Что определяют размеры программного обеспечения
Модели качества и надежности в программной инженерии
10.1.2. Метрики качества программного обеспечения
В настоящее время в программной инженерии еще не сформировалась окончательно система метрик. Действуют разные подходы к определению их набора и методов измерения [10.11-10.13].
Система измерения включает метрики и модели измерений, которые используются для количественной оценки качества ПО.
При определении требований к ПО задаются соответствующие им внешние характеристики и их атрибуты (подхарактеристики), определяющие разные стороны управления продуктом в заданной среде. Для набора характеристик качества ПО, приведенных в требованиях, определяются соответствующие метрики, модели их оценки и диапазон значений мер для измерения отдельных атрибутов качества.
Согласно стандарту [1.16] метрики определяются по модели измерения атрибутов ПО на всех этапах ЖЦ (промежуточная, внутренняя метрика) и особенно на этапе тестирования или функционирования (внешние метрики) продукта.
Остановимся на классификации метрик ПО, правилах для проведения метрического анализа и процесса их измерения.
Существует три типа метрик:
Метрики программного продукта включают:
Внутренние метрики продукта включают:
Внутренние метрики позволяют определить производительность продукта и являются релевантными по отношению к внешним метрикам.
Внешние и внутренние метрики задаются на этапе формирования требований к ПО и являются предметом планирования и управления достижением качества конечного программного продукта.
Стандарт ISO/IEC 9126-2 определяет следующие типы мер:
Специальной мерой может служить уровень использования повторных компонентов и измеряется как отношение размера продукта, изготовленного из готовых компонентов, к размеру системы в целом. Данная мера используется также при определении стоимости и качества ПО. Примеры метрик:
При оценке общего количества некоторых величин часто используются среднестатистические метрики (среднее число операций в классе, наследников класса или операций класса и др.).
Как правило, меры в значительной степени являются субъективными и зависят от знаний экспертов, производящих количественные оценки атрибутов компонентов программного продукта.
На основе этих атрибутов можно вычислить время программирования, уровень программы (структурированность и качество) и языка программирования (абстракции средств языка и ориентация на проблему) и др.
В качестве метрик процесса могут быть время разработки, число ошибок, найденных на этапе тестирования и др. Практически используются следующие метрики процесса:
10.1.3. Стандартная оценка значений показателей качества
Оценка качества ПО согласно четырехуровневой модели качества начинается с нижнего уровня иерархии, т.е. с самого элементарного свойства оцениваемого атрибута показателя качества согласно установленных мер. На этапе проектирования устанавливают значения оценочных элементов для каждого атрибута показателя анализируемого ПО, включенного в требования.
По определению стандарта ISO/IES 9126-2 метрика качества ПО представляет собой «модель измерения атрибута, связываемого с показателем его качества». При измерении показателей качества данный стандарт позволяет определять следующие типы мер:
Метрики качества используются при оценке степени тестируемости с помощью данных ( безотказная работа, выполнимость функций, удобство применения интерфейсов пользователей, БД и т.п.) после проведения испытаний ПО на множестве тестов.
Наработка на отказ как атрибут надежности определяет среднее время между появлением угроз, нарушающих безопасность, и обеспечивает трудноизмеримую оценку ущерба, которая наносится соответствующими угрозами.Очень часто оценка программы проводится по числу строк. При сопоставлении двух программ, реализующих одну прикладную задачу, предпочтение отдается короткой программе, так как её создает более квалифицированный персонал и в ней меньше скрытых ошибок и легче модифицировать. По стоимости она дороже, хотя времени на отладку и модификацию уходит больше. Т.е. длину программы можно использовать в качестве вспомогательного свойства для сравнения программ с учетом одинаковой квалификации разработчиков, единого стиля разработки и общей среды.
Если в требованиях к ПО было указано получить несколько показателей, то просчитанный после сбора данных показатель умножается на соответствующий весовой коэффициент, а затем суммируются все показатели для получения комплексной оценки уровня качества ПО.
На основе измерения количественных характеристик и проведения экспертизы качественных показателей с применением весовых коэффициентов, нивелирующих разные показатели, вычисляется итоговая оценка качества продукта путем суммирования результатов по отдельным показателям и сравнения их с эталонными показателями ПО (стоимость, время, ресурсы и др.).
Все метрики -атрибута суммируются и образуют -показатель качества. Когда все атрибуты оценены по каждому из показателей качества, производится суммарная оценка отдельного показателя, а потом и интегральная оценка качества с учетом весовых коэффициентов всех показателей ПО.
В конечном итоге результат оценки качества является критерием эффективности и целесообразности применения методов проектирования, инструментальных средств и методик оценивания результатов создания программного продукта на стадиях ЖЦ.
Для изложения оценки значений показателей качества используется стандарт [10.4], в котором представлены следующие методы: измерительный, регистрационный, расчетный и экспертный (а также комбинации этих методов). Измерительный метод базируется на использовании измерительных и специальных программных средств для получения информации о характеристиках ПО, например, определение объема, числа строк кода, операторов, количества ветвей в программе, число точек входа (выхода), реактивность и др.
Регистрационный метод используется при подсчете времени, числа сбоев или отказов, начала и конца работы ПО в процессе его выполнения.
Для оценки значений показателей качества в зависимости от особенностей используемых ими свойств, назначения, способов их определения используются:
Атрибуты программной системы, характеризующие ее качество, измеряются с использованием метрик качества. Метрика определяет меру атрибута, т.е. переменную, которой присваивается значение в результате измерения.Для правильного использования результатов измерений каждая мера идентифицируется шкалой измерений.
Стандарт ISO/IES 9126-2 рекомендует применять 5 видов шкал измерения значений, которые упорядочены от менее строгой к более строгой:
Общие сведения о программном обеспечении
На рис.1.1 показаны три основные группы программных технологий. Базовые технологии по мере своего развития влияют на массовые тенденции и дисциплины, и они применяются во всех областях и направлениях программной разработки. Большинство из известных сейчас таких технологий существуют последние 25 лет. Технологические концепции и методологии объединяют базовые методики, которые используются во многих различных отраслях и продуктах. Консолидированные технологии опираются на концепции и предоставляют готовые технические решения. В тех случаях, когда технологии принадлежат к двум таким группам, они отнесены к более общей группе.
На рис.1.1 можно заметить ряд тенденций, характерных для эволюции программного обеспечения за последние годы:
Каждая из этих тенденций оказывает серьезное влияние на инженерные продукты и на формирование программной отрасли. Microsoft с Windows или Sun с Java – пример того, как отдельная компания определяет развитие технологии, но технологии от этих производителей добились успеха благодаря тому, что они создавались и широко распространялись в отраслях. Невозможно даже представить себе Windows без Intel и всей экосистемы поставщиков и провайдеров сервисов. Точно так же банки создали банкоматы и разработали множество связанных с ними программных технологий, таких как распределенная и защищенная обработка транзакций. Компании розничной торговли стимулировали разработку кассовых аппаратов и необходимого программного обеспечения для поддержки цепочки поставки, в том числе штрих-коды и средства радиочастотной идентификации ( RFID ).
Некоторые технологии прошли очень долгий период развития либо никогда не были полностью разработаны. График их перехода к широкому использованию напоминает синусоиду, что свойственно инновациям, которые переходят от этапа начальных исследований и опытных эксплуатаций к широкому отраслевому применению, а затем все повторяется снова [25]. Это объясняет, почему успешные компании практически в одночасье могут потерпеть крах – просто потому, что они своевременно не предложили определенную технологию. Программные менеджеры также часто склонны к стабилизации, а не к росту, – их интересует эффективность, и они недооценивают экспериментирование и инновации.
Программные технологии полезны, если они широко используются. Однако любая конкретная технология в одних отраслях начинает завоевывать популярность быстрее, чем в других. Хороший тому пример – долгая и трудная дорога к пользователям, которую прошли полезные пакеты инструментов для генерации кода и инженерии программного обеспечения. Когда эти пакеты появились вместе с технологией, они еще не были готовы для повсеместного применения, а позже не был готов рынок. Такой же оказалась и судьба экспертных систем и систем искусственного интеллекта. Сейчас они применяются почти везде, поскольку в отрасли осознали, что экспертная система не является автономной технологией, а должна быть интегрирована в другие продукты. На рис.1.2 показан этот эффект на примере обеспечения безопасности информации.
Ориентированность на конкретную предметную область заменила универсальность 1990-х годов. Первые CASEи распределенные компонентные модели увязли в попытках решить сразу слишком большое количество проблем. Когда в отрасли осознали, что различные предметные области имеют свои специфические потребности и скорости внедрения, то оказалось, что достаточно лишь оптимизировать технологию, предложив ее конкретному рынку. Инструменты моделирования сразу же стали пользоваться популярностью после того, как были адаптированы к потребностям конкретных предметных областей, таких как встроенные контроллеры или телекоммуникационные протоколы.
Программные процессы, как для инженерии, так и для управления, стимулировали эволюцию технологий с 1980-х годов. Сложность программных систем растет быстрее, чем люди в состоянии к ней адаптироваться. Эти трудности были уже в 1960-х годах, но тогда ситуация начала терять свою остроту после того, как ведущие отрасли перенесли свое внимание на процесс инженерии программного обеспечения. Как следствие, разработка программного обеспечения за последние 25 лет кардинально изменилась, превратившись из индивидуального творчества в дисциплину программной инженерии.
Сейчас трудно поверить, что 25 лет назад большая часть программного обеспечения и его разработчики и пользователи действовали изолированно. Программная интеграция лучше всего стала видна с появлением Интернета и его огромными темпами роста, благодаря развитию средств взаимодействия. Компонентные платформы и открытые стандарты еще больше усиливают эту тенденцию. Успешное внедрение и интеграция отнюдь не тривиальны – чтобы предложить что-то полезное инженерам, новые технологии, процессы и средства инженерии нуждаются в аппарате глубокого управления изменениями.
1.3. Качество и характеристики программного обеспечения
Рассматривая, оценивая и анализируя программные системы и отдельные программы, останавливаются на показателях качества программ и их основных характеристиках. Качество ПО – это совокупность свойств, определяющих полезность изделия (программы) для пользователей в соответствии с функциональным назначением и предъявленными требованиями. Характеристика качества программы – понятие, которое отражает отдельные факторы, влияющие на качество программ и поддающиеся измерению [23].
Каждая ПС должна выполнять определенные функции, т.е. делать то, что задумано. Хорошая ПС должно обладать еще целым рядом свойств, позволяющим успешно ее использовать в течение длительного периода, т.е. обладать определенным качеством. Качество ( quality ) ПС – это совокупность его характеристик, которые влияют на его способность удовлетворять заданные потребности пользователей [23]. Это не означает, что разные ПС должны обладать одной и той же совокупностью таких свойств в их наивысшей степени. Повышение качества ПС по одному из таких свойств часто может быть достигнуто лишь ценой изменения стоимости, сроков завершения разработки и снижения качества этой ПС по другим его свойствам. Качество ПС является удовлетворительным, когда она обладает указанными свойствами в такой степени, чтобы гарантировать успешное ее применение.
Совокупность свойств ПС, которая образует удовлетворительное для пользователя качество ПС, зависит от условий и характера эксплуатации этой ПС, т.е. от позиции, с которой должно рассматриваться качество этой ПС. Поэтому при описании качества ПС, прежде всего, должны быть фиксированы критерии отбора требуемых свойств ПС. В настоящее время критериями качества ПС ( criteria of software quality ) принято считать:
Во многих случаях функциональность и надежность являются обязательными критериями качества ПС, причем обеспечение надежности красной нитью проходит по всем этапам и процессам разработки ПС. Остальные критерии используются в зависимости от потребностей пользователей в соответствии с требованиями к ПС.
К основным характеристикам программ и программных систем относится сложность программной системы. При оценке сложности программ, как правило, выделяют три основные группы метрик [23]:
Оценки первой группы наиболее просты и, очевидно, поэтому получили широкое распространение. Традиционной характеристикой размера программ является количество строк исходного текста. Под строкой понимается любой оператор программы, поскольку именно оператор, а не отдельно взятая строка является тем интеллектуальным «квантом» программы, опираясь на который можно строить метрики сложности ее создания.
Непосредственное измерение размера программы, несмотря на свою простоту, дает хорошие результаты. Конечно, оценка размера программы недостаточна для принятия решения о ее сложности, но вполне применима для классификации программ, существенно различающихся объемами. При уменьшении различий в объеме программ на первый план выдвигаются оценки других факторов, оказывающих влияние на сложность. Таким образом, оценка размера программы есть оценка по номинальной шкале, на основе которой определяются только категории программ без уточнения оценки для каждой категории.
К группе оценок размера программ можно отнести также и метрику Холстеда. Основу метрики Холстеда составляют четыре измеряемых характеристики программы:
– число уникальных операторов программы, включая символыразделители, имена процедур и знаки операций (словарь операторов);
– число уникальных операндов программы (словарь операндов); N1 – общее число операторов в программе;
– общее число операндов в программе.
Опираясь на эти характеристики, получаемые непосредственно при анализе исходных текстов программ, М. Холстед вводит следующие оценки:
словарь программы ,
Качество программного обеспечения (Software Quality)
Качество программного обеспечения является постоянным объектом заботы программной инженерии и обсуждается во многих областях знаний.
Приемлемое качество — это желаемая степень совершенства создаваемого продукта (услуги), способная удовлетворить пользователей и достижимая в рамках заданных проектных ограничений.
Качество в проектной деятельности:
«Приемлемое качество» можно сравнивать с уровнем обслуживания в рамках заданного SLA – Service Level Agreement. То есть, приемлемое качество может рассматриваться как компромисс между заказчиком и исполнителем в отношении характеристик продукта, создаваемого исполнителем в интересах заказчика с учетом других ограничений проекта (в частности, стоимостью, что часто именуется как «cost of quality» – «стоимость качества»).
Рисунок «Область знаний — Качество программного обеспечения»
Рисунок «Модель системы менеджмента качества»
Основы качества программного обеспечения (Software Quality Fundamentals)
Инженеры должны понимать смысл, вкладываемый в концепцию качества, характеристики и значение качества в отношении разрабатываемого или сопровождаемого программного обеспечения.
Важной идеей является то, что программные требования определяют требуемые характеристики качества программного обеспечения, а также влияют на методы количественной оценки и сформулированные для оценки этих характеристик критерии приемки.
Культура и этика программной инженерии (Software Engineering Culture and Ethics)
Значение и стоимость качества (Value and Costs of Quality)
Понятие “качество”, на самом деле, не столь очевидно и просто, как это может показаться на первый взгляд. Для любого инженерного продукта существует множество качества, в зависимости от конкретной “системы координат”. Множество этих точек зрения необходимо обсудить и определить на этапе выработки требований к программному продукту. Характеристики качества могут требоваться в той или иной степени, могут отсутствовать или могут задавать определенные требования, все это может быть результатом определенного компромисса.
Стоимость качества (cost of quality) может быть дифференцирована на:
Движущей силой программных проектов является желание создать программное обеспечение, обладающее определенной ценностью. Ценность программного обеспечения в может выражаться в форме стоимости, а может и нет. Заказчик, обычно, имеет свое представление о максимальных стоимостных вложениях, возврат которых ожидается в случае достижения основных целей создания программного обеспечения. Заказчик может, также, иметь определенные ожидания в отношении качества ПО. Иногда, заказчики не задумываются о вопросах качества и связанной с ними стоимостью. Является ли характеристики качества чисто декоративными или, все же, это неотъемлемая часть программного обеспечения? Ответ, вероятно, находится где-то посередине, как почти всегда бывает в таких случаях, и является предметом обсуждения степени вовлечения заказчика в процесс принятия решений и полного понимания заказчиком стоимости и выгоды, связанной с достижением того или иного уровня качества. В идеальном случае, большинство такого рода решений должно приниматься процессе работы с требованиями, однако эти вопросы могут подниматься на протяжении всего жизненного цикла программного обеспечения. Не существует каких-то правил того, как именно необходимо принимать такие решения. Однако, инженеры должны быть способны представить различные альтернативы и их стоимость.
Модели и характеристики качества (Models and Quality Characteristics)
ISO/IEC определяет три связанных модели качества программного обеспечения (ISO 9126-01 Software Engineering — Product Quality, Part 1: Quality Model):
Качество процессов программного обеспечения (Software engineering process quality)
Управление качеством (software quality management) и качество процессов программной инженерии (software engineering process quality) имеют непосредственное отношение к качеству создаваемого программного продукта.
Существует два важнейших стандарта в области качества программного обеспечения.
При этом, CMMI классифицирует обзор (review) и аудит (audit) в качестве методов верификации, но не как самостоятельные процессы.
Данные стандарты все же рассматривают как взаимодополняющие и, что сертификация по ISO 9001 помогает в достижении старших уровней зрелости по CMMI.
Качество программного продукта (Software product quality)
Прежде всего, инженеры должны определить цели создания программного обеспечения. В этом контексте, особо важно помнить, что требования заказчика — первичны и содержат требования в отношении качества, а не только функциональности (функциональные требования). Таким образом, инженеры ответственны за извлечение требований к качеству, которые не всегда представлены явно, а также обсуждение их важности и степени сложности их достижения. Все процессы, ассоциированные с качеством (например, сборка, проверка и повышение качества), должны проектироваться с учетом этих требований и несут на себе тяжесть дополнительных расходов (как важную составную часть стоимости программного обеспечения).
Стандарт ISO 9126-01 (Software Engineering — Product Quality, Part 1: Quality Model) определяет для двух из трех описанных в нем моделей, связанные характеристики и «суб-характеристики» качества, а также метрики, полезные для оценки качества программных продуктов.
Понимание термина “продукт” расширено включением всех артефактов, создаваемых на выходе всех процессов, используемых для создания конечного программного продукта. Примерами продукта являются (но не ограничиваются этим):
Хотя, чаще всего термин качество используется в отношении конечного продукта и поведения системы в процессе эксплуатации, хорошей инженерной практикой является требование к тому, чтобы соответствие заданным характеристикам качества оценивалось и для промежуточных результатов/продуктов жизненного цикла в рамках всех процессов программной инженерии.
Повышение качества (Quality Improvement)
Качество программного обеспечения может повышаться за счет итеративного процесса постоянного улучшения. Это требует контроля, координации и обратной связи в процессе управления многими одновременно выполняемыми процессами:
К программной инженерии применимы теории и концепции, лежащие в основе совершенствования качества. Например, предотвращение и ранняя диагностика ошибок, постоянное совершенствование (continuous improvement) и внимание к требованиям заказчика (customer focus), составляющие принцип “building in quality”. Эти концепции основываются на работах экспертов по качеству, пришедших к мнению, что качество продукта напрямую связано с качеством используемых для его создания процессов.
Такие подходы, как TQM (Total Quality Management – всеобщее управление качеством) и PDCA (Plan, Do, Check, Act – Планирование, Действие, Проверка, Реакция/Корректировка), являются инструментами достижения задач, связанных с качеством. Поддержка менеджмента помогает в выполнении процессов, оценке продуктов и получению всех необходимых данных. Кроме этого, разрабатываемая программа совершенствования (improvement program, обычно является целевой и охватывает работу подразделения или организации, в целом) детально идентифицирует все действия и проекты по улучшению в рамках определенного периода времени, за который такие проекты можно осуществить с успешным решением соответствующих задач. При этом, поддержка менеджмента означает, что все проекты по улучшению обладают достаточными ресурсами для достижением поставленных целей. Поддержка менеджмента тесно связана с реализацией активного взаимодействия в коллективе, и должна предупреждать возникновение потенциальных проблем (и пассивного или даже активного противодействия реализации программы совершенствования или отдельных ее проектов). Формирование рабочих групп, поддержка менеджеров среднего звена и выделенные ресурсы на уровне проекта – эти вопросы обсуждаются в области знаний “Процесс программной инженерии”.
Процессы управления качеством программного обеспечения (Software Quality Processes)
Управление качеством программного обеспечения (SQM, Software Quality Management) применяется ко всем аспектам процессов, продуктов и ресурсов. SQM определяет процессы, владельцев процессов, а также требования к процессам, измерения процессов и их результатов, плюс – каналы обратной связи.
Процессы управления качеством содержат много действий. Некоторые из них позволяют напрямую находить дефекты, в то время, как другие помогают определить где именно может быть важно провести более детальные исследования, после чего, опять-таки, проводятся работы по непосредственному обнаружению ошибок. Многие действия также могут вестись с целью достижения и тех и других целей.
Планирование качества программного обеспечения включает:
Эти процессы отличаются от процессов SQM, как таковых, которые, в свою очередь, направлены на оценку планируемых характеристик качества, а не на реальную реализацию этих планов. Процессы управления качеством должны адресоваться вопросам, насколько хорошо продукт будет удовлетворять потребностям заказчика и требованиям заинтересованных лиц, обладать ценностью для заказчика и заинтересованных лиц и качеством, необходимым для соответствия сформулированным требованиям к программному обеспечению.
SQM может использоваться для оценки и конечных и промежуточных продуктов. Некоторые из специализированных процессов SQM определены в стандарте 12207:
Все эти процессы поддерживают стремление к достижению качества и, кроме того, помогают в поиске возможных ошибок. Однако, они отличаются в том, на чем концентрируют внимание.
Процессы SQM состоят из задач и техник, предназначенных для оценки того, как начинают реализовываться планы по созданию программного обеспечения и насколько хорошо промежуточные и конечные продукты соответствуют заданным требованиям. Результаты выполнения этих задач представляются в виде отчетов для менеджеров перед тем, как будут предприняты соответствующие корректирующие действия. Управление SQM-процессом ведется исходя из уверенности, что данные отчетов точны.
Как описано в данной области знаний, процессы SQM тесно связаны между собой. Они могут перекрываться, а иногда даже и совмещаться. Они кажутся реактивными по своей природе, в силу того, что они рассматривают процессы в контексте полученной практики и уже произведенные продукты. Однако, они играют главную роль на стадии планирования, являясь проактивными как процессы и процедуры, необходимые для достижения характеристик и уровня качества, востребованных заинтересованными лицами программного обеспечения.
Управление рисками также может играть значительную роль для выпуска качественного программного обеспечения. Включение “регулярного” (как постоянно действующего, а не периодического; в оригинале – disciplined) анализа рисков и техник управления в процессы жизненного цикла программного обеспечения может увеличить потенциал для производства качественного продукта. Более подробную информацию по управлению рисками можно найти в области знаний “Управление программной инженерией”.
Подтверждение качества программного обеспечения (Software Quality Assurance, SQA)
Управление рисками (Risk Management) является серьезным дополнительным инструментом для обеспечения качества программного обеспечения.
SQA, как это сформулировано SWEBOK, концентрируется на процессах. Роль SQA состоит в том, чтобы обеспечить соответствующее планирование процессов, дальнейшее исполнение процессов на основе заданного плана и проведение необходимых измерений процессов с передачей результатов измерений заинтересованным сторонам (организационными структурам и лицам).
SQA-план определяет средства, которые будут использоваться для обеспечения соответствия разрабатываемого продукта заданным пользовательским требованиям с максимальным уровнем качества, возможным при заданных ограничениях проекта.
Конкретные работы и задачи по обеспечению качества структурируются с детализацией требований по их стоимости и ассоциированным ресурсам, целям с точки зрения управления и соответствующим расписанием в контексте целей, заданных планами управления, разработки и сопровождения. План SQA идентифицирует документы, стандарты, практики и соглашения, применяемые при контроле проекта, а также то, как эти аспекты будут проверяться и отслеживаться для обеспечения достаточности и соответствия заданному плану.
SQA-план идентифицирует метрики, статистические техники, процедуры формирования сообщений о проблемах и проведения корректирующих действий, такие средства как инструменты, техники и методологии, вопросы безопасности физических носителей, тренинги, а также формирование отчетности и документации, относящиеся к вопросам SQA.
Кроме того, SQA-план касается и вопросов работ по обеспечению качества, относящихся к другим типам деятельности, описанным в планах по созданию программного обеспечения, к которым также относятся поставка, установка, обслуживание заказных и/или тиражируемых/готовых программных решений (commercial off-the-shelf, COTS), необходимых для данного проекта программного обеспечения. SQA-план может содержать необходимые для обеспечения качества критерии приемки программного обеспечения и действия по формированию отчетности и управлению работами.
Проверка (верификация) и аттестация (Verification and Validation, V&V)
Проверка и аттестация программного обеспечения – упорядоченный подход в оценке программных продуктов, применяемый на протяжении всего жизненного цикла. Усилия, прилагаемые в рамках работ по проверке и аттестации, направлены на обеспечение качества как неотъемлемой характеристики программного обеспечения и удовлетворение пользовательских требований.
V&V напрямую адресуется вопросам качества программного обеспечения и использует соответствующие техники тестирования для обнаружения тех или иных дефектов. V&V может применяться для промежуточных продуктов, однако, в том объеме, который соответствует промежуточным “шагам” процессов жизненного цикла.
Процесс V&V определяет в какой степени продукт (результат) тех или иных работ по разработке и сопровождению соответствует требованиям, сформулированным в рамках этих работ, а конечный продукт удовлетворяет заданным целям и пользовательским требованиям.
Верификация – попытка обеспечить правильную разработку продукта (продукт построен правильным образом; обычно, для промежуточных, иногда, для конечного продукта), в том значении, что получаемый в рамках соответствующей деятельности продукт соответствует спецификациям, заданным в процессе предыдущей деятельности.
Аттестация – попытка обеспечить создание правильного продукта (построен правильный продукт; обычно, в контексте конечного продукта), с точки зрения достижения поставленной цели.
Оба процесса – верификация и аттестация – начинаются на ранних стадиях разработки и сопровождения. Они обеспечивают исследованию (экспертизу) ключевых возможностей продукта как в контексте непосредственно предшествующих результатов (промежуточных продуктов), так и с точки зрения удовлетворения соответствующих спецификаций. Целью планирования V&V является обеспечение процессов верификации и аттестации необходимыми ресурсами, четкое назначение ролей и обязанностей. Получаемый план V&V документирует и описывает различные ресурсы, роли и действия, а также используемые техники и инструменты.
План также касается аспектов управления, коммуникаций (взаимодействия), политик и процедур в отношении действий по верификации и аттестации и их взаимодействия. Кроме того, в нем могут быть отражены вопросы формирования отчетности по дефектам и документирования требований.
Оценка (обзор) и аудит (Review and Audits)
Пять типов оценок и аудитов:
Управленческие оценки (Management Reviews)
Управленческие оценки поддерживают принятие решений о внесении изменений и выполнении корректирующих действий, необходимых в процессе выполнения программного проекта.
Управленческие оценки определяют адекватность планов, расписаний и требований, в то же время, контролируя их прогресс или несоответствие. Эти оценки могут выполняться в отношении продукта, будучи фиксируемы в форме отчетов аудита, отчетов о состоянии (развитии), V&V-отчетов, а также различных типов планов — управления рисками проекта/проектного управления, конфигурационного управления, безопасности программного обеспечения (safety), оценки рисков и т.п.
Технические оценки (Technical Reviews)
Назначением технических оценок является исследование программного продукта для определения его пригодности для использования в надлежащих целях. Цель состоит в идентификации расхождений с утвержденными спецификациями и стандартами. Для обеспечения технических оценок необходимо распределение следующих ролей: лицо, принимающее решения (decision-maker); лидер оценки (review leader); регистратор (recorder); а также технический персонал, поддерживающий (непосредственно исполняющий) действия по оценке.
Техническая оценка требует, в обязательном порядке, наличия следующих входных данных:
Команда следует заданной процедуре оценки. Квалифицированные (с технической точки зрения) лица представляют обзор продукта (представляя команду разработки). Исследование проводится в течение одной и более встреч (между теми, кто представляет продукт и теми, кто провидит оценку). Техническая оценка завершается после того, как выполнены все предписанные действия по исследованию продукта.
Инспекции (Inspections)
Назначение инспекций состоит в обнаружении и идентификации аномалий в программном продукте. Существует два серьезных отличия инспекций от оценок (управленческой и технической):
Инспектирование программного обеспечения всегда вовлекает авторов промежуточного или конечного продукта, в отличие от оценок, которые не требуют этого в обязательном порядке. Инспекции (как временные организационные единицы – группы, команды) включают лидера, регистратора, рецензента и нескольких (от 2 до 5) инспекторов. Члены команды инспектирования могут специализироваться в различных областями экспертизы (обладать различными областями компетенции), например, предметной области, методах проектирования, языке и т.п. В заданный момент (промежуток) времени инспекции проводятся в отношении отдельного небольшого фрагмента продукта (в большинстве случаев, фокусируясь на отдельных функциональных или других характеристиках; часто, отталкиваясь от отдельных бизнес-правил, функциональных требований или атрибутов качества, прим. автора). Каждый член команды должен исследовать программный продукт и другие входные данные до проведения инспекционной встречи, применяя, возможно, те или иные аналитические техники в небольшим фрагментам продукта или к продукту, в целом, рассматривая в последнем случае только один его аспект, например, интерфейсы. Любая найденная аномалия должна документироваться, а информация передаваться лидеру инспекции. В процессе инспекции лидер руководит сессией и проверяет, что все подготовились к инспектированию.
Инспекционные встречи занимают, обычно, несколько часов, в отличие от технической оценки и аудита, предполагающих, в большинстве случаев, больший объем работ и, соответственно, длящиеся дольше.
Прогонки (Walk-throughs)
Назначение прогонки состоит в оценке программного продукта. Прогонка может проводиться с целью ознакомления (обучения) аудитории с программным продуктом.
Главные цели прогонки состоят в:
Прогонка похожа на инспекцию, однако, обычно проводится менее формальным образом. В основном, прогонка организуется инженерами для других членов команды с целью получения отклика от них на свою работу, как одного из элементов (техник) обеспечения качества.
Аудиты (Audits)
Назначением аудита программного обеспечения является независимая оценка программных продуктов и процессов на предмет их соответствия применимым регулирующим документам, стандартам, руководящим указаниям, планам и процедурам.
Аудит является формально организованной деятельностью, участники которой выполняют определенные роли, такие как главный аудитор (lead auditor), второй аудитор (another auditor), регистратор (recorder) и инициатор (initiator). В аудите принимает участие представитель оцениваемой организации/организационной единицы. В результате аудита идентифицируются случаи несоответствия и формируется отчет, необходимый команде для принятия корректирующих действий.
При том, что существуют различные формальные названия (и классификации) оценок и аудита, важно отметить, что такого рода действия могут проводиться почти для любого продукта на любой стадии процесса разработки или сопровождения.
Практические соображения (Practical Considerations)
Требования к качеству программного обеспечения (Software Quality Requirements)
Факторы влияния (Influence factors)
На планирование, управление и выбор SQM-действий и техник оказывают влияние различные факторы, среди которых:
Информация об этих факторах влияет на то, как именно будут организованы и документированы процессы SQM, какие SQM-работы будут отобраны (стандартизированы в рамках проекта, команды, организационной единицы, организации), какие необходимы ресурсы и каковы ограничения, накладываемые в отношении усилий, направляемых на обеспечение качества.
Гарантоспособность (Dependability)
Гарантоспособность (dependability) программного обеспечения включает такие характеристики, как защищенность от сбоев (fault-tolerance), безопасность использования (safety – безопасность в контексте приемлемого риска для здоровья людей, бизнеса, имущества и т.п. ), информационная безопасность или защищенность (security – защита информации от несанкционированных операций, включая доступ на чтение, а также гарантия доступности информации авторизованным пользователям, в объеме заданных для них прав), а также удобство и простота использования (usability). Надежность (reliability) также является критерием, который может быть определен в терминах гарантоспособности.
В обсуждении данного вопроса существенную роль играет обширная литература по системам повышенной надежности. При этом, применяется терминология, пришедшая из области традиционных механических и электрических систем (в т.ч. не включающих программное обеспечение) и описывающая концепции опасности, рисков, целостности систем и т.п.
Уровни целостности программного обеспечения (Integrity levels of software)
Уровень целостности программного обеспечения определяется на основании возможных последствий сбоя программного обеспечения и вероятности возникновения такого сбоя. Когда важны различные аспекты безопасности (применения и информационной безопасности), при разработке планов работ в области идентификации возможных очагов аварий могут использоваться техники анализа опасностей (в контексте безопасности использования, safety) и анализа угроз (в информационной безопасности, security). История сбоев аналогичных систем может также помочь в идентификации наиболее полезных техник, направленных на обнаружение сбоев и оценки качества программного обеспечения.
При более детальном рассмотрении целостности программного обеспечения в контексте конкретных проектов, необходимо уделять специальное внимание (выделяя соответствующие ресурсы и проводя необходимые работы) не только SQM-процессам (особенно, формальным, включая аудит и аттестацию), но и аспектам управления требованиями (в части критериев целостности), управления рисками (включая планирование рисков как на этапе разработки, так и на этапе эксплуатации и сопровождения системы), проектирования (которое, для повышения гарантоспособности, в обязательном порядке предполагает глубокий анализ и проверку планируемых к применению архитектурных и технологических решений, часто, посредством создания пилотных проектов, демонстрационных стендов и т.п.) и тестирования (для обеспечения всестороннего исследования поведенческих характеристик системы, в том числе с эмуляцией рабочего окружения/конфигурации, в которых система должна использоваться в процессе эксплуатации).
Характеристика дефектов (Defect Characterization)
SQM-процессы обеспечивают нахождение дефектов. Описание характеристик дефектов играет основную роль в понимании продукта, облегчает корректировку процесса или продукта, а также информирует менеджеров проектов и заказчиков о статусе (состоянии) процесса или продукта. Существуют множество таксономий (классификации и методов структурирования) дефектов (сбоев). Характеристика дефектов (аномалий) также используется в аудите и оценках, когда лидер оценки часто представляет для обсуждения на соответствующих встречах список аномалий, сформированный членами оценочной команды.
На фоне эволюции (и появления новых) методов проектирования и языков, наравне с новыми программными технологиями, появляются и новые классы дефектов. Это требует огромных усилий по интерпретации (и корректировке) ранее определенных классов дефектов (сбоев). При отслеживании дефектов инженер интересуется не только их количеством, но и типом. Распределение дефектов по типам особенно важно для определения наиболее слабых элементов системы, с точки зрения используемых технологий и архитектурных решений, что приводит к необходимости их углубленного изучения, создания специализированных пилотных проектов, дополнительной проверки концепции (proof of concept, POC – часто применяемый подход при использовании новых технологий), привлечения сторонних экспертов и т.п. Сама по себе информация, без классификации, часто бывает просто бесполезна для обнаружения причин сбоев, так как для определения путей решения проблем необходима их группировка по соответствующим типам. Вопрос состоит в определении такой таксономии дефектов, которая будет значима для инженеров и организации, в целом.
SQM обеспечивает сбор информации на всех стадиях разработки и сопровождения программного обеспечения. Обычно, когда мы говорим “дефект”, мы подразумеваем “сбой”, в соответствии с определением, представленным ниже. Однако, различные культуры и стандарты могут предполагать различное смысловое наполнение этих терминов.
Частичные определения понятий такого рода выглядят следующим образом:
При обсуждении данной темы, под дефектом (defect) понимается результат сбоя программного обеспечения. Модели надежности строятся на основании данных о сбоях, собранных в процессе тестирования программного обеспечения или его использования. Такие модели могут быть использованы для предсказания будущих сбоев и помогают в принятии решения о прекращении тестирования.
Данные о несоответствиях и дефектах, найденных в процессе реализации соответствующих техник SQM, должны фиксироваться для предотвращения их потери. Для некоторых техник (например, технической оценки, аудита, инспекций), присутствие регистратора (recorder) – обязательно, именно для фиксирования такой информации, наравне с вопросами (в том числе, требующими дополнительного рассмотрения) и принятыми решениями. В тех случаях, когда используются соответствующие средства автоматизации, они могут обеспечить и получение необходимой выходной информации о дефектах (например, сводную статистику по статусам дефектов, ответственным исполнителям и т.п.). Данные о дефектах могут собираться и записываться в форме запросов на изменения (SCR, software change request) и могут, впоследствии, заноситься в определенные типы баз данных (например, в целях отслеживания кросс-проектной/исторической статистики для дальнейшего анализа и совершенствования процессов), как вручную, так и в автоматическом режиме из соответствующих средств анализа (ряд современных средств проектирования и специализированных инструментов позволяют анализировать код и модели с применением соответствующих метрик, значимых для обеспечения качества продуктов и процессов). Отчеты о дефектах направляются управленческому звену организации/организационной единицы или структуры (для принятия соответствующих решений в отношении проекта, продукта, процесса, персонала, бюджета и т.п.).
Техники управления качеством программного обеспечения (Software Quality Management Techniques)
Техники SQM могут быть распределены по нескольким категориям:
Статические техники (Static techniques)
Статические техники предполагают исследование (examination) проектной документации, программного обеспечения и другой информации о программном продукте без его исполнения. Эти техники могут включать другие, рассматриваемые ниже, действия по “коллективной” оценке или “индивидуальному” анализу, вне зависимости от степени использования средств автоматизации.
Техники коллективной оценки (People-intensive techniques)
Форма такого рода техник, включая оценку и аудит, может варьироваться от формальных собраний до неформальных встреч или обсуждения продукта даже без обращения к его коду. Обычно, такого рода техники предполагают очного взаимодействия минимум двух, а в большинстве случаев, и более специалистов. При этом, такие встречи могут требовать предварительной подготовки (практически всегда касающейся определения содержания встреч, то есть перечня выносимых на обсуждение вопросов). К ресурсам, используемым в таких техниках, наравне с исследуемыми артефактами (продуктом, документацией, моделями и т.п.) могут относится различного рода листы проверки (checklists) и результаты аналитических техник (рассматриваются ниже) и работ по тестированию. Данные техники рассматриваются, например, в стандарте 12207 при обсуждении оценки ( review) и аудита (audit).
Аналитические техники (Analytical techniques)
Инженеры, занимающиеся программным обеспечением, как правило, применяют аналитические техники. С точки зрения Agile-методик и подходов, individuals and interactions предполагает общение и постоянное взаимодействие членов команды.
Иногда, несколько инженеров используют одну и ту же технику, но в отношении разных частей продукта. Некоторые техники базируются на специфике применяемых инструментальных средств, другие – предполагают “ручную” работу. Многие могут помогать находить дефекты напрямую, но чаще всего они используются для поддержки других техник. Ряд техник также включает различного рода экспертизу (assessment) как составной элемент общего анализа качества. Примеры таких техник — анализ сложности (complexity analysis), анализ управляющей логики (или анализ контроля потоков управления — control flow analysis) и алгоритмический анализ (algorithmic analysis).
Каждый тип анализа обладает конкретным назначением и не все типы применимы к любому проекту. Примером техники поддержки является анализ сложности, который полезен для определения фрагментов дизайна системы, обладающих слишком высокой сложностью для корректной реализации, тестирования или сопровождения. Результат анализа сложности может также применяться для разработки тестовых сценариев (test cases). Такие техники поиска дефектов, как анализ управляющей логики, может также использоваться и в других случаях. Для программного обеспечения с обширной алгоритмической логикой крайне важно применять алгоритмические техники, особенно в тех случаях, когда некорректный алгоритм (не его реализация, а именно логика, прим. автора) может привести к катастрофическим результатам (например, программное обеспечение авионики, для которой вопросы безопасности использования – safety играют решающую роль).
Другие, более формальные типы аналитических техник известны как формальные методы. Они применяются для проверки требований и дизайна (надо признать, лишь иногда, в реальной сегодняшней практике промышленной разработки программного обеспечения). Проверка корректности применяется к критическим фрагментам программного обеспечения (что, вообще говоря, мало связано с формальными методами – это естественный путь достижения приемлемого качества при минимизации затрат). Чаще всего они используются для верификации особо важных частей критически-важных систем, например, конкректных требований безопасности и надежности.
Динамические техники (Dynamic techniques)
В процессе разработки и сопровождения программного обеспечения приходится обращаться к различным видам динамических техник. В основном, это техники тестирования. Однако, в качестве динамических техник могут рассматриваться техники симуляции, проверки моделей и “символического” исполнения (symbolic execution, часто предполагает использование модулей-“пустышек” с точки зрения выполняемой логики, с эмулируемым входом и выходом при рассмотрении общего сценария поведения многомодульных систем; иногда под этим термином понимаются и другие техники, в зависимости, от выбранного первоисточника).
Просмотр (чтение) кода обычно рассматривается как статическая техника, но опытный инженер может исполнять код непосредственно “в процессе” его чтения (например, используя диалоговые средства пошаговой отладки для ознакомления или оценки чужого кода). Таким образом, данная техника вполне может обсуждаться и как динамическая. Такие расхождения в классификации техник ясно показывают, что в зависимости от роли человека в организации, он может принимать и применять одни и те же техники по-разному.
В зависимости от организации проекта, определенные работы по тестированию могут выполняться при разработке программных систем в SQA и V&V процессах. В силу того, что план SQM адресуется вопросам тестирования, данная тема включает некоторые комментарии по тестированию.
Тестирование (Testing)
Иногда, независимые V&V-организации могут требовать возможности мониторинга процесса тестирования и, в определенных случаях, заверять (или, чаще, документировать/фиксировать) реальное выполнение на предмет их проведения в соответствии с заданными процедурами. С другой стороны, может быть сделано обращение к V&V может быть направлено на оценку и самого тестирования: достаточности планов и процедур, соответствия и точности результатов.
Другой тип тестирования, которое проводится под началом V&V-организации – тестирование третьей стороной (third-party testing). Такая третья сторона сама не является разработчиком продукта и ни в какой форме не связана с разработчиком продукта. Более того, третья сторона является независимым источником оценки, обычно аккредитованным на предмет обладания соответствующими полномочиями (например, организацией-разработчиком того или иного стандарта, соответствие которому оценивается независимым экспертом и чьи действия подтверждены создателем стандарта). Назначение такого рода тестирования состоит в проверке продукта на соответствие определенному набору требований (например, по информационной безопасности).
Количественная оценка качества программного обеспечения (Software Quality Measurement)
Модели качества программных продуктов часто включают метрики для определения уровня каждой характеристики качества, присущей продукту.
Если характеристики качества выбраны правильно, такие измерения могут поддержать качество (уровень качества) многими способами. Метрики могут помочь в управлении процессом принятия решений. Метрики могут способствовать поиску проблемных аспектов и узких мест в процессах. Метрики являются инструментом оценки качества своей работы самими инженерами – как в целях, определенных SQA, так и с точки зрения более долгосрочного процесса совершенствования качества.
С увеличением внутренней сложности, изощренности программного обеспечения, вопросы качества выходят далеко за рамки констатации факта – работает или на работает программное обеспечение. Вопрос ставится – насколько хорошо достигаются количественно оцениваемые цели качества.
Существует еще несколько тем, предметом обсуждения которых являются метрики, напрямую поддерживающие SQM. Они включают содействие в принятии решения о моменте прекращения тестирования. В этом контексте представляются полезными модели надежности и сравнение с образцами (эталонами, принятыми в качестве примеров определенного качества – benchmarks).
Стоимость процесса SQM является одним из вопросов, который всегда всплывает в процессе принятия решения о том, как будет организован проект (проектные работы). Часто, используются общие (generic) модели стоимости, основанные на определении того, когда именно дефект обнаружен и как много усилий необходимо затратить на его исправление по сравнению с ситуацией, если бы дефект был найден на более ранних этапах жизненного цикла. Проектные данные могут помочь в получении более четкой картины стоимости.
Наконец, сама по себе SQM-отчетность обладает полезной информацией не только о самих процессах (подразумевая их текущее состояние, прим. автора), но и о том, как можно улучшить все процессы жизненного цикла.
Хотя, как количественные оценки (в данном случае речь идет о результатах оценок, а не о процессе измерений) характеристик качества могут полезны сами по себе (например, число неудовлетворенных требований и пропорция таких требований), могут применяться математические и графические техники, облегчающие интерпретацию значений метрик. Такие техники вполне естественно классифицируются, например, следующим образом:
Характеристики качества программного обеспечения
Мобильность (Portability) — Набор атрибутов, относящихся к способности программного обеспечения быть перенесенным из одного окружения в другое.
Примечание — Окружающая обстановка может включать организационное, техническое или программное окружение.
Надежность (Reliability) — Набор атрибутов, относящихся к способности программного обеспечения сохранять свой уровень качества функционирования при установленных условиях за установленный период времени.
Практичность (Usability) — Набор атрибутов, относящихся к объему работ, требуемых для использования и индивидуальной оценки такого использования определенным или предполагаемым кругом пользователей.
Сопровождаемость (Maintainability) — Набор атрибутов, относящихся к объему работ, требуемых для проведения конкретных изменений (модификаций).
Примечание — Изменение может включать исправления, усовершенствования или адаптацию программного обеспечения к изменениям в окружающей обстановке, требованиях и условиях функционирования.
Функциональные возможности (Functionality) — Набор атрибутов, относящихся к сути набора функций и их конкретным свойствам. Функциями являются те, которые реализуют установленные или предполагаемые потребности.
Эффективность (Efficiences) — Набор атрибутов, относящихся к соотношению между уровнем качества функционирования программного обеспечения и объемом используемых ресурсов при установленных условиях.
Примечание — Ресурсы могут включать другие программные продукты, технические средства, материалы (например бумага для печати, гибкие диски) и услуги эксплуатирующего, сопровождающего или обслуживающего персонала.
Качество программного продукта
Качество программного продукта (software quality) — весь объем признаков и характеристик программной продукции, который относится к ее способности удовлетворять установленным или предполагаемым потребностям.
Важность каждой характеристики качества меняется в зависимости от класса программного обеспечения. Например, надежность наиболее важна для программного обеспечения боевых критичных систем, эффективность наиболее важна для программного обеспечения критичных по времени систем реального времени, а практичность наиболее важна для программного обеспечения диалога конечного пользователя.
Важность каждой характеристики качества также меняется в зависимости от принятых точек зрения.
Представление пользователя
Пользователи в основном проявляют заинтересованность в применении программного обеспечения, его производительности и результатах использования. Пользователи оценивают программное обеспечение без изучения его внутренних аспектов или того, как программное обеспечение создавалось.
Пользователя могут интересовать следующие вопросы:
Представление разработчика
Процесс создания требует от пользователя и разработчика использования одних и тех же характеристик качества программного обеспечения, так как они применяются для установления требований и приемки. Когда разрабатывается программное обеспечение для продажи, в требованиях качества должны быть отражены предполагаемые потребности.
Так как разработчики отвечают за создание программного обеспечения, которое должно удовлетворять требованиям качества, они заинтересованы в качестве промежуточной продукции так же, как и в качестве конечной продукции. Для того, чтобы оценить качество промежуточной продукции на каждой фазе цикла разработки, разработчики должны использовать различные метрики для одних и тех же характеристик, потому что одни и те же метрики неприменимы для всех фаз жизненного цикла.
Например, пользователь понимает эффективность в терминах времени реакции, тогда как разработчик использует в проектной спецификации термины длины маршрута и времени ожидания и доступа. Метрики, применяемые для внешнего интерфейса продукции, заменимы метриками, применяемыми для ее структуры.
Представление руководителя
Руководитель может быть более заинтересован в общем качестве, чем в конкретной характеристике качества, и по этой причине будет нуждаться в определении важности значений, отражающих коммерческие требования для индивидуальных характеристик.
Руководителю может также потребоваться сопоставление повышения качества с критериями управляемости, такими как плановая задержка или перерасход стоимости, потому что он желает оптимизировать качество в пределах ограниченной стоимости, трудовых ресурсов и установленного времени.
Оценка качества программного продукта
Следующий рисунок отражает основные этапы, требуемые для оценивания качества программного обеспечения.
Рисунок «Модель процесса оценивания»
Процесс оценивания состоит из трех стадий: установление (определение) требований к качеству, подготовка к оцениванию и процедура оценивания. Данный процесс может применяться в любой подходящей фазе жизненного цикла для каждого компонента программной продукции.
Целью начальной стадии является установление требований в терминах характеристик качества. Требования выражают потребности внешнего окружения для рассматриваемой программной продукции и должны быть определены до начала разработки.
Целью второй стадии является подготовка основы для оценивания.
Результатом третьей является заключение о качестве программной продукции. Затем обобщенное качество сравнивается с другими факторами, такими, как время и стоимость. Окончательное решение руководства принимается на основе критерия управляемости. Результатом является решение руководства по приемке или отбраковке, или по выпуску или не выпуску программной продукции.
Модель качества процесса
Процесс разработки должен быть построен таким образом, чтобы обеспечить возможность измерения качества продукта. Проведенные исследования показывают: чем выше качество процесса разработки, тем выше качество разработанного в этом процессе качества программного обеспечения. Качество на каждой стадии проекта возрастает, во-первых, как прямое следствие зрелости процесса, во-вторых, вследствие использования промежуточного продукта более высокого качества, произведенного на предыдущей стадии. При этом подчеркивается, что значение второй причины обеспечивающей нарастание качества в процессе жизненного цикла для зрелых процессов оказывается гораздо более важным. Всё это можно представить в виде некоторой модели.
Рисунок «Концептуальная модель качества процесса разработки»
Отсюда вытекают следующие следствия:
Первое: качество накапливается в продукте при сложном производстве кумулятивным образом, причем, вклад в качество, осуществленный на ранних стадиях, имеет более сильное влияние на конечный продукт, чем на более поздних стадиях. Это подтверждается всей практикой программирования, например, известно, что недостатки проектирования систем не могут быть компенсированы высоким качеством кодирования.
Таким образом, для управления качеством построения сложной системы необходимо производить выбор производителей на основе измерения степени зрелости и прозрачности используемых процессов разработки. Измерение качества процесса разработки подрядчиков является важной составной частью общего управления качеством, более важным, чем измерение качества результирующего продукта, производимого в ходе приемо-сдаточных испытаний.
Второе: тестирование и измерение качества должно происходить на всех стадиях жизненного цикла. Извлечение данных о качестве, которое было заложено на ранних стадиях, может быть очень дорогим, при отсутствии полных результатов
Руководство по применению характеристик качества
1 Применяемость
2 Представления о качестве программного
2.1 Представление пользователя
2.2 Представление разработчика
2.3 Представление руководителя
3 Модель процесса оценивания
3.1 Установление требований к качеству
3.2 Подготовка к оцениванию
3.2.1 Выбор метрик (показателей) качества
3.2.2 Определение уровней ранжирования
3.2.3 Определение критерия оценки
3.3 Процедура оценивания
3.3.1 Измерение
3.3.2 Ранжирование
3.3.3 Оценка
Комплексные показатели (подхарактеристики) качества
1 Введение
2 Определение комплексных показателей качества
2.1 Функциональные возможности (Functionality)
2.1.1 Пригодность (Suitability)
2.1.2 Правильность (Accuracy)
2.1.3 Способность к взаимодействию (Interoperability)
2.1.4 Согласованность (Compliance)
2.1.5 Защищенность (Security)
2.2 Надежность (Reliability)
2.2.1 Стабильность (Maturity)
2.2.2 Устойчивость к ошибке (Fault tolerance)
2.2.3 Восстанавливаемость (Recoverability)
2.3 Практичность (Usability)
2.3.1 Понятность (Understandability)
2.3.2 Обучаемость (Learnability)
2.3.3 Простота использования (Operability)
2.4 Эффективность (Efficiences)
2.4.1 Характер изменения во времени (Time behavior)
2.4.2 Характер изменения ресурсов (Resource behavior)
2.5 Сопровождаемость (Maintainability)
2.5.1 Анализируемость (Analysability)
2.5.2 Изменяемость (Changeability)
2.5.3 Устойчивость (Stability)
2.5.4 Тестируемость (Testability)
2.6 Мобильность (Portability)
2.6.1 Адаптируемость (Adaptability)
2.6.2 Простота внедрения (Installability)
2.6.3 Соответствие (Conformance)
2.6.4 Взаимозаменяемость (Replaceabilily)
Примечания:
Качество проекта
Качество включает все деятельности проекта, которые обеспечивают соответствие проекта целям, ради которых он был предпринят. Поэтому управление качеством применимо как к проекту, так и продукту проекта.
Качество критически важно, поскольку озвучивает и фиксирует цели, делает их задокументированными (формализованными).
Следовательно, качество – критический компонент управления структурой проекта.
Для качества все является измеримым.
Управление качеством проекта
Если управление качеством сосредоточено в одном подразделении организации, оно не станет всеобщим. Менеджер проекта может делегировать аспекты управления качеством. Менеджер проекта сохраняет за собой окончательную ответственность.
Принципы качества (ISO 9000)
Рисунок «Различия в понимании управления качеством в ISO 9000 и PMBoK»
Управление качеством проекта (PMI): подпроцессы
Планирование качества
Одна из стадий – определение, какие существующие стандарты относятся к данному проекту, и как им соответствовать. Результатом планирования качества является список всех стандартов качества, которые применимы к проекту. Прилагается список рекомендаций, как будут удовлетворены требования этих стандартов
Процесс планирования качества: входы
Процесс планирования качества: инструменты и технологии
Процесс планирования качества: выходы, результаты
Обеспечение качества
Процесс обеспечения качества – это принятие плановых систематических мер, обеспечивающих выполнение всех предусмотренных процессов, необходимых для того, чтобы проект (продукт, услуга) удовлетворял требованиям по качеству.
Обеспечение качества является основным подпроцессом управления качеством. Эта деятельность проводится в течение всего проекта.
Процесс обеспечения качества: входы
Процесс обеспечения качества: инструменты и техники
Инструменты и техники планирования качества. Они включают анализ прибыли и затрат, сравнения, диаграммы, постановку экспериментов и оценку стоимости качества.
Аудиты качества
Структурированные «осмотры», которые подтверждают «выученные уроки». Типы аудита качества бывают:
Процесс обеспечения качества: выходы
Улучшение качества. Включает совершение действий по увеличению эффективности и производительности проекта, чтобы обеспечить добавочные выгоды владельцам проекта.
Контроль качества
Мониторинг определенных результатов с целью определения их соответствия принятым стандартами качества и определение путей устранения причин, вызывающих неудовлетворительное исполнение.
Процесс контроля качества: входы
Контроль качества: инструменты и техники
«Цель использования инструментов – зафиксировать результаты или изменения, отобразить их графически, и далее выявить и скорректировать проблемы подходящим способом».