром;

— конденсор для темнопольной микроскопии (необходимой опцией не является, т.е. его наличие для работы необязательно);

— адаптированная к микроскопу видеокамера (цифровая или аналоговая) с видеотюнером и S-video-выходом;

— устройство приёма и обработки изображений (компьютер или ноутбук – для приёма и сохранения фотоснимков и видеоизображений и/или телевизор для воспроизведения картинки на экране);

— пакет программного обеспечения.

Методика приготовления препарата

Кровь для исследования берут капиллярную, полученную обычным способом, из безымянного или среднего пальца пациента. Капля крови помещается на идеальное по чистоте, обезжиренное стекло и накрывается покровным стеклом, также тщательно обработанным.

Недопустимо использовать стекла сразу из упаковки без обработки и обезжиривания, а также предварительного визуального контроля на микроскопе при 400-кратном увеличении! Грязь великолепно видна на стекле при темнопольном микроскопировании (ТПМ).

Прокол пальца производится с использованием одноразовых скарификаторов, одноразовых спиртовых и стерильных салфеток с учетом правил санитарно-эпидемиологического режима при работе с кровью.

Капельку крови помещают на середину предметного стекла. Обращаем ваше внимание на то, что первые 1-2 капли нужно снять (их можно расположить на стекле сбоку, поскольку они для исследования не используются). Далее необходимо аккуратно накрыть основную каплю крови покровным стеклом таким образом, чтобы кровь равномерно распределилась под стеклом монослоем. Это очень важный момент для качественного приготовления препарата и получения максимально объективных результатов исследования.

Данный образец помещают на предметный столик микроскопа и просматривают сначала на малом (объективы 4, 10), затем на большом увеличении (объективы 40, 60, 100).

Артефакты

В результате использования некачественно обработанных стёкол, нарушения правил взятия крови и приготовления препарата можно неправильно интерпретировать результаты исследования и сделать ошибочные заключения. Это тем более недопустимо, поскольку анализ проводится в присутствии пациента.

Врач, производящий диагностику, должен учитывать, что предметное стекло, взятое из упаковки, загрязнено (см. фото, Атлас нативной крови). На предметных стёклах, взятых из упаковки, можно наблюдать частички пыли, ворсинки, сколы, нити, слущенный эпителий, жир и т.д.

Предметные стекла для исследования необходимо предварительно эффективно обрабатывать. Для этого они первоначально промываются моющими средствами и тщательно ополаскиваются в проточной воде, после чего помещаются в смесь Никифорова (смесь этилового спирта и эфира). Смесь должна храниться в стеклянной емкости с хорошо притёртой крышкой. Вместо смеси Никифорова можно использовать специальные готовые растворы для обработки предметных стёкол.

Далее стекла натирают нетканными салфетками и перед исследованием тестируют под микроскопом (без иммерсионного масла!).

Аналогичным образом обрабатываются покровные стекла.

Таким образом, подготовка стёкол перед исследованием имеет колоссальное значение для максимально объективной и информативной диагностики.

Клетки крови

В периферической капиллярной крови в норме можно наблюдать три различных группы клеток: эритроциты, лейкоциты и тромбоциты.

Эритроциты

Эритроциты – самая многочисленная популяция клеток крови. Количество эритроцитов в крови в норме поддерживается на постоянном уровне и составляет 3,5–5,0х10 12 в одном литре.

Продолжительность жизни эритроцита человека в среднем 120 суток.

Для описания эритроцитов в клинической лабораторной практике принята специальная терминология. Обозначим сейчас основные наиболее часто встречающиеся термины.

Анизоциты – эритроциты разного размера.

Анизоцитоз – состояние, при котором явно выражена вариация размеров эритроцитов.

Анизохромия – различная окраска эритроцитов.

Гиперхромия – интенсивная окраска эритроцитов, связанная с повышенным насыщением гемоглобином (микропрепарат: отсутствие или уменьшение центрального просветления у эритроцита).

Гипохромия – снижение плотности окраски эритроцитов (микропрепарат: увеличение размера центрального просветления и уменьшение интенсивности окраски эритроцита).

Дакриоциты (каплевидные эритроциты) – эритроциты в виде капли.

Микроциты – эритроциты диаметром менее 6,5 мкм.

Микроцитоз – состояние, при котором преобладают микроциты.

Макроциты – эритроциты диаметром более 8–9 мкм.

Макроцитоз – состояние, при котором преобладают макроциты.

Мегалоциты – эритроциты диаметром более 10–12 мкм.

Монетные столбики – агрегаты эритроцитов.

Нормоцит – двояковогнутый эритроцит нормального размера (7,0–7,8 мкм) с центральным просветлением.

Нормобласт – ядросодержащий эритроцит, клетка – предшественник ретикулоцита. В норме в периферической крови не встречается.

Акантоциты – эритроциты с многочисленными шипиками различной величины.

Мишеневидные эритроциты – клетки с центральным расположением гемоглобина в виде мишени.

Овалоциты – эритроциты овальной формы.

Ретикулоциты – молодые эритроциты без центрального просветления (диаметр 7,7–8,5 мкм), образуются после потери нормобластами ядер.

Сфероциты – эритроциты сферической формы без центрального просветления.

Стоматоциты – эритроциты, центральное просветление которых имеет вид полоски или рта. При стоматоцитарной трансформации также могут образоваться сферостоматоциты, но в отличие от сфероэхиноцитов они не имеют шипов.

Шизоциты – фрагменты разрушенных эритроцитов. При прохождении через узкие сосуды и бифуркации под давлением часть эритроцитов механически повреждается и теряет форму двояковогнутого диска. Фрагменты этих эритроцитов подвергаются гемолизу или утилизируются нейтрофилами.

Шлемовидные эритроциты – фрагменты разрушенных эритроцитов в форме шлема.

Эхиноцит – эритроцит с шипами одинакового размера, расположенными равномерно по поверхности клетки. Выделяют эхиноциты трех стадий трансформации.

Наиболее часто встречающиеся ошибки в описании и интерпретации

Лейкоциты

В периферической крови встречаются три вида клеток, объединённых общим термином. Дифференцировка лейкоцитов происходит в костном мозге. Процесс выхода лейкоцитов из костного мозга высокоселективен. В норме в кровоток поступают только зрелые клетки. Это гранулоциты – клетки, содержащие гранулы, и агранулоциты – моноциты и лимфоциты. Каждый вид клеток специализирован на выполнение присущих только им задач.

Гранулоциты

По структуре гранул выделяют три группы клеток:

Нейтрофилы составляют 60–70% общего числа лейкоцитов. Нейтрофилы рассматриваются как первая линия защиты организма. Основная функция этих клеток – участие в борьбе с микроорганизмами.

В зависимости от степени зрелости и строения ядра выделяют палочкоядерные и сегментоядерные нейтрофилы.

Палочкоядерные нейтрофилы имеют диаметр 10–18 мкм. Во время движения могут вытягиваться до весьма значительных размеров. Ядро клеток выглядит, как длинная изогнутая палочка без перемычек.

Сегментоядерные нейтрофилы имеют диаметр 10–16 мкм. Их ядро состоит из 2–5 сегментов и расположено центрально. Иногда из-за перегиба ядра перемычка между сегментами бывает не видна. Такую клетку принято относить к сегментоядерной.

Неактивные нейтрофилы имеют округлую форму, малоподвижны. Если размер нейтрофила равен или меньше размера эритроцита, можно говорить о снижении иммунитета.

Базофилы составляют всего 0,5% от общего числа лейкоцитов. Это достаточно редко встречающаяся клетка. Базофилы подвижны, способны к фагоцитозу. В гранулах клеток содержатся гистамин, лейкотриены, тромбоксаны, ферменты и другие биологически активные вещества, поддерживающие реакции воспаления. Отличить базофил от эозинофила в нативной крови можно по меньшим размерам и более конденсированному ядру. Гранулы базофила крупнее, чем у нейтрофила, но мельче и нежнее, чем у эозинофила.

Как уже отмечалось, основная функция гранулоцитов – фагоцитоз, поэтому все они обладают способностью к передвижению, что и наблюдается в нативном препарате.

В норме в поле зрения (могут быть не в каждом) встречаются единичные гранулоциты. Они в 2–3 раза крупнее эритроцитов, подвижны. При угнетении иммунитета клетки становятся мельче, практически соотносимыми с размерами эритроцитов и малоподвижными.

В процессе развития воспалительной реакции происходит мобилизация костномозговых и циркулирующих лейкоцитов, развивается лейкоцитоз, что можно наблюдать в капле нативной крови.

Морфологические аномалии нейтрофилов:

Данные морфологические аномалии необходимо дифференцировать с артефактами, полученными при приготовлении препарата.

Агранулоциты

Моноциты

В периферической крови моноциты составляют от 1 до 10% всех лейкоцитов. Моноцит – это крупная клетка диаметром 12–18 мкм. Ядро различной формы: от бобовидной до сегментированной. Цитоплазма содержит многочисленные пылевидные гранулы, иногда можно наблюдать вакуоли и фагоцитированные частицы.

Моноциты обладают хорошей адгезивной способностью, легко прилипают к стеклу и пластику, поэтому на препарате они выглядят распластанными, фагоцитирующими клетками.

Лимфоциты

В крови лимфоциты составляют 20–35% всех лейкоцитов.

Популяция лимфоцитов чрезвычайно гетерогенна. Она включает три типа зрелых Т-лимфоцитов и три типа зрелых В-лимфоцитов, имеющих различные функциональные характеристики. Помимо этого, обнаружена популяция клеток, не несущая маркеров ни Т-, ни В-клеток. Это так называемые нулевые лимфоциты или естественные киллеры (NK). Нормальные размеры лимфоцитов варьируют от 4,5–6 мкм до 10–12 мкм.

Общими анатомо-морфологическими признаками для всех клеток лимфоидного ряда являются:

— ядро крупное, округлое или овальное;

— ядро расположено в центре или эксцентрично;

— зернистость всегда носит гранулярный характер.

По размеру цитоплазмы различают широкоплазменные, среднеплазменные и узкоплазменные (большие, средние и малые) лимфоциты.

Тромбоциты

Тромбоциты образуются при отшнуровке фрагментов цитоплазмы от гигантской клетки мегакариоцита и выполняют роль ключевого фактора гемостаза. Тромбоцит содержит набор органелл, которые обеспечивают жизненный цикл клетки.

Зрелые тромбоциты – это безъядерные клетки, имеющие круглую, овальную или звёздчатую форму.

В целом популяция тромбоцитов неоднородна. Микроформы тромбоцитов имеют диаметр менее 1,5 мкм, макроформы могут достигать 5 мкм и мегалоформы — 6–10 мкм. Активные (возбуждённые) тромбоциты имеют звёздчатую форму с нитевидными отростками-псевдоподиями.

Функции тромбоцитов определяются их способностью к адгезии, агрегации, транспорту различных веществ в крови, дегрануляции, ретракции кровяного сгустка и т.д. При изучении тромбоцитов, показано, что во время их физиологической активности в течение 1–2 минут большинство из них теряют дискоидную форму и распластываются на поверхности стекла, образуя псевдоподии. При МНК тромбоциты часто видны в виде звёздчатых распластанных клеток.

Склонность к повышенной агрегации видна в виде скоплений клеток различного размера. Стимуляторами агрегации тромбоцитов являются: АДФ, адреналин, норадреналин, тромбин, серотонин, фибриноген и др.

Неклеточные структуры крови

Плазма и ее компоненты

Соотношение объёмов клеточных элементов и плазмы составляет примерно 1:1. В физиологической системе крови плазма (жидкая фаза, суспензионная среда) выступает как консервативный, наиболее стабильный компонент, препятствующий патологическим изменениям рН. Диапазон изменений рН крови составляет всего 0,1 единицы, а значения 7,35–7,45 поддерживаются мощнейшей буферной системой крови. Поэтому кровь – это всегда слабощелочная среда и кислой не бывает (только при тяжёлой патологии, но это состояния, требующие реанимационных мероприятий).

Функции плазмы настолько разнообразны и настолько жизненно важны, что можно сказать: «Плазма есть сама жизнь».

При исследовании нативной крови нормальная плазма имеет вид прозрачной жидкости слегка голубоватого цвета.

Поскольку все вещества в плазме находятся в растворённом состоянии, они имеют чрезвычайно мелкие размеры. Поэтому увидеть их посредством светового микроскопа не представляется возможным.

При микроскопии хорошо визуализируются крупные полимеризованные нити фибрина и хиломикроны.

Фибриноген и фибрин

Фибриноген – белок острой фазы воспаления и один из основных факторов свёртывания крови. Синтез фибриногена происходит в печени.

При микроскопическом исследовании нативной крови можно видеть продукт полимеризации фибриногена – фибрин.

Механизм образования фибрина in vivo состоит из трех этапов:

1. Под влиянием тромбина от фибриногена отщепляются фибринопептиды А и В, в результате чего образуются мономеры фибрина. Эта реакция происходит при обязательном участии протеолитических ферментов.

2. При участии кальция происходит агрегация и полимеризация мономеров. Образуется растворимый фибрин.

3. От растворимого фибрина с помощью ферментов отщепляется сиаловая кислота, что ведет к образованию нерастворимого фибрина и формированию сгустка.

In vitro процесс протекает несколько иначе. Через некоторое время после взятия крови запускается процесс ее свёртывания и на препарате появляются нити фибрина в виде нежных темных полос на фоне прозрачной плазмы. Иногда нити фибрина настолько тонки, что практически неразличимы в микроскоп, что, конечно, не означает их полного отсутствия.

Через 10–15 минут при участии тромбоцитов начинается ретракция кровяного сгустка и процесс фибринолиза.

При заболеваниях фибрин выпадает очень быстро и нити его значительно грубее. Это зависит от исходного содержания в плазме фибриногена. А его уровень, как известно, повышается при целом ряде заболеваний.

Нарушения в питании, наследственные факторы, определённые патологические состояния и заболевания (сахарный диабет, гиперхолестеринемия), курение, алкоголь, неблагоприятные социальные условия и стрессы, токсические влияния и целый ряд фармакологических средств, а также возраст влияют на концентрацию фибриногена в крови. По данным зарубежных исследований, вышеназванные неблагоприятные воздействия приводят к повышению уровня фибриногена, в то время как при возвращении к здоровому образу жизни его количество достоверно снижается.

Антиоксиданты (природные витамины А, С, Е и готовые формы атиоксидантов, таких как микрогидрин, фикотен, фитоси), свежие фрукты и овощи, а также достаточная физическая нагрузка также выраженно способствуют снижению уровня фибриногена и фибрина (см. фото, Атлас нативной крови).

Учитывая всё изложенное, целесообразно регулярно и в течение длительного времени проводить повторные исследования нативной крови и оценивать динамику свёртывающей системы по указанным визуальным признакам. Особенно это актуально для пациентов, относящихся к группам риска развития сердечно-сосудистых заболеваний.

Хиломикроны

Хиломикроны (ХМ) – это первый транспортер поступающих с пищей липидов (прежде всего триглицеридов (ТГ)) на их пути через лимфу в кровь. Хиломикроны образуются преимущественно в энтероцитах кишечника. Их функция: перенос экзогенного жира из кишечника в ткани (преимущественно в жировую ткань). Размеры хиломикрона достаточно велики (сравнимы с размерами эритроцитов), поэтому он не может пройти через поры, имеющиеся в стенках кровеносных капилляров, путем экзоцитоза. Путем экзоцитоза хиломикроны поступают в лимфу и с ее током попадают в большой круг кровообращения. После употребления в пищу жира в крови наблюдается повышенное содержание хиломикронов.

Иногда в крови встречаются такие аналиты (компоненты плазмы), происхождение и структура которых пока не совсем ясна. Они являются, в частности, одним из множества сюрпризов, которые уже преподнёс исследователям метод МНК. Поэтому очень важно продолжать научный поиск в данной области.

Микроорганизмы

(апатогенные и патогенные)

Справедливости ради необходимо отметить, что в естественных науках (биологии, микробиологии и др.) никогда и не постулировалось положение о стерильности крови, исходя из многочисленных наблюдений и того факта, что кровь – это основная транспортная система организма. Чтобы убедиться в этом, достаточно просмотреть научные труды не только периода 20 столетия, но даже датируемые 19 веком. Современные исследования также полностью подтверждают факт наличия форм жизни в крови.

Разрешающая способность современной аппаратуры позволяет нам при проведении МНК визуализировать достаточно большое количество живых (движущихся) микроорганизмов в крови.

Возникают следующие вопросы: может быть нарушены правила асептики и антисептики при проведении анализа, или, возможно, вся эта «живность» попадает из воздуха?

В большинстве случаев это не так! Данные отечественной и зарубежной науки, а также собственные исследования показали, что визуализируемые в крови микроорганизмы, попали на предметное стекло из кровеносного русла. Кровь же является для них средой обитания либо транслокации. И это вполне логично, мы живем в природе, а человек – это открытая система.

Сегодня уже всем известен факт присутствия в организме человека достаточно большого количества самых разнообразных микроорганизмов, которые образуют его биоценоз. При этом следует помнить, что даже в норме, кроме облигатной микрофлоры, у человека в его внутренней среде присутствуют также условно-патогенные и транзиторные микроорганизмы. Основная их среда обитания у человека – это ЖКТ, вагина, уретра. Но при определённых условиях микрофлора может заселять и несвойственные ей ниши, вызывая различные заболевания, такие как пневмонии, бронхиты, тонзиллиты, циститы и др. Расселение ее по организму происходит, в основном, гематогенным путем. По данным микробиологов, 70 % микроорганизмов – гемоформы, то есть пути их транслокации по организму проходят через кровь.

Считается, что приблизительно 40 % всей патологии человека прямо или косвенно связано с пагубной деятельностью патогенной и транзиторной микрофлоры. Заболевание может вызывать также и факультативная флора, например при увеличении количества микробных тел либо снижении общего и/или местного иммунитета.

Уникальная способность бактерий приспосабливаться и выживать в экстремальных условиях, длительно персистировать в организме, не вызывая клинических проявлений, и склонность к полиморфизму позволяет им благополучно выживать даже после антибиотикотерапии.

Часть этих форм обитает в крови, другая попадает туда транзиторно, перемещаясь по организму, реализуя предназначенный природой жизненный цикл.

Бактерии

В настоящее время наиболее распространённой классификацией, используемой большинством микробиологов и бактериологов, является классификация Берджи. Согласно этой классификации, прокариоты (бактерии) делятся на два домена «Bacteria» и «Archaea».

При нативной микроскопии мы не можем идентифицировать вид бактерий, а потому следует говорить лишь об их форме и размере.

Формы бактерий наблюдаются самые разнообразные: сферические или кокки, диплококки, палочковидные, извитые, спиралевидные и т.д.; размер их может варьировать от 0,15 мкм (микоплазмы) до 8 мкм (палочковидные) и до 50 мкм у актиномицетов. Стафилококк – грамположительный круглый кокк размером 1 мкм, стрептококк – кокк неправильной формы, неподвижен, размер от 0,5 до 2 мкм.

Можно абсолютно точно утверждать, что бактерии попадают в диапазон разрешающей способности светового микроскопа, а потому их можно наблюдать при исследовании нативной крови.

Бактерии не находятся в крови постоянно, они лишь транзиторно проходят через кровь, и их наличие в препарате не всегда является признаком патологии.

К домену бактерий современными классификаторами отнесены и не совсем обычные микроорганизмы. Речь идет о микоплазме и уреоплазме. У этих бактерий отсутствует клеточная стенка. Другой их особенностью является то, что они длительно могут персистировать в организме, являясь его условно-патогенной флорой, и не провоцирвать симптоматики. Но при определённых условиях, эти микроорганизмы способны вызывать как острые, так и хронические вялотекущие со стёртой клиникой заболевания, например при снижении иммунитета либо при резком увеличении микробных тел. В этих случаях нативная микроскопия позволяет обнаруживать полиморфные колонии бактерий (микроорганизм слишком мелкий) и большое их количество, особенно после проведения функциональной пробы с водной нагрузкой. В то время как лабораторными методами диагностики эти возбудители не всегда выявляются, так как являются тканевыми (клеточными) паразитами.

Вирусы

Мельчайшие микробы, не имеющие клеточного строения, содержат только ДНК или РНК. Морфологию вирусов изучают с помощью электронного микроскопа, так как размер вирусов чрезвычайно мал (от 18 до 400 нм). Световые микроскопы предназначены для изучения объектов не менее 0,2 мкм, поэтому крупные скопления вирусов, так называемые вирусные тельца, мы можем видеть, но как их идентифицировать от гранул и вакуолей лейкоцитов, нам пока не понятно, учитывая, что вирус – это облигатный внутриклеточный паразит. В то же время, по данным ряда исследований, вирусные тельца хорошо визуализируются в эритроците.

Неклеточные формы включают еще более мелкие частицы, такие как прионы (белковые инфекционные частицы, вызывающие прионные болезни со смертельным исходом) и вироиды (небольшие молекулы кольцевой суперспирализованной РНК, вызывают болезни растений). Данные объекты в световой микроскоп не видны.

Простейшие

Простейшие – эукариотические одноклеточные микроорганизмы, содержат ядро с ядрышком и цитоплазму с органеллами. Размеры простейших от 2 до100 мкм.

Простейшие имеют: органы движения (жгутики, реснички, псевдоподии), питания (пищеварительные вакуоли) и выделения (сократительные вакуоли). Подцарство простейших включает 7 типов, из которых 4 значимы для человека и чаще всего вызывают заболевания. Основные и наиболее распространённые возбудители болезней среди простейших: трихомонада, лейшмания, трипаносома, дизентерийная амеба, токсоплазма, лямблии, малярийный плазмодий и балантидий.

Нахождение в крови лейшманий, трипаносом и малярийного плазмодия вопросов не вызывает, поскольку при попадании в организм они либо паразитируют в клетках крови, либо используют кровь как транспортную систему. Наличие данных паразитов всегда сопровождается соответствующей клиникой.

Токсоплазма тоже проходит стадию развития в крови, но часто встречается скрытое носительство при отсутствии клинических проявлений.

Спорным до сих пор является присутствие в крови лямблий и трихомонад, поскольку непонятен механизм их выживания в несвойственной для них среде. В литературе также нет достоверных данных об обнаружении и идентификации этих простейших в периферической крови.

Грибы

К несовершенным грибам, в частности, относятся формы, вызывающие грибковые заболевания ног и стригущий лишай.

Форма, размеры и мицелий специфичны для каждого вида.

К самым известным «обитателям» человека безусловно относится Candida, которая является частью условно-патогенной и транзиторной микрофлоры млекопитающих и человека. На фоне ослабленного иммунитета, при попадании в ткани данная эндогенная флора вызывает кандидозы различной локализации: пневмонии, бронхиты, язвенные процессы в ЖКТ, циститы и др.

Достаточно часто в крови можно встретить микроорганизмы дрожжевых и диморфных грибов в стадии почкования, характерным признаком которых является плотная, четко очерченная поверхность.

Этот факт существенно помогает отличить, например, деформированный эритроцит от клетки гриба.

Гельминты

Гельминты – многоклеточные паразитические черви. Термин «гельминтозы» был введен еще Гиппократом. Сегодня известно более 100 тысяч видов паразитических червей. У человека описано их более 250 видов. Проблема гельминтозов стала чрезвычайно актуальна в настоящее время. В результате развития туризма и увеличения миграции населения, всё чаще в Европе, РФ и странах СНГ стали встречаться экзотические виды паразитов и редких гельминтозов, диагностика которых абсолютно не разработана.

По форме тела и циклам развития выделяют три различных группы гельминтов: нематоды, трематоды и цестоды.

Не углубляясь в классификацию, описание морфологии и жизненного цикла гельминтов, приведём лишь их размеры и возможность обнаружения в капиллярной периферической крови при микроскопии.

По современным научным данным (научно-обоснованным и официально подтверждённым), в периферической крови могут быть обнаружены следующие виды гельминтов в личиночной их стадии: анкилостома, некатор, аскарида, токсокара, бругия, вухерерия, лоа лоа, стронгилоид, трихинелла, шистосома.

Размеры взрослых особей, их личинок и яиц весьма значительны. Ниже представлены некоторые из них, приведённые в официальных документах (МУК 2.1.7.730-99 (По состоянию на 18 октября 2006 года) «Гигиеническая оценка качества почвы населённых пунктов», МУК 13-4-2/1751 «Возбудители гельминтозоонозов в пресноводных рыбах» от 04.10.99):

Обращаем ваше внимание на то, что указаны величины личинок, паразитирующих в рыбе. Продолжая свой жизненный цикл в организме человека, они еще больше увеличиваются в размерах.

Размеры гельминтов и их личинки значительно превышают величину не только клеток крови, но и капиллярного русла. Поэтому возможность встретить их при микроскопии периферической капиллярной крови – скорее исключение, чем правило.

Другие биологические формы

При микроскопии нативной крови достаточно часто обнаруживаются объекты, идентифицировать которые пока не представляется возможным. Не исключено (особенно при наличии определенной клинической картины), что визуализируемые в крови биологические контаминанты относятся к паразитарным формам жизни. Но однозначно это утверждать не представляется возможным. Сложность интерпретации объясняется отсутствием исследований по идентификации данных объектов. Тем не менее однозначно понятно, исходя из размеров (всего одна клетка), большинство из них – это не гельминты, поскольку все гельминты многоклеточные! Среди известных одноклеточных микроорганизмов большинство подобных форм не наблюдаются. От эритроцитов они отличаются подвижностью и иной структурой клеточного строения. Для прояснения этих вопросов необходимы глубокие серьезные исследования. Но на сегодняшний день именно эти объекты активно обсуждаются в среде практикующих врачей, причем нередко беспредметно создают почву для необоснованных домыслов.

Приложение № 1

МИКРОСКОПИЯ НАТИВНОЙ КРОВИ

ЭТАПЫ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ

I. Методика приготовления препарата

1. Подготовка предметных и покровных стекол (стекла готовятся до исследования).

1.1. Замачивание стекол в специальном растворе (этиловый спирт 96° + эфир для наркоза =1:1) с целью обезжиривания (не менее 1 часа).

1.2. Тщательная натирка стекол нетканой салфеткой.

1.3. Предварительный контрольный просмотр стекол перед исследованием при 400-кратном увеличении на предмет наличия возможных артефактов.

2.1. Кровь для исследования берут капиллярную из безымянного или среднего пальца.

2.2. Палец тщательно протирается спиртовой салфеткой. Затем высушивается стерильной сухой марлевой салфеткой.

2.3. Прокол пальца производят с использованием одноразового скарификатора.

2.4. Каплю крови помещают на середину покровного стекла и аккуратно (без усилий – во избежание раздавливания клеток крови и появления артефактов) накрывают покровным стеклом, также тщательно обработанным. Кровь под стеклом должна распределиться равномерно монослоем, что очень важно для объективности результатов. Примечание: первые 1–2 капли крови помещаются на предметное стекло в боковой его части.

2.5. Полученный препарат крови помещают на предметный столик микроскопа и просматривают сначала на малом (объективы: 4, 10), а затем на большом (объективы: 40, 100) увеличении.

II. Микроскопия крови

Увеличение и разрешающая способность светового микроскопа позволяют визуализировать в крови в основном только нижеперечисленные объекты:

— нормальные дискоциты (6–8 мкм);

— анизоциты (микро- и макроформы 4–15 мкм);

— пойкилоциты (клетки с измененной формой);

— анизохромные (с различной окраской);

— юные и незрелые формы (ретикулоциты, нормобласты);

— эхиноциты, стоматоциты, шлемовидные эритроциты;

— гемолизированные эритроциты и другие формы деградации и старения эритроцитов;

— включения в эритроцитах (остатки ядра);

— гранулоциты (нейтрофилы, эозинофилы, базофилы);

— агранулоциты (моноциты, Т- и В-лимфоциты);

— юные и незрелые формы (в том числе бластные).

2. Фибрин (в виде нитей и тяжей).

3. Хиломикроны (шарообразные опалесцирующие структуры светло-зеленого цвета размером до 5–8 мкм).

4. Бактерии разного размера и формы, подвижные и неподвижные (примечание: без видовой идентификации!).

6. Возможно обнаружение яиц глистов и миграционных личиночных стадий некоторых гельминтов (микрофилярий, аскарид, анкилостом, некатора, трихинелл и др.). Диагностика гельминтозов проводится с учетом их макроразмеров (значительно крупнее эритроцита, примерно от 100 и больше мкм). Редчайшей диагностической находкой может быть обнаружение взрослого гельминта (очевидно, что это многоклеточное существо также будет макроразмеров).

Примечания:

III. Функциональная проба

При наличии показаний (выраженной агрегации эритроцитов, снижении физиологической активности лейкоцитов и др.) целесообразно проводить функциональную пробу, которая у взрослого человека включает:

Цель проведения функциональной пробы: оценка адаптационных резервов организма человека и индивидуальный подбор БАД к пище в качестве превентивной диетотерапии для профилактики возникновения заболевания либо предупреждения его прогрессирования.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *