Что относится к энергоресурсам в жкх
Учет энергоресурсов как первый шаг к энергоэффективности в ЖКХ
Компания ЦРСА, Московская область, г. Коломна
В конце 2009 г. вышел Федеральный закон от 23.11.2009 г. № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» (далее – закон об энергоэффективности), в котором уделено большое внимание энергосервисным мероприятиям в частном секторе, в том числе обязательная установка индивидуальных и коллективных приборов учета.
Учет энергоресурсов важен на всех этапах доставки ресурса потребителю. Это необходимо для выявления потерь энергоресурса на всех участках доставки, и распределения ответственности за потери энергоресурса. На сегодняшний день потери воды, тепла и электроэнергии при их доставке учитываются в тарифах, и граждане вынуждены оплачивать эти потери из своего кармана. Сегодня мы оплачиваем и незаконный отбор электроэнергии, который особенно распространен в малоэтажном секторе, и аварии на трубопроводах, и избыточное тепло в теплоносителях и многое другое. Выход из сложившийся ситуации – это четкое разграничение зон ответственности между энергетическими компаниями и конечным потребителем с помощью установки приборов учета энергоресурсов на границах зон ответственности. Это могут быть как поквартирные (индивидуальные) приборы учета, так и коллективные (общедомовые). Кроме того, установка приборов учета, несомненно, стимулирует абонентов к более эффективному расходу энергоресурсов. Ведь если мы будем платить по счетчику, то поневоле мы будем задумываться о протекающих кранах или открытой форточке зимой.
Вопросы с установкой приборов учета давно стоят перед Правительством РФ и энергосбытовыми компаниями, и основной вопрос заключается в том, за чей счет будет проходить повсеместная установка приборов. Закон об энергоэффективности определил, что установка таких приборов является обязанностью собственников жилых помещений, и сегодня можно долго спорить с этим решением, но скорее всего изменить это решение не представляется возможным. Ведь для государственного финансирования установки счетчиков по всей стране необходимы не только огромные финансовые средства, но и тотальный контроль над их расходованием. И такая программа могла бы затянуться на многие десятилетия без гарантии ее успешного завершения.
Второй группой хотелось бы выделить достаточно «молодые» ТСЖ и УК, созданные людьми, понимающими необходимость перемен в области управления жилищным хозяйством и предлагающими оптимизировать расходы граждан на обслуживание жилья за счет оптимизации управляющего аппарата, более высокого уровня специалистов по обслуживанию жилья и внедрения новых технологий на всех уровнях их работы. Далее хотелось бы остановиться именно на второй группе управляющих организаций, так как, на наш взгляд, это наиболее перспективные и в конечном итоге единственно возможные формы управления жилым фондом.
Понятно, что указанные ТСЖ не имеют денежных средств для реализации масштабных программ по единовременному проведению энергосервисных мероприятий, так как все деньги на эти цели собираются с владельцев жилья и нежилых помещений. Все мероприятия, направленные на повышение энергоэффективности, проводятся последовательно и исходя из заранее определенного бюджета. Основной задачей при такой работе является постепенное увеличение бюджета ТСЖ за счет снижения его расходов, улучшая при этом уровень жизни жильцов и снижая их собственные расходы на коммунальные платежи.
Сегодня бытует, на наш взгляд, очень правильное мнение о том, что ТСЖ не только должно работать, но и «зарабатывать», где весь «заработок» идет на снижение коммунальных платежей и улучшение уровня жизни жильцов. В этом и состоит основное отличие ТСЖ от управляющей компании, в которой слово «зарабатывать» напрямую связано с коммунальными платежами. О способах «заработка» при помощи осушения подвалов с последующей сдачей в аренду или сдача площадей под рекламу сказано много, но это прямые доходы ТСЖ. Хотелось бы, чтобы председатели ТСЖ понимали то, что экономить = зарабатывать и экономия энергоресурсов – это хорошая статья дохода для ТСЖ.
Поквартирная установка счетчиков на отопление и термостатов достаточно дорогое удовольствие, но т.к. жильцы не имеют прямых договоров на отопление с теплоснабжающей организацией, они не обязаны устанавливать поквартирные приборы учета, а могут ограничатся только установкой общедомового счетчика тепла. Перед установкой теплосчетчика стоит обратить внимание на то, исходя из каких нормативов рассчитывается оплата тепла сбытовой организацией именно для вашего дома. Существуют случаи, когда сумма оплаты занижена из-за недостоверных исходных данных и установка счетчика в таком случае может быть невыгодна. Вообще, говоря о решении именно этих проблем, планируется повсеместная установка счетчиков, и если уж счетчик ставить все равно придется, а явной выгоды оплачивать по нормативу нет, то лучше его поставить уже сейчас и начать экономить уже сегодня. После установки теплосчетчика дальнейшие действия ТСЖ должны быть направлены на снижение потребления тепла по счетчику. Главный показатель неэффективного расходования тепла – это открытые форточки зимой. Если в вашем доме во время отопительного сезона жителям часто приходится открывать окна для того, чтобы поддерживать комфортную температуру в квартире, – это явный признак неэффективного расходования тепла. Конечно, существуют системы, где температура теплоносителя регулируется непосредственно поставщиком энергоресурса, но поставщику не всегда выгодно занижение объема отпускаемого тепла, поэтому более надежный способ – это регулирование потребления тепла непосредственно самим потребителем. Первый способ регулирования – это установка индивидуальных термостатов у абонентов, но этот способ показал себя неэффективным в тех случаях, когда у абонентов не установлены индивидуальные узлы учета. Жители не совсем понимают разницы регулирования температуры в комнате форточкой и термостатом, если они все равно платят одну и ту же сумму. Более эффективным себя показал автоматизированный регулятор тепла на вводе в здание. При помощи такого регулятора тепло из теплосети забирается в систему отопления дома в необходимом количестве. Количество необходимого тепла регулируется контроллером в автоматическом режиме в зависимости от температуры воздуха на улице. Принцип работы узла регулирования с регулирующим клапаном и подмешивающим насосом поясняется в общем виде на рис. 1.
Микропроцессор системы измеряет температуру наружного воздуха и производит вычисления, в результате которых для поддержания комфортной температуры в квартирах для жителей (без открывания форточек) в данный промежуток времени вполне достаточно температуры теплоносителя 55 и за счет принудительной системы циркуляции расхода 14 кубов в час. Система посылает сигнал на Регулирующий клапан, который в автоматическом режиме начинает закрываться, тем самым уменьшая расход теплоносителя, в свою очередь циркуляционный насос в принудительном порядке возвращает часть воды из обратного трубопровода в систему отопления здания, и цикл повторяется до тех пор, пока не будет достигнут нижний температурный предел теплоносителя. Весь этот процесс происходит после прибора учета расхода тепла (теплосчетчика).
Использование системы позволяет сократить расходы потребителей на ЦО и ГВС от 25 до 40 % в год.
Установка температур на входе и выходе из системы теплоснабжения, а также зависимость температуры теплоносителя от уличной температуры задаются при пуско-наладке системы и в последующем могут быть отрегулированы обслуживающим персоналом. Настройка системы после пусконаладки не представляет особой сложности и может быть выполнена штатными слесарями после краткого инструктажа. Хотелось бы сказать, что экономия от таких регуляторов рассчитывается индивидуально для каждого объекта, но на нашей практике такие системы окупают себя за один отопительный сезон даже в условиях достаточно холодных зим (для Московского региона).
Дополнительно хотелось бы сказать об экономии воды. Как и экономия других ресурсов, экономия воды начинается с ее учета, только в отличие от тепла регулирование расхода воды на вводе в здание невозможно и без поквартирного учета не обойтись. В Москве и Московской области в настоящее время действуют тарифы, стимулирующие абонентов устанавливать счетчики воды, которые при условиях соответствия количества прописанных в квартире жильцов их реальному количеству (или меньшему) окупаются менее чем за год. Конечно, такой подход, когда счетчики устанавливают только те, кому это выгодно, не может устраивать водоснабжающие организации, ведь при такой ситуации они больше не могут переложить сверхрасходы одних абонентов на других, которые потребляют значительно меньше. Закон об энергоэффективности поставил задачу оснащения приборами учета всех абонентов на территории РФ. Что касается непосредственно ТСЖ и установки счетчиков непосредственно членами ТСЖ, то они могут это сделать, если договор на водоснабжение заключен непосредственно между ними и водоснабжающей организацией. Если же оплату за воду производит непосредственно ТСЖ, то без установки счетчиков всем абонентам ТСЖ скорее всего не обойтись. Хотя, конечно, возможна ситуация, когда ТСЖ оплачивает счета частично по нормативам, а частично по установленным абонентским счетчикам, но такая ситуация крайне не выгодна для водоканалов и скорее всего водоснабжающая организация будет настаивать на установке централизованного узла учета.
Но даже после установки централизованного узла и абонентских счетчиков у ТСЖ часто возникают проблемы с оплатой воды, так как сбор средств за воду крайне затруднителен по причине того, что счетчики воды установлены непосредственно в квартирах и проверка их значений проходит только с согласия жильцов. Кроме того, жильцы при оплате могут перепутать или неправильно переписать значения счетчиков, которых в обычной трехкомнатной квартире может стоять до шести штук в зависимости от количества стояков холодной и горячей воды. Наша компания предлагает использовать счетчики с радиомодемами, которые позволяют в автоматическом режиме снимать значения со счетчиков и при этом не тянуть дополнительных коммутирующих линий связи. Такие счетчики стоят в 1,5–2 раза дороже классических, но для ТСЖ и небольших управляющих компаний они часто незаменимы и позволяют четко и своевременно собирать деньги за воду в полном объеме.
В теме об энергоресурсах нельзя не упомянуть о газоснабжении, но, как и в законе об энергоэффективности, так и в жизни газ стоит отдельной графой. В законе об энергоэффективности можно встретить одну фразу «кроме газа», по какой причине газовая сфера так выделяется, остается не совсем понятным. Конечно, все, что касается тепла, воды и электроэнергии в контексте установки приборов учета, на наш взгляд, должно касаться и газосчетчиков. Даже более того – газ для ТСЖ мог бы помочь во многом сократить коммунальные платежи при установке собственных небольших газогенераторов, генерирующих электроэнергию и тепло, как для собственных нужд, так и для обеспечения соседних жилых домов. В настоящее время установка таких генераторов практически невозможна из-за трудности их оформления, получения разрешений и других бюрократических препятствий, хотя их использование во многом могло бы сократить нагрузку на электросети и позволить подключить большее количество жилых домов и микрорайонов без увеличения нагрузки на сетевые и генерирующие компании.
В законе об энергоэффективности отдельно акцентируется внимание на финансировании мероприятий по установке приборов учета. Конечно, способы финансирования еще не определены и во многих регионах будут различными, но, на наш взгляд, прямого финансирования мероприятий по повышению энергоэффективности в настоящее время не требуется. В настоящее время необходимы поддержка вновь образовываемых ТСЖ и молодых УК, а также более жесткий контроль над их деятельностью. Кроме того, актуален вопрос по кредитованию ТСЖ, так как мероприятия по повышению энергоэффективности требуют достаточно больших единовременных затрат. Конечно, в законе об энергоэффективности предусмотрены возможности заключения энергосервисных контрактов ТСЖ и УК с энергосбытовыми и другими энергосервисными компаниями, а также рассрочка платежей за установку приборов учета. Но такая ситуация приведет к монополизации рынка установки приборов учета теми компаниями, которые будут иметь поддержку государственного бюджета и возможности по привлечению крупных беспроцентных кредитов. В свою очередь, монополизация рынка приведет к удорожанию установки прибора учета для конечного потребителя и отсутствию выбора приборов. Естественно, такое положение дел невыгодно ни государству, ни небольшим монтажным организациям, ни самим абонентам, и выход из такой ситуации видится в предоставлении беспроцентных кредитов не энергосбытовым и энергосервисным компаниям, а самим ТСЖ. В любом случае жильцы при установке приборов учета будут искать более выгодные условия и тем самым брать в банках исключительно те суммы, которые необходимы только на установку приборов учета, не переплачивая дополнительных средств на прибыли крупных компаний. При такой ситуации расходование бюджетных средств на компенсацию процентных ставок также будет минимальным. К сожалению, в настоящее время для такой схемы недостаточно специалистов в банковской сфере, ведь для оценки рисков по кредитам банка необходимо разбираться во всех тонкостях устройства ТСЖ и часто риски, связанные с выдачей кредитов слишком высоки. Да и сами кредиты, выдаваемые ТСЖ, достаточно небольшие, и крупные банки зачастую просто не заинтересованы работать с такими клиентами. Таким образом, без вмешательства государства (тщательной работы с банками и подготовкой специалистов в области ЖКХ) не обойтись.
В заключение хотелось бы еще раз сказать о том, что, на наш взгляд, ключ к энергоэффективному и комфортному жилью кроется в ТСЖ и УК, созданных на их основе. Энергосервисная работа требует глубокого знания своего дома и коммуникаций, а также постоянной методичной работы по улучшению жилья – такой работы, которую каждый день обязаны вести председатели и управляющие ТСЖ. И сегодня требуется всесторонняя поддержка таких организаций в таких сферах путем кредитования, правовой поддержки и строгого государственного контроля и защиты. В свою очередь единовременные огромные вливания денежных средств, а также применение шаблонных мероприятий в сфере ЖКХ могут оказаться как энерго- так и финансово неэффективными.
К энергетическим ресурсам относятся
Энергетические ресурсы
ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ (а. energy resources; н. Energieressourcen; ф. ressources energetiques; и. recursos energetiсоs) — все доступные для промышленного и бытового использования источники разнообразных видов энергии: механической, тепловой, химической, электрической, ядерной.
Темпы научно-технического прогресса, интенсификация общественного производства, улучшение условий труда и решение многих социальных проблем в значительной мере определяются уровнем использования энергетических ресурсов. Развитие топливно-энергетического комплекса и энергетики является одной из важнейших основ развития всего современного материального производства.
Среди первичных энергоресурсов различают невозобновляемые (невоспроизводимые) и возобновляемые (воспроизводимые) энергетические ресурсы. К числу невозобновляемых энергетических ресурсов относятся в первую очередь органические виды минерального топлива, добываемые из земных недр: нефть, природный газ, уголь, горючие сланцы, другие битуминозные горные породы, торф. Они используются в современном мировом хозяйстве в качестве топливно-энергетического сырья особенно широко и, поэтому, нередко называется традиционными энергетическими ресурсами.
Быстрое развитие мировой энергетики в 20 в. опиралось на широкое использование минерального (ископаемого) топлива, особенно нефти, природного газа и угля, добыча которых до середины 70-х гг. была сравнительно недорогой и в техническом отношении доступной. Доля нефти и газа в мировом потреблении энергетических ресурсов достигала 60% и доля угля — свыше 25% (в 1950 доля угля составляла 50%). Следовательно, свыше 85% суммарного потребления энергетических ресурсов в мире в тот период приходилось на невозобновляемые ресурсы органические топлива и лишь около 15% — на возобновляемые ресурсы (гидроэнергия, дровяное топливо и др.). С 70-х гг., когда сложность и стоимость добычи нефти и газа стали резко увеличиваться в связи с исчерпанием или значительным сокращением их запасов в легкодоступных месторождениях, появилась необходимость их жёсткой экономии и строго ограниченного использования в качестве топлива.
Значительно возрастает роль и таких возобновляемых нетрадиционных энергетических ресурсов, как солнечная энергия (энергия солнечной радиации, поступающей на поверхность Земли), энергия внутреннего тепла самой Земли (в первую очередь геотермальная энергия), тепловая энергия Мирового океана (обусловленная большими перепадами температур между поверхностными и глубинными слоями воды), энергия морских и океанических приливов и энергия волн, ветровая энергия, энергия биомассы, основой которой является механизм фотосинтеза (биоотходы сельского хозяйства и животноводства, промышленные органические отходы, использование древесины и древесного угля). По имеющимся прогнозам, доля возобновляемых энергетических ресурсов (гидроэнергетических и перечисленных нетрадиционных) достигнет в 1-й четверти 21 века примерно 7-9% в мировом суммарном использовании всех видов первичных энергоресурсов (свыше 20-23% будет приходиться на атомную ядерную энергию и около 70% сохранится за органическим топливом — углём, газом и нефтью).
Для сопоставления тепловой ценности различных видов топливно-энергетических ресурсов используется расчётная единица, называемая условным топливом.
Энергетические ресурсы Российской Федерации
1.1 Состав ТЭК России
1.2 Роль и значение ТЭК для экономики и внешней торговли России
2. Современная энергетическая политика России
2.1 Проблемы и угрозы энергетической безопасности России
2.2 Энергетическая безопасность и энергетическая политика России
В энергетическом секторе мирового хозяйства ведущую роль играют топливно-энергетические ресурсы — нефть, нефтепродукты, природный газ, каменный уголь, энергия (ядерная, гидроэнергия).
Среди топливно-энергетических ресурсов особое место занимают нефть и природный газ. Эта группа товаров сохраняют роль лидеров среди прочих товарных групп в международной торговле, уступая только продукции машиностроения.
Россия играет ключевую роль на мировом рынке энергетических ресурсов.
Наша страна выступает одним из гарантов общей энергетической безопасности и стабильности мира в долгосрочной перспективе, т.к. доля России в мировом производстве нефти более 12%, природного газа около 30%, угля около 7%. Суммарно на Россию приходится 10,5% производства первичной энергии.
Для самой России топливно-энергетический комплекс (ТЭК) приносит более 50% доходов федерального бюджета.
Также сегодня ТЭК обеспечивает 25% валового внутреннего продукта и 30% объема промышленного производства в стране. Темпы добычи нефти и газа в России все нарастают, так добычи природного газа в России к 2010 г. может составить 645-665 млрд. м³., а к 2020 г. возрасти до 710-730 млрд. м³. [1] А по другим прогнозам она напротив может упасть на 30-50%.
В настоящее время, в силу сырьевой ориентации российской экономики наличие ТЭР стало основой успешного развития регионов РФ, обладающих ими.
С ними напрямую связано благосостояние всех граждан России, такие проблемы, как безработица и инфляция. Возросшее значение ТЭР в развитии нашей страны обусловило пристальный интерес к ним со стороны общества и правительства, а появившиеся в последние десятилетия проблемы отрасли становятся проблемами каждого гражданина России.
Эффективная энергетическая политика для России имеет стратегическое значение, отсюда и высока актуальность данной темы.
Цель работы — анализ современного состояния энергетического сектора и рассмотрение энергетической политики России.
Определить роль и значение энергетического сектора для России;
Проанализировать современное использование энергетических ресурсов и определить проблемы связанные с их использованием;
Рассмотреть основные направления перспективного развития энергетической политики России.
В настоящее время энергетическая безопасность России признана одним из приоритетов национальной политики.
Появились специализированные публикации и нормативные документы по проблеме. Для написания этой работы использовались такие труды как: «Энергетика России», 2008; «Энергетическая безопасность России», 2004; «Реформирование энергетики и энергетическая безопасность», 2006 и другие работы.
При написании работы использовались последние статистические данные Госкомстата РФ, аналитического центра «Минерал», а так же Федерального агентства по недропользованию РФ.
Состав ТЭК России
Топливно-энергетический комплекс (ТЭК) России объединяет отрасли по добычи топливно-энергетических ресурсов и производству на их основе электроэнергии.
Топливно-энергетические ресурсы — запасы топлива и энергии в природе, которые при современном уровне техники могут быть практически использованы человеком для производства материальных благ.
К топливно-энергетическим ресурсам относятся: различные виды топлива: каменный и бурый уголь, нефть, горючие газы, горючие сланцы, торф, дрова; — энергия падающей воды рек, морских приливов, ветра; — солнечная и атомная энергия [5, C.44].
Топливно-энергетический потенциал РФ [12, C.78]
Главные для России виды ТЭР — топливные (природный газ, нефть, уголь), объем их производства приведен в таблице 2.
Показатели динамики добычи первичных ТЭР. [5, 8]
Анализируя основные показатели производства ТЭР за последние годы, можно отметить, что начиная с 1992 года добыча ТЭР в стране снижалось.
С 1997 году впервые получен прирост добычи. В настоящее время по добычи ТЭР Россия достигла докризисного периода (1991) и продолжает их наращивать, хотя, с учетом экономического кризиса и снижения спроса в мире на энергоносители, можно прогнозировать некоторое снижение объемов добычи ТЭР в России в ближайшие годы [11, C.669].
Так же к группе топливных ресурсов относится торф и горючий сланец.
Наша страна является лидером по производству обогащенного ядерного топлива и занимает 40 процентов его мирового рынка.
Российские газоцентрифужные разделительные заводы обеспечивают потребности в ядерном топливе не только собственных потребителей, но и примерно трети всех АЭС в мире. Однако по запасам урановых руд, Россия уступает лидерам (США, Австралии, Бразилии). После распада СССР и потери крупнейших месторождения в Средней Азии и Украине в РФ добывается 3000 тонн урана в год, нехватка сырья устраняется за счет экспорта, так в 2008 году было заключено соглашение о ежегодной закупке 4500 тонн уранового концентрата в Австралии [4].
Гидроэнергетические ресурсы еще один существенный энергетический ресурс России.
На территории нашей страны сосредоточено около 9% мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия входит в число лидеров (второе место).
Энергетический топливный комплекс Россия
Общий валовой гидроэнергопотенциал России оценивается в 2900 млрд кВт-ч годовой выработки электроэнергии. Технически достижимый уровень использования гидроэнергоресурсов оценивается в 70% от указанной цифры. В настоящее время уровень освоения гидропотенциала России составляет всего 20%, притом, что Россия занимает второе место в мире по запасу гидроресурсов.
На рисунке 1 представлен топливно-энергетический баланс России за 2008 год.
Рис.1. Топливно-энергетический баланс России [14]
Таким образом, Россия богата разнообразными энергетическим ресурсами и является мировым лидером по их добычи. Однако, используются они не равномерно.
На рисунке представлен топливно-энергетический баланс России. Видно, что в нем преобладают природный газ, нефть и уголь. На другие виды топливно-энергетических ресурсов, в том числе альтернативные источники приходится всего 8,7%.
1.2 Роль и значение ТЭК для экономики и внешней торговли России
Топливно-энергетический комплекс тесно связаны со всей промышленностью страны. На использование (добычу, транспорт, перерарботку) ТЭР расходуется более 20% всех денежных средств.
На отрасли занятые использованием ТЭР приходится 30% основных фондов и 30% стоимости промышленной продукции России. Предприятия ТЭК используют 10% продукции машиностроительного комплекса, 12% продукции металлургии, потребляет 2/3 труб в стране, дает больше половины экспорта РФ и значительное количество сырья для химической промышленности [3, C.7].
Топливно-энергитические ресурсы — важнейший экспортный товар России, обеспечивающий основную долю валютных поступлений, формирующий бюджет нашей страны, поддерживающий ее авторитет на международной арене.
Рис.2.Доля энергоресурсов в товарной структуре экспорта России [14]
Нефть важнейший продукт потребления на внутреннем рынке. Потребление нефти внутри РФ оценивается долей около 60%. Нефть основное сырье, для нефтеперерабатывающей, нефтехимической и химической промышленности, продукты первичной переработки нефти (мазут) — важное сырье для топливной промышленности.
Кроме этого нефть важнейший экспортный товар для России, от которого во много зависит наполняемость федерального бюджета (рисунок 3).
Рис.3 Динамика экспорта нефти из России [8, C.55]
Россия — крупнейший в мире экспортёр газа, на её долю приходится более 20% мировых межгосударственных поставок.
Экспорт природного газа из РФ впервые за последние годы сократился — на 2,1% по сравнению с 2005 г.; он составил 182,8 млрд. куб. м, или около 31% добытого (рисунок 4).
Рис.4 Динамика экспорта газа из России [8, C.71]
Россия входит в число лидеров по экспорту угля на мировой рынок, поставляя его в 45 стран мира.
Так и энергетического, занимая третье место по объёмам экспорта угля в мире после Австралии и Индонезии. С 1999 г.
российский экспорт угля неуклонно растёт, в 2006 г. он увеличился очень существенно — на 18%, превысив 90 млн. т. [2, C.24]. Более 80% российского угольного экспорта составляют угли Кузнецкого бассейна, отличающиеся высоким качеством. В мировом объеме экспорт российского угля составляет около 12%.
В 2006 г. российский экспорт вырос более чем на 9 % и составил, 7,36 млн. т.
Классификация энергетических ресурсов
Энергетический ресурс — это запасы энергии, которые при данном уровне техники могут быть использованы для энергоснабжения. Это широкое понятие относится к любому звену «энергетической цепочки», к любой стадии энергетического потока на пути от природного источника стадии потребления энергии.
Энергоресурсы классифицируются в зависимости от целей и задач классификации.
Если за основу взять стадии энергетического потока, то рассматривать следующие виды энергетических ресурсов, энергии энергоносителей:
— природные энергетические ресурсы, которые, в свою очередь подразделяются на: топливные: органическое топливо—уголь, нефть, газ, сланцы, торф, дрова и некоторые другие (например, битуминозные пески); расщепляющиеся материалы (ядерное горючее) – уран 235 и 238; нетопливные: гидроэнергия, энергия Солнца, ветра, приливов, морских волн, геотермальная энергия и некоторые другие виды (например, энергия разности температурных потенциалов океанских глубин и поверхности);
— облагороженные (обогащенные) энергоресурсы: брикеты, концентраты, сортовой уголь, промпродукт, шлам, отсев;
— переработанные энергоресурсы: светлые нефтепродукты, мазуты, прочие темные нефтепродукты, кокс, полукокс, коксовая мелочь, уголь древесный, смола, антрацит;
— преобразованные энергетические ресурсы: электроэнергия, лота, сжатый воздух и газы (азот, кислород, водород, аргон, оксид, углерода и др.), генераторный газ, коксовый газ, сланцевый газ, газ нефтепереработки, биогаз и некоторые другие (например, жидкое топливо, получаемое из низкокачественных углей);
— побочные (вторичные) энергоресурсы: горючие производственные и непроизводственные отходы (твердые, жидкие, газообразные); тепловые отходы (преимущественно жидкие и газообразные); избыточное давление продуктов и промежуточных продуктов (переделов).
Мировые запасы топливно-энергетических ресурсов.
Учет мировых запасов топливно-энергетических ресурсов и перспективы их использования представляют собой глобальную проблему, постоянно заботящую мировую научную общественность. Европейское объединение независимых экспертов «Римский клуб», готовит периодические доклады о путях развития человечества, где существенное место занимают топливноэнергетические вопросы.
Так, в 70-е годы XX в. в связи с энергетическим кризисом 1972 г. общие мировые запасы органических топлив с учетом экономически оправданной извлекаемости оценивались (с округлением) всего в 1 трл.т (в условном исчислении).
Если принять за основу перспективных расчетов тенденции прошлого — удвоение суммарного мирового энергопотребления каждые 20 лет, то при потреблении в 2000 и последующих годах (при стабилизации потребления) по 20 млрд, т этих запасов должно было бы хватить всего на 50 лет, т. е., считая от 1980 г., только до 2030 г.
Следует отметить, что аналогичные опасения возникали у человечества также в начале XX века, когда прогнозировалась исчерпаемость топливных запасов (преимущественно угля) к 60-м годам. Однако тогда мировая энергетика находилась на другом, значительно более низком уровне развития и соответственно значительно хуже были исследованы топливные месторождения, а некоторые из них вообще еще не были открыты.
Тогда мировая общественность впервые задумалась о поиске новых видов энергии для будущего удовлетворения своих постоянно растущих потребностей.
Именно тогда были предложены многие из известных сегодня альтернативных, так называемых «возобновляемых» видов энергии: солнечная, геотермальная, энергия ветра, приливов и отливов, движения волн, разница термического потенциала поверхности и глубин мирового океана и многое другое.
При дополнительных исследованиях и уточнениях после 1980 г. во время своеобразной «инвентаризации» мировых запасов цифры стали более оптимистичными — природного органического топлива должно хватить на весь XXI в.
Однако все эти прогнозы, как и в начале века, дали ощутимый толчок к поиску возобновляемых энергоресурсов, альтернативных органическому топливу.
По данным ЮНЕСКО в недрах Земли содержится 1016 т (1010 Гига-тонн — Гт; 1 Гт = 1 млн. т) ископаемого углерода. К сожалению, не весь он легко или рентабельно добываем.
Уголь является после дров самым широко применяемым видом природного органического топлива.
Известные, доступные для разработки, запасы угля оцениваются в 600 Гт (примерно в 4 раза больше добытого). Возможно, что запасы угля на Земле достигают 10 000Гт.
Предполагается, что 2500 Гт из них доступны для разработки.
Нефть, по оценкам ЮНЕСКО, использована примерно на 1/3 от уровня и доступных для разработки мировых запасов.
Доказанные запасы составляют 884 Гт, однако в конечном счете пригодными для добычи могут оказаться около 300 Гт. В последние годы открываются или уточняются по запасам месторождения нефти общим объемом около 5 Гт ежегодно, т.е. больше, за год. Предполагается, что в настоящее время достигнут максимум добычи нефти, после чего ее мировое производство и потребление начнут снижаться.
Природный газ к настоящему использован примерно на 40 % его известных запасов, около 590 Гт, причем его извлекаемость больше, чем у нефти, и составить также примерно 300 Гт.
Максимум производства и потребления ожидается в 2010 г., когда его потребление в 3- раза превысит существующее.
Горючие сланцы и битуминозные пески — наименее эффективные виды ископаемого органического топлива. Из них, правило, добывается нефть, причем значительная часть добываемого сырья составляет пустая порода.
Так, в бывшем СССР ежегодно перерабатывалось 35 млн. тонн сланцев, из которых извлекалось около 12 т нефти.
Доказанные на по оценкам 70—80-х годов XX в. составляют примерно 900 млрд. т в пересчете на угольный эквивалент (с теплотой сгорания 6000 ккал/кг).
В числе: уголь — 600 млрд.т, нефть — 200 млрд.т, газ — 100 млрд.т; потребление энергии в год — 5 млрд.т. Позже мировые запасы несколько переоценены, и современные цифры, особенно по запасам угля, существенно выше.
Среди возобновляемых источников энергии наиболее существенными признаются следующие.
Геотермальная энергия.
Каждый квадратный метр поверхности Земли постоянно излучает около 0,06 Вт—слишком малая величина, чтобы ее мог ощутить человек. Однако в целом планета ежегодно теряет около 2,8- 1014 кВт ч. При таких темпах Земля должна бы остыть до температуры космического пространства через 200 млн.
лет. Но тот факт, что Земле уже 4,5 млрд. лет, означает, что энергия поступает изнутри нее, и именно от нагрева в результате радиоактивного распада определенных изотопов в горных породах земной коры, находящихся порой на значительной глубине. Известно понятие геотермический градиент: температура земных недр возрастает на 30°С с увеличением глубины на 1 километр. В некоторых районах геотермическая активность усиливает этот эффект и температура может повышаться до 80°/км. Однако пар геотермального происхождения имеет температуру выше 300 °С, что ограничивает эффективность его использования.
Таким образом, геотермальная энергия — это фактически разновидность ядерной энергии.
В настоящее время действует около 20 геотермальных электростанций мощностью от нескольких МВт до 500 МВт каждая.
Их общая мощность около 1,5 ГВт (1 ГВт = 103 МВт = 106 кВт). В среднем одна буровая скважина, пробуренная на нужную глубину (от сотен метров до километра в зависимости от характера земной коры), может дать около 5 MВт, и срок ее действия—10 — 20 лет.
Приливные волны Мирового океана несут около 3 ТВт знергии (1 ТВт = 1012Вт= 109кВт= 106 МВт = 103 ГВт).
Однако ее получение рентабельно лишь в нескольких районах планеты, где приливы особенно высоки, например, в некоторых районах Ла-Манша и Ирландского моря вдоль побережья Северной Америки и Австралии и на отдельных участках Белого и Баренцева морей.
По техническим причинам приливные станции работают лишь на 25 % своей нормативной мощности, так что из общего потенциала 80 ГВт может быть использовано лишь 20 ГВт.
Несколько лет действует одна из самых крупных приливных электростанций близ Ла-Ранс (Франция) проектной мощностью 240 МВт, которая при довольно небольших затратах производит 60 МВт.
Волны Мирового океана содержат еще около 3 ТВт энергии. Обычная волна в Северном море несет 40 кВт энергии на каждый метр длины на протяжении 30 % времени своего существования и около 10 кВ на метр в течение 70 % времени.
Расчетные данные о том, какую энергию можно получить от волн, сильно расходятся. Согласно одним — это 100 ГВт во всем мире, по другим — 120 ГВт можно получить лишь у берегов Англии. Несколько экспериментальных прототипов волновых энергетических установок построено в Англии и Японии.
Дующие на Земле ветры обладают энергией в 2700 ТВт, но лишь 1/4 часть их находится на высоте до 100 метров над поверхностью Земли. Если на всех континентах построить ветряные установки, беря в расчет только поверхность суши и учитывая неизбежные потери, то это может дать максимум 40 ТВт.
Однако даже 1/10 часть этой энергии превышает весь гидроэнергетический потенциал. При использовании энергии ветра человечество столкнулось с неожиданными проблемами.
В США на побережье Флориды были сооружены мощные ветряки с диаметром лопастей свыше 3-х метров. Оказалось, что эти установки генерируют довольно мощное излучение неслышимого инфразвука, который, во-первых удручающе действует на человеческую психику, а во-вторых, резонирует естественные колебания таким образом, что на расстоянии нескольких километров дрожат и лопаются стекла в домах, стеклянная посуда, люстры и т.п.
Изменение (уменьшение) диаметра ветряных установок пока не дало положительных результатов, так что дальнейшее сооружение подобных генераторов является проблематичным.
Гидроэнергия. На Земле имеется 1018 т воды, однако лишь 1/2000 часть ее ежегодно вовлекается в круговорот, испаряясь и вновь выпадая на поверхность в виде дождя и снега. Но даже эта ничтожная доля составляет 500 000 км3 воды. Ежегодно из океанов испаряется 430 000 и с суши 70 000 км3 воды.
Из них 390 000 км3 воды выпадает в виде осадков обратно в океаны и 110 000 — на сушу. Таким образом, ежегодно 40 000 км3 воды стекает с континентов в океаны. Средняя высота континентов — 80 м.
Легко подсчитать, что общая потенциальная гидроэнергия на земном шаре составляет 10 Твт (примерно нынешний объем общемирового потребления), около 15 % может быть рентабельно использовано, что дает потенциал 1,5 Твт.
Энергетический потенциал гидроресурсов, использовать который экономически целесообразно, в России составляет порядка 1 трлн. кВт ч/год, в том числе на больших и средних реках около 850 млрд. кВт.ч/год. По этому показателю мы занимаем второе место в мире после Китая (табл. 2.1).