Что относится к динамическим характеристикам в биомеханике ответ
Динамические характеристики тела человека.
Инерционные характеристики раскрывают, каковы особенности тела человека и движимых им тел в их взаимодействиях. От инерционных характеристик зависит сохранение и изменение скорости.
Все физические тела обладают свойством инертности (или инерции), которое проявляется в сохранении движения, а также в особенностях изменения его под действием сил.
Понятие инерции раскрывается в первом законе Ньютона: «Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние».
Говоря проще: тело сохраняет свою скорость, а также под действием внешних сил изменяет ее.
Масса тела характеризует, как именно приложенная сила может изменить движение тела. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.
Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения, а значит угловое ускорение тела под действием того же момента силы меньше; если частицы ближе к оси, то угловое ускорение больше, а момент инерции меньше. Значит, если приблизить тело к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.
Силовые характеристики. Известно, что движение тела может происходить как под действием приложенной к нему движущей силы, так и без движущей силы (по инерции), когда приложена только тормозящая сила. Движущие силы приложены не всегда; без тормозящих же сил движения не бывает. Изменение движений происходит под действием сил. Сила не причина движения, а причина изменения движения; силовые характеристики раскрывают связь действия силы с изменением движения.
Сила — это мера механического воздействия одного тела на другое в данный момент времени. Численно она определяется произведением массы тела и его ускорения, вызванного данной силой.
Чаще всего говорят про силу и результат ее действия, но это применимо только к простейшему поступательному движению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращательного движения зависит не от силы, а от момента силы.
Момент силы обычно считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицательным при повороте по часовой стрелке.
Чтобы сила могла проявить свое вращающее действие, она должна иметь плечо. Иначе говоря, она не должна проходить через ось вращения.
Во вращательном движении момент силы, действуя в течение определенного времени, создает импульс момента силы.
Количество движения — это мера поступательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Количество движения тела измеряется произведением массы тела на его скорость.
Энергетические характеристики. При движениях человека силы, приложенные к его телу на некотором пути, совершают работу и изменяют положение и скорость звеньев тела, что изменяет его энергию. Работа характеризует процесс, при котором меняется энергия системы. Энергия же характеризует состояние системы, изменяющейся вследствие работы. Энергетические характеристики показывают, как меняются виды энергии при движениях и протекает сам процесс изменения энергии.
Понятие работы представляет собой меру внешних воздействий, приложенных к телу на определенном пути, вызывающих изменения механического состояния тела.
Динамические характеристики движения
К ранее рассмотренным кинематическим мерам изменения движения (скорости и ускорению) добавляются динамические меры изменения движения (количество движения и кинетический момент). Совместно с мерами действия сил они отражают взаимосвязь сил и движения. Изучение их помогает понять физические основы двигательных действий человека.
Инерционные характеристики раскрывают особенности тела человека и движимых им тел в их взаимодействиях. От инерционных характеристик зависит сохранение и изменение скорости.
Все физические тела обладают свойством инертности (или инерции), которое проявляется в сохранении движения, а также в особенностях изменения его под действием сил.
Понятие инерции раскрывается в первом законе Ньютона: «Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние».
Масса — это мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению. Масса (m) — это количество вещества (в килограммах), содержащееся в теле или отдельном звене.
Масса тела характеризует, как именно приложенная сила может изменить движение тела. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.
Вес тела — это сила, с которой тело вследствие его притяжения к Земле действует на горизонтальную опору.
Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения, а значит угловое ускорение тела под действием того же момента силы меньше; если частицы ближе к оси, то угловое ускорение больше, а момент инерции меньше. Значит, если приблизить тело к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.
Силовые характеристики. Известно, что движение тела может происходить как под действием приложенной к нему движущей силы, так и без движущей силы (по инерции), когда приложена только тормозящая сила. Движущие силы приложены не всегда; без тормозящих же сил движения не бывает. Изменение движений происходит под действием сил. Сила не причина движения, а причина изменения движения; силовые характеристики раскрывают связь действия силы с изменением движения.
Сила — это мера механического воздействия одного тела на другое в данный момент времени. Численно она определяется произведением массы тела и его ускорения, вызванного данной силой.
Чаще всего говорят про силу и результат ее действия, но это применимо только к простейшему поступательному движению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращательного движения зависит не от силы, а от момента силы.
Момент силы обычно считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицательным при повороте по часовой стрелке.
Чтобы сила могла проявить свое вращающее действие, она должна иметь плечо. Иначе говоря, она не должна проходить через ось вращения.
Определение силы или момента силы, если известна масса или момент инерции, позволяет узнать только ускорение, т.е. как быстро изменяется скорость. Надо еще узнать, насколько именно изменится скорость. Для этого должно быть известно, как долго была приложена сила. Иначе говоря, следует определить импульс силы (или ее момента).
Во вращательном движении момент силы, действуя в течение определенного времени, создает импульс момента силы.
Импульс момента силы — это мера воздействия момента силы относительно данной оси за данный промежуток времени (во вращательном движении).
Вследствие импульса, как силы, так и момента силы возникают изменения движения, зависящие от инерционных свойств тела и проявляющиеся в изменении скорости (количество движения, кинетический момент).
Количество движения — это мера поступательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Количество движения тела измеряется произведением массы тела на его скорость.
Кинетический момент (момент количества движения)— это мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент равен произведению момента инерции относительно оси вращения на угловую скорость тела.
Соответствующее изменение количества движения происходит под действием импульса силы, а под действием импульса момента силы происходит определенное изменение кинетического момента (момента количества движения).
При движениях человека силы, приложенные к его телу на некотором пути, совершают работу и изменяют положение и скорость звеньев тела, что изменяет его энергию. Работа характеризует процесс, при котором меняется энергия системы. Энергия же характеризует состояние системы, изменяющейся вследствие работы. Энергетические характеристики показывают, как меняются виды энергии при движении, и протекает сам процесс изменения энергии.
Если сила направлена в сторону движения (или под острым углом к этому направлению), то она совершает положительную работу, увеличивая энергию движения тела. Когда же сила направлена навстречу движению (или под тупым углом к его направлению), то работа силы отрицательная и энергия движения тела уменьшается.
Работа момента силы — это мера воздействия момента силы на тело на данном пути (во вращательном движении). Она равна произведению модуля момента силы и угла поворота.
Понятие работы представляет собой меру внешних воздействий, приложенных к телу на определенном пути, вызывающих изменения механического состояния тела.
Энергия как мера движения материи переходит из одного вида в другой. Так, химическая энергия в мышцах превращается в механическую (внутреннюю потенциальную упруго-деформированных мышц). Порожденная последней сила тяги мышц совершает работу и преобразует потенциальную энергию в кинетическую энергию движущихся звеньев тела и внешних тел. Механическая энергия внешних тел (кинетическая), передаваясь при их действии на тело человека его звеньям, преобразуется в потенциальную энергию растягиваемых мышц-антаганистов, а также в рассеивающуюся тепловую энергию.
Динамические характеристики движений
Динамические параметры движений включают инерционные, силовые и энергетические характеристики (рис. 2.5).
Рис. 2.5. Основные динамические характеристики движений
А. Инерционные характеристики движений
§ Инерция – это свойство тел сохранять скорость неизменной при отсутствии внешних воздействий (противодействовать началу или изменению движения).
§ Инертность – это свойство физических тел сопротивляться изменению скорости и направления движения под действием сил.
o Масса тела является мерой инертности: чем больше масса, тем инертнее тело и тем труднее вывести его из состояния покоя или изменить его движение.
Б. Силовые характеристики движений
§ Сила– мера механического действия одного тела на другое.
o Определяется произведением массы тела на ускорение, вызванное данной силой: F = m*a.
o Является векторной величиной.
§ Момент силы – мера вращающего действия силы.
o Определяется произведением модуля силы на ее плечо (кратчайшее расстояние от оси вращения до линии действия силы): M = F*l.
o Определяет изменение скорости движения.
В. Энергетические характеристики движений
§ Механическая работа силы – мера действия силы на тело при его перемещении под действием этой силы. Сила может совершать положительную и отрицательную работу – увеличивать или уменьшать энергию тела.
§ Мощность силы – мера быстроты приращения работы силы.
o Мощность (N) равна отношению работы ко времени, в течение которого она производилась: N = A / t.
§ Энергия – запас работоспособности системы.
o Кинетическая энергия – энергия механического движения тела, определяющая возможность совершения работы.
o Потенциальная энергия – энергия положения тела, обусловленная относительным расположением тел или частей одного и того же тела и характером их взаимодействия.
o Полная энергия телав поступательном и вращательном движениях равна сумме его потенциальной и кинетической энергии: Е = Еп + Ек.
o Закон сохранения энергии:энергия в замкнутой механической системе не исчезает, а переходит из одного вида в другой – рекуперация механической энергии.
Динамические характеристики тела человека
Инерционные характеристики раскрывают, каковы особенности тела человека и движимых им тел в их взаимодействиях. От инерционных характеристик зависит сохранение и изменение скорости. Все физические тела обладают свойством инертности (или инерции), которое проявляется в сохранении движения, а также в особенностях изменения его под действием сил. Понятие инерции раскрывается в первом законе Ньютона: «Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние». Говоря проще: тело сохраняет свою скорость, а также под действием внешних сил изменяет ее.
Силовые характеристики. Известно, что движение тела может происходить как под действием приложенной к нему движущей силы, так и без движущей силы (по инерции), когда приложена только тормозящая сила. Движущие силы приложены не всегда; без тормозящих же сил движения не бывает. Изменение движений происходит под действием сил. Сила не причина движения, а причина изменения движения; силовые характеристики раскрывают связь действия силы с изменением движения.
Сила — это мера механического воздействия одного тела на другое в данный момент времени. Численно она определяется произведением массы тела и его ускорения, вызванного данной силой. Чаще всего говорят про силу и результат ее действия, но это применимо только к простейшему поступательному движению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращательного движения зависит не от силы, а от момента силы.
Количество движения — это мера поступательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Количество движения тела измеряется произведением массы тела на его скорость.
Энергетические характеристики. При движениях человека силы, приложенные к его телу на некотором пути, совершают работу и изменяют положение и скорость звеньев тела, что изменяет его энергию. Работа характеризует процесс, при котором меняется энергия системы. Энергия же характеризует состояние системы, изменяющейся вследствие работы. Энергетические характеристики показывают, как меняются виды энергии при движениях и протекает сам процесс изменения энергии.
Билет 14.
1. Задачи и содержание биомеханики.
Курс лекций по биомеханике. Курс лекций Содержание Биомеханика как учебная и научная
Тема 6.Динамические характеристики движений человека
1. Инерционные характеристики 2.Силовые характеристики 3. Внешние относительно системы силы 4. Внутренние относительно системы силы 5.Динамические особенности в движениях человека
1. ИНЕРЦИОННЫЕ ХАРАКТЕРИСТИКИ
1.1. Понятие об инертности
Инертность (или инерция 1 ) — свойство физических тел, проявляющееся в сохранении движения, а также изменении его под действием сил.
Физическое тело, взаимодействуя с другими телами, может изменить свое движение. Если же никакого взаимодействия с другими телами нет, то нет приложенных к телу сил и движение его не изменяется (в инерциальной системе отсчета).
Сохранять «состояние покоя или равномерного и прямолинейного движения» (1-й закон Ньютона) 2 — это значит сохранять неизменной по величине и направлению скорость (в частном случае равную нулю-состояние покоя).
Ускорение (как мера изменения скорости) возникает только при действии других тел, когда приложены силы. В природе невозможно движение вне воздействия других тел, поэтому способность сохранять движение проявляется как способность к его изменению (ускорению) под действием силы, причем постепенному и различному для разных тел.
Инертность характеризует определенные черты поведения тел, показывает, как сохраняется движение, как оно изменяется под действием сил — быстрее или медленнее.
Закон инерции, открытый еще Галилеем и сформулированный Ньютоном, описывает свойство материальной точки и тел, движущихся поступательно. Он по своей сути применим и для тел, движущихся вращательно.
Биомеханические системы также подчиняются этому закону. Для изменения вращательного движения системы тел при некоторых условиях (без опоры) действия других внешних тел не требуется, однако закон инерции и здесь не нарушается (см. гл. VIII).
Масса — это мера инертности тела при поступательном движении. Она измеряется при движении материальной точки и поступательном движении тела или системы тел отношением величины приложенной силы к величине вызываемого ею ускорения:
Если к одному и тому же телу приложены разные силы, то изменения его движения будут различными. Отношение же силы к вызываемому ею ускорению в каждом случае постоянно — оно равно его массе:
Для решения ряда задач мало знать, какова величина массы тела, надо учитывать, как распределены в теле материальные частицы, обладающие массами. Это отчасти характеризуется положением центра масс, или центра тяжести.
1.3. Момент инерции тела
Когда частицы тела находятся дальше от оси вращения, то угловое ускорение тела под действием того же момента силы меньше; если частицы ближе к оси, то угловое ускорение больше. Значит, если приблизить тело (все в целом или его части) к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.
Найдя опытным путем момент инерции тела, можно рассчитать радиус инерции, на величине которого отражается распределение частиц в теле относительно данной оси.
Радиус инерции — это сравнительная мера инертности данного тела относительно его разных осей. Он измеряется корнем квадратным из отношения момента инерции относительно данной оси
к массе тела: R=J/m
Количественное определение моментов инерции в биомеханике не всегда достаточно точно. Но для понимания физических основ движений человека учитывать эту характеристику необходимо.
Сила — это мера механического воздействия одного тела на другое. Численно она определяется произведением массы тела на его ускорение, вызванное приложением этой силы: F=ma;
Таким образом, измерение силы, как и измерение массы, основано на 2-м законе Ньютона. Поскольку этот закон раскрывает зависимости в поступательном движении, то и сила как вектор определяется только в случае такого простейшего вида движения по массе и ускорению,
Если на одно тело действует другое тело, то оно изменяет движение первого. Но и первое тело в этом взаимодействии также изменяет движение другого. Обе силы приложены к разным объектам, каждая проявляет соответствующий эффект. Их нельзя заменить одной равнодействующей, поскольку они приложены к разным объектам. Именно поэтому они друг друга и не уравновешивают.
В неинерциальной системе отсчета рассматривают кроме взаимодействий двух тел еще особые силы инерции («фиктивные»), для которых 3-й закон Ньютона не применим.
Измерение сил. Применяется статическое измерение силы, т. е. измерение при помощи уравновешивающей силы (когда ускорение равно нулю), и динамическое — по ускорению, сообщаемому телу ее приложением.
При статическом действии силы на данное тело (М) действуют два тела (А и В); всего имеется три материальных объекта (рис. 23, а). Силы Fа и f в , приложенные к телу М, равны по величине и противоположны по направлению, они взаимно уравновешиваются. Их равнодействующая равна нулю. Ускорение, вызванное ими, также равно нулю. Скорость не изменяется (остается постоянной — равномерное движение или относительная неподвижность).
Силу fa, действующую статически, можно измерить уравновешивающей ее силой f в .
Рассмотрим три случая проявления статического действия силы, когда все тела неподвижны —
а)гимнаст в висе на перекладине; опорная реакция уравновешивает силу тяжести тела (G);
б) уравновешенное тело движется перпендикулярно уравновешенной силе тяжести — конькобежец скользит по льду; опорная реакция уравновешивает силу тяжести тела (G); последняя прямо не влияет на скорость скольжения;
в) уравновешенное тело по инерции движется по направлению действия уравновешенной силы; горнолыжник скользит с постоянной скоростью по склону; силы сопротивления (воздуха и трения лыж по снегу — Q) уравновешивают скатывающую составляющую силы тяжести (G). Во всех трех случаях вне зависимости от состояния покоя или направления движения тела уравновешенная сила не изменяет движения; скорости в направлении ее действия постоянны.
Следует подчеркнуть, что во всех случаях статическое действие силы вызывает деформацию тела.
При динамическом действии силы на данное тело М действует неуравновешенная сила. В задачах по теоретической механике часто рассматривается лишь эта одна движущая сила, как мера действия лишь одного движущего тела.
Движущая сила — это сила, которая совпадает с направлением движения (попутная) или образует с ним острый угол и при этом может совершать положительную работу (увеличивать энергию тела).
Однако в реальных условиях движений человека всегда существует среда (воздух или вода), действуют опора и другие внешние тела (снаряды, инвентарь, партнеры, противники и др.). Все они могут оказывать тормозящее действие. Более того, ни одного реального движения без участия тормозящих сил просто не бывает.
Тормозящая сила направлена противоположно направлению движения (встречная) или образует с ним тупой угол. Она может совершать отрицательную работу (уменьшать энергию тела).
Часть движущей силы, равная по величине тормозящей уравновешивает последнюю — это уравновешивающая сила (Fyp).
Избыток же движущей силы над тормозящей — ускоряющая сила (Fуск) — вызывает ускорение тела с массой m согласно 2-му закону Ньютона (Fy=ma).
Следовательно, скорость не остается постоянной, а изменяется, т. е. возникает ускорение. Это и есть динамическое действие силы F.
Силу Fуск, действующую динамически, можно измерить по массе тела и его ускорению.
Классификация сил. Силы, которые, изучают при анализе движений человека, в зависимости от общих признаков делятся на группы. По способу взаимодействия тел все силы делятся на д и с т а н т н ы е, возникающие на расстоянии без непосредственного соприкосновения тел, и контактные, которые возникают лишь при соприкосновении тел.
К дистантным силам в механике относят силы всемирного тяготения, из которых в биомеханике изучаются силы земного тяготения, проявляющиеся в силах тяжести. Контактные силы включают упругие силы и силы трения.
По влиянию на движение различают силы а к т и в н ы е (или задаваемые) и реакции связи. Напоминаем, что связи —это ограничения движения объекта, осуществляемые другими телами. Сила, с которой связь противодействует движению, и представляет собою реакцию связи. Она заранее неизвестна и зависит от действия на тело других сил и движения самого тела.
Реакции связи сами по себе не вызывают движения, они только противодействуют активным силам или уравновешивают их. Если же реакции связи не уравновешивают активных сил, тогда и начинается движение под действием последних.
По источнику возникновения относительно системы (например, тела человека) силы различают в н е ш н и е, вызванные действием тел внешних относительно системы, и внутренние, вызванные взаимодействиями внутри системы. Это деление необходимо при определении возможностей действия тех или иных сил. Одну и ту же силу следует считать внешней или внутренней в зависимости от того, относительно какого объекта мы ее рассматриваем.
По способу приложения силы в механике делят на сосредоточенные, приложенные к телу в одной точке, и распределенные. Последние делят на поверхностные и объемные.
По характеру силы бывают постоянные и переменные. В качестве примера постоянной силы можно назвать силу тяжести (в данном пункте Земли). Одна и та же сила может изменяться в зависимости от нескольких условий. Практически в движении человека постоянные силы почти не встречаются. Все силы переменные. Они меняются в зависимости от времени (мышца с течением времени изменяет силу тяги), расстояния (в разных пунктах Земли даже «постоянная сила» тяжести различна), скорости (сопротивление среды зависит от относительной скорости тела и среды).
Поскольку в биомеханике особенно важно взаимодействие тела человека с внешним окружением, вызываемое движениями частей тела, далее будут подробно рассмотрены силы внешние и внутренние относительно системы (тела человека). Взаимодействие физических объектов — главная причина изменения движений. Поэтому мере взаимодействия — силе — в биомеханике уделяется особое внимание.
Момент силы — это мера механического воздействия, способного поворачивать тело (мера вращающего действия силы). Он численно определяется произведением модуля силы на ее плечо (расстояние от центра момента 1 до линии действия силы):
Момент силы имеет знак плюс, если сила сообщает вращение против часовой стрелки, и минус при обратном его направлении.
Вращающая способность силы проявляется в создании, изменении или прекращении вращательного движения.
Полярный момент силы (момент силы относительно точки) может быть определен для любой силы относительно этой точки (О) (центр момента). Если расстояние от линии действия силы до избранной точки равно нулю, то и момент силы равен нулю. Следовательно, расположенная таким образом сила не обладает вращающей способностью относительно этого центра. Площадь прямоугольника (Fd) численно равна модулю момента силы.
Когда несколько моментов силы приложено к одному телу, их можно привести к одному моменту — главному моменту.
Для определения вектора момента силы 1 надо знать: а) м о д у л ь момента (произведение модуля силы на ее плечо); б) плоскость поворота (проходит через линию действия силы и центр момента) и в)направление поворота в этой плоскости.
Осевой момент силы (момент силы относительно оси) может быть определен для любой силы, кроме совпадающей с осью, ей параллельной или ее пересекающей. Иначе говоря, сила и ось не должны лежать в одной плоскости.
Применяют статическое измерение момента силы, если его уравновешивает лежащий в той же плоскости равный ему по модулю и противоположный по направлению момент другой силы относительно того же центра момента (например, при равновесии рычага). Моменты сил тяжести звеньев относительно их проксимальных суставов называют статическими моментами звеньев.
Применяют динамическое измерение момента силы, если известны момент инерции тела относительно оси вращения и его угловое ускорение. Как и силы, моменты сил относительно центра могут быть движущими и тормозящими, а стало быть, и уравновешивающими, ускоряющими и замедляющими. Момент силы может быть и отклоняющим — отклоняет в пространстве плоскость поворота.
При всех ускорениях возникают силы инерции: при нормальных ускорениях — центробежные силы инерции, при касательных ускорениях (положительных или отрицательных) — касательные силы инерции. Центробежная сила инерции направлена по радиусу вращения и не имеет момента относительно центра вращения. Касательная же сила инерции приложена для твердого звена в центре его качаний. Таким образом, имеется момент силы инерции относительно оси вращения.
Меры действия силы могут быть определены: а) с учетом промежутка времени ее действия — импульс силы — или б) с учетом пути ее действия — работа силы. Обе эти меры как бы взаимно дополняют друг друга, отражая действие силы во времени и в пространстве.
Импульс силы — это мера механического воздействия на тело со стороны других материальных объектов за данный промежуток времени. Он равен в поступательном движении произведению силы на время ее действия: S=Ft
Работа силы —это мера механического воздействия на тело со стороны других материальных объектов на данном пути. Она равна в поступательном движении произведению модулей той составляющей силы, которая действует в направлении движения, и перемещения точки приложения силы: A=Fs
В случае если сила направлена под углом к перемещению, надо произведение модулей силы и перемещения помножить еще на косинус угла между их направлениями. Работа силы положительная, когда этот угол острый, и, следовательно, сила ускоряет движение. Работа силы отрицательная, если угол тупой и сила замедляет движение. При прямом угле косинус равен нулю и работа равна нулю: сила работы не совершает.
Соответственно различают меры изменения движения, как результата действия силы: а) количество движения тела и б) кинетическую энергию тела.
Количество движения тела — это мера поступательного движения, характеризующая его способность передаваться от одного тела к другому в виде механического же движения. Количество движения тела определяется при поступательном его движении произведением массы тела и его скорости: K=mv
Изменение количества движения за промежуток времен и равняется суммарному импульсу сил, приложенных к телу на том же промежутке времени.
Можно сказать, что количество движения тела — это мера его способности двигаться в течение некоторого времeни против, действия тормозящей силы.
Кинетическая энергия тела 1 — это мера механического движения, характеризующая его способность превращаться в потенциальную энергию или другие виды энергии. Кинетическая энергия тела равна при поступательном движении половине произведения массы тела на квадрат его скорости: E k =mv 2 /2
Изменение кинетической энергии тела на некотором пути перемещения равняется работе приложенных к нему сил на этом же пути. Следовательно, совершенная работа равна приращению кинетической энергии.
Можно сказать, что кинетическая энергия тела — это мера его способности проходить некоторый путь против действия тормозящей силы.
Теперь посмотрим, как действуют силы и какой эффект они вызывают во вращательном движении, характерном для звеньев тела человека. Зависимости мер изменения движения от мер действия сил во вращательном движении по физической сущности такие же, как и в поступательном.
Импульс момента силы характеризует действие силы, а вызванное им изменение движения измеряется кинетическим моментом (моментом количества движения).
Импульс момента силы — это мера механического воздействия на тело других объектов (во вращательном движении) за данный промежуток времени. Импульс момента равен произведению момента силы и длительности его действия: Sz=Mz(F)t;
В случае переменного момента силы нужно суммировать элементарные импульсы моментов сил относительно некоторого центра.
Кинетический момент (момент количества движения) — это мера вращательного движения, характеризующая его способность передаваться от одного тела к другому в виде механического же движения. Кинетический момент равен произведению момента инерции относительно оси вращения и угловой скорости тела: Kz=J
Определения работы момента силы и кинетической энергии вращательного движения аналогичны определениям соответствующих величин для поступательного движения. Только вместо массы в уравнения входит момент инерции и вместо линейных перемещения и скорости — угловые.
Если скорость и ускорение служат кинематическими мерами изменения движения, то количество движения (а также кинетический момент) и кинетическая энергия — динамическими мерами изменения движения.
Следует подчеркнуть, что, хотя в характеристиках поступательного и вращательного движений немало общего, меры их (кинематические и динамические) все (кроме временных) различны.
Для того чтобы отнести силы к внешним или внутренним, надо установить прежде всего, относительно какой системы объектов эти силы рассматриваются. В биомеханике такой системой, естественно, считают тело человека. Но иногда бывает целесообразно расширить систему (например, велосипедист — велосипед) или ограничить ее (например, тело прыгуна в воду рассматривают как две связанные системы — верхнюю и нижнюю половины по весу тела. Тяги мышц, соединяющих эти системы, можно рассматривать как внешние дли них силы).