Что определяет цвет предмета
Физика цвета
Всю жизнь мы окружены невероятным буйством цветов. В отличие от большинства млекопитающих, люди воспринимают мир в виде красочных картин. Мы сталкиваемся с цветом каждый день, он приобрел для нас большое значение и играет важную роль в повседневных делах. Но что такое цвет? Как он образуется и почему мы видим его? На эти и другие вопросы я постараюсь ответить в своей статье.
Что такое свет и цвет
Поскольку цвет — это способность объектов отражать или излучать световые волны отдельной части спектра, начнем с определения того, что же такое свет.
С древних времен люди пытались понять природу света. Так, например, древнегреческий философ Пифагор сформулировал теорию света, в которой утверждал, что непосредственно из глаз испускаются прямолинейные лучи видимого света, которые, попадая на объект и ощупывая его, дают людям возможность видеть. Согласно Эмпедоклу, богиня любви Афродита поместила в наши глаза четыре элемента — огонь, воду, воздух и землю. Именно свет внутреннего огня, считал философ, помогает людям видеть объекты материального мира. Платон же предполагал, что существуют две формы света — внутренняя (огонь в глазах) и внешняя (свет внешнего мира) — и их смешение дает людям зрение.
По мере изобретения и развития различных оптических приборов представления о свете развивались и трансформировались. Так в конце XVII века возникли две основные теории света — корпускулярная теория Ньютона и волновая теория Гюйгенса.
Согласно корпускулярной теории, свет представлялся в виде потока частиц (корпускул), излучаемых светящимся объектом. Ньютон считал, что движение световых частиц подчинено законам механики, то есть, например, отражение света понималось как отражение упругого мячика от поверхности. Преломление света ученый объяснял изменением скорости световых частиц при переходе между разными средами.
В волновой теории, в отличие от корпускулярной, свет рассматривался как волновой процесс, подобно механическим волнам. В основе теории лежит принцип Гюйгенса, по которому каждая точка, до которой доходит световая волна, становится центром вторичных волн. Теория Гюйгенса позволила объяснить такие световые явления, как отражение и преломление.
Таким образом, весь XVIII век стал веком борьбы двух теорий света. В первой трети XIX века, однако, корпускулярная теория Ньютона была отвергнута и восторжествовала волновая теория.
Важным открытием XIX века стала выдвинутая английским ученым Максвеллом электромагнитная теория света. Исследования привели его к выводу, что в природе должны существовать электромагнитные волны, скорость которых достигает скорости света в безвоздушном пространстве. Ученый считал, что световые волны имеют ту же природу, что и волны, возникающие вокруг провода с переменным электрическим током, и отличаются друг от друга лишь длиной.
В 1900 году Макс Планк выдвинул новую квантовую теорию света, согласно которой, свет является потоком определенных и неделимых порций энергии (кванты, фотоны). Развитая Эйнштейном, квантовая теория смогла объяснить не только фотоэлектрический эффект, но и закономерности химического действия света и ряд других явлений.
В настоящее время в науке преобладает корпускулярно-волновой дуализм, то есть свету приписывается двойственная природа. Так при распространении света проявляются его волновые свойства, в то время как при его испускании и поглощении — квантовые.
Но как из света получается цвет? В 1676 году Исаак Ньютон с помощью трёхгранной призмы разложил белый солнечный свет на цветовой спектр, который содержал все цвета кроме пурпурного. Ученый проводил свой опыт следующим образом: белый солнечный свет проходил сквозь узкую щель и пропускался через призму, после чего направлялся на экран, где возникало изображение спектра. Непрерывная цветная полоса начиналась с красного и через оранжевый, желтый, зеленый и синий заканчивалась фиолетовым. Если же это изображение пропускалось через собирающую линзу, то на выходе вновь получался белый свет. Таким образом, Ньютон открыл, что белый свет — это комбинация всех цветов.
Любопытным было и следующее наблюдение: если из цветового спектра убрать один из цветов, например, зеленый, а остальные пропустить через собирающую линзу, то полученный в итоге цвет окажется красным — дополнительным к удаленному цвету.
По сути, каждый цвет создается электромагнитными волнами определенной длины. Человеческий глаз способен видеть цвета с длиной волны в диапазоне от 400 до 700 миллимикрон, где наименьшая длина волны соответствует фиолетовому цвету, а наибольшая — красному. Поскольку каждый цвет спектра характеризуется своей длиной волны, то он может быть точно задан длиной волны или частотой колебаний. Сами по себе световые волны бесцветны, цвет возникает лишь при восприятии волн человеческим глазом и мозгом. Однако механизм, по которому мы распознаем эти волны, до сих пор неизвестен.
Что касается цвета предметов, то он возникает, фактически, в процессе поглощения световых волн. То есть, если мы видим, что предмет зеленого цвета, по сути, это означает, что молекулярный состав его поверхности таков, что он поглощает все волны, кроме зеленых. Сами по себе предметы не имеют никакого цвета и обретают его лишь при освещении.
История теории цвета
Одна из первых известных теорий цвета была изложена в трактате «О цвете», написанном в древней Греции. В нем утверждается, что все цвета существуют в спектре между светом и тьмой, а четыре основные цвета происходят из основных стихий: огня, воды, воздуха и земли. Несмотря на наивность и ошибочность взглядов, трактат содержал ряд важных наблюдений, например, о том, что тьма — это отсутствие света, а не цвет.
В 1704 году Исаак Ньютон опубликовал первое издание «Оптики», в котором впервые разложил цветовой спектр по кругу. Это положило начало традиции применения геометрических фигур для изображения цветовых моделей. Так как Ньютон открыл, что соотношение первого и последнего цветов в спектре приблизительно равно 1:2, то есть как в музыкальной октаве, имеющей семь интервалов, количество основных цветов в круге он выбрал по аналогии, разделив круг на семь неравных сегментов в зависимости от интенсивности цвета в спектре.
В 1810 году немецкий поэт, мыслитель и ученый Вольфганг фон Гёте издал свою книгу «Теория цвета», которую посвятил восприятию цвета человеком. Он провел множество экспериментов, в которых измерял реакцию глаза на определенные цвета. Гёте создал, пожалуй, самый известный цветовой круг, на котором расположил три основных цвета — красный, синий и желтый — и три дополнительных, созданных из основных — оранжевый, зеленый и фиолетовый. Гёте полагал, что из основных цветов можно составить все остальные цвета.
Пытаясь создать единую цветовую систему художники начали изображать цветовой спектр в виде объемных фигур. Отличным примером могут послужить цветовые треугольники Тобиаса Майера, которые он опубликовал в своей книге «Комментарий о родстве цветов» в 1775 году. Он расположил в углах треугольника традиционные основные цвета — красный, желтый и синий — и заполнил внутреннее пространство, смешивая противоположные оттенки. Для создания объема он добавил измерение яркости цвета, располагая треугольники разной яркости друг над другом. Таким образом, конкретный цвет стал определяться положением в трехмерном пространстве, что используется и сегодня.
В 1810 году свою теорию цвета издал немецкий художник Филипп Отто Рунге. К основным цветам он причислил белый и черный, расположив их на полюсах своей цветовой сферы, между которыми разместились цветовые пояса. К сожалению, сфера не делала различия между яркостью и насыщенностью цвета и в результате представляла лишь небольшой градиент по интенсивности цвета. Тем не менее, его цветовая сфера послужила основой для последующих цветовых моделей.
В 1839 году французский химик Мишель Эжен Шеврёль представил свою цветовую полусферу. Оттенки для своей модели он выбирал визуально, а не на основе количественного соотношения цветов в них. Для проверки правильности выбора дополнительных цветов в своей модели Шеврёль использовал метод остаточного изображения: если человек будет долго смотреть на зеленый квадрат, а затем переведет взгляд на белую стену, то он увидит красный цвет. Это происходит из-за того, что зеленые рецепторы в сетчатке глаза устают и им требуется дополнительный к зеленому цвет для равновесия.
В начале XX века американский художник Альберт Генри Манселл создал одну из наиболее значимых в истории цветовых моделей, так называемое цветовое дерево Манселла. Основная особенность этой модели заключается в том, что Манселл по-новому обозначил пространственные координаты: оттенок определял тип цвета (красный, синий, желтый), значение определяло яркость (наличие белого в цвете) и цветность отвечала за насыщенность цвета (его чистоту). Эти обозначения используются и сегодня в цветовой модели HSV.
В настоящее время в дизайне, живописи и архитектуре широко используется цветовой круг швейцарского художника и педагога Иоханнеса Иттена. В его 12-частном круге изображена наиболее распространенная система распределения цветов и их взаимодействия. Иттен выделил основные цвета (синий, красный и желтый), вторичные цвета, получаемые при смешении основных (оранжевый, зеленый и фиолетовый) и третичные цвета, которые образуются при смешении вторичного цвета с основным.
Лекция 3. Физика и биология цвета. Цветовой круг
Фиалки – бесцветные, ваша помада оттенка bordo – бесцветная и даже любимое желтое платье не имеет цвета. Мир вообще бесцветен и был бы таким в наших глазах, если бы не свет.
Свет – это излучение, которое испускает нагретое тело или вещество в возбужденном состоянии, а цвет – характеристика этого света. Предметы сами по себе бесцветны, а мы видим цвет, когда их поверхность отражает электромагнитные волны видимого диапазона, то есть свет. То, как человек воспринимает цвет, зависит от степени освещенности предмета, источника света, а также физиологических особенностей и психологического состояния каждого из нас в конкретный момент.
Физика цвета
Главный цветоприниматель человеческого организма – сетчатка глаза. Чтобы глаз увидел какой-либо предмет и его цвет, свет сначала должен упасть на этот предмет, отразиться от него, а затем попасть на сетчатку. Люди видят предметы, потому что они отражают свет, и различают цвета этих предметов в зависимости от характеристик их поверхности: какие лучи она поглощает, а какие отражает, отдавая сетчатке на анализ. Свет, поглощенный предметом, глаз увидеть не может.
Черная кожа, например, поглощает почти все излучение и кажется нам черной, потому что не отражает никакие волны. Снег, наоборот, равномерно отражает почти весь свет и поэтому выглядит для нас белым. Человек видит предмет в том цвете, лучи которого отражаются от поверхности и попадают на сетчатку. В случае с красной помадой на сетчатку попадут только лучи красного спектра, а остальные поглотятся, создав в сознании человека представление о красном цвете.
Человеческий глаз воспринимает электромагнитное излучение в узком диапазоне длин волн, от 380 до 740 нанометров. Этот видимый свет излучает фотосфера – тонкая оболочка Солнца, меньше 300 километров в толщину. В бесцветном для нашего глаза солнечном свете заключен весь видимый спектр волн, который при разложении дает цвета радуги: от красного до фиолетового. На уроках физики разложение света на спектр демонстрируют с помощью призмы, в жизни это можно увидеть на примере радуги, где функцию преломителя играют капли воды в воздухе.
Как мы различаем цвета
Сетчатка образована светочувствительными клетками двух типов – палочками и колбочками, которые называются так из-за своей формы. Колбочки дают нам возможность видеть мир в красках, так как они чувствительны к световым волнам различной длины в видимом спектре. Колбочки бывают трех типов: первые различают волны красно-оранжевого участка спектра, вторые – зеленого, третьи – сине-фиолетовые. Палочки более чувствительны к свету, поэтому вступают «в бой» в сумерках и темноте. Палочки не способны определить цвет предмета, но благодаря им мы не спотыкаемся в темной комнате.
Запомнить назначение колбочек и палочек легко с помощью ассоциации: колбочки – как химические емкости, в которых происходят реакции и получаются яркие вещества, а палочки – буквально палки-трости, которые мы использовали бы, окажись мы в полной темноте.
Цветовой круг
Цветовой круг – это способ представить весь видимый спектр света в условной форме круга. Секторы круга представляют цвета, размещенные в том порядке, который условно передает расположение их волн в спектре видимого света. Для связывания круга в его палитру добавлен пурпурный цвет (маджента), который соединяет крайние спектральные цвета (красный и синий) и получается из их условного смешения.
Свойствами цветового круга пользуются художники, физики, дизайнеры, инженеры, стилисты. Мы с помощью цветового круга можем разграничивать холодные и теплые цвета, дополняющие цвета, оттенки и аналогичные цвета. Эти понятие станут инструментом для дальнейшей работы с образом. Вкус, который многие считают врожденным, можно развивать, и правила сочетаемости цветов – отличное для этого начало.
→ Хроматический круг: теплые и холодные тона
Теплые и холодные тона расположены в разных частях цветового круга. К теплым относятся желтый, оранжевый и красный, к холодным – зеленые, синие и фиолетовые. Вопрос о каждом пограничном цвете (например, между желтым и зеленым) стоит рассматривать в каждом случае отдельно. Смешанный желто-зеленый цвет может относиться как к теплой, так и к холодной части круга. У стилистов также есть представление о том, что теплыми и холодными версиями обладают все цвета, кроме оранжевого (он всегда теплый). Даже голубой и зеленый могут быть теплыми, но это представление основано на психологическом восприятии цвета и ассоциациях, а не на объективных характеристиках цветового круга.
→ Хроматический круг: дополняющие цвета
Дополняющие цвета – это пара тонов, расположенных в круге напротив друг друга. Получить пару цветов можно, проведя прямую линию через центр круга. Получаем желтый + фиолетовый, синий + оранжевый, зеленый + красный.
→ Хроматический круг: аналогичные цвета
Аналогичные цвета расположены по соседству в одном цветовом семействе: желтый-оранжевый-красный, синий-голубой, зеленый-салатовый и так далее. Часто мы называем такие цвета оттенками, но это не совсем верное определение.
→ Хроматический круг: оттенки
Оттенки (фр. camaieu) – это варианты одного цвета, которые получаются путем добавления в него белой или черной краски. Увидеть визуальное представление оттенков можно на усовершенствованном круге с градацией цветов к белом в центре и черному – по краям. Таким представлением цвета пользуются дизайнеры, работая в Photoshop и аналогичных программах. Оттенки одного цвета – это градиентная шкала от бело-желтого до черного с желтым подтоном, от бело-голубого до иссиня-черного, где началом и концом шкалы являются белый и черный цвета.
Этих четырех свойств хроматического круга достаточно, чтобы создавать двух, трех и четырехцветные образы, не ошибаясь в оттенках. Благодаря правилам круга даже непривычные для вашего взгляда сочетания будут выглядеть гармонично.
В следующей лекции IFM мы расскажем о том, как выстраивать образ с использованием цветового круга и рассмотрим классические сочетания и современные цветовые тренды. Добавив к знаниям о цвете представление о стилях, а также информацию о типах фигур, линиях кроя и гармонизации силуэта, вы сможете самостоятельно создавать идеальные образы. Лекции IFM плюс немного практики – и никто не сможет оспорить наличие у вас вкуса. Ежедневно исследуя возможности своего гардероба, со временем вы обретете собственный стиль, самое ценное и неподвластное моде понятие. Следите за новостями Rendez-Vous Daily по хештегу #IFM4rendezvous, чтобы не пропустить полезные лекции.
Страсть к цвету
Восприятие цвета. Физика
Физика цвета. Цвет мы видим только благодаря тому, что наши глаза способны регистрировать электромагнитное излучение в оптическом его диапазоне. А электромагнитное излучение это и радиоволны и гамма излучение и рентгеновское излучение, терагерцевое, ультрафиолетовое, инфракрасное.
Цвет — качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего
физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов.
Восприятие цвета определяется индивидуальностью человека, а также спектральным составом, цветовым и яркостным контрастом с окружающими источниками света,
а также несветящимися объектами. Очень важны такие явления, как метамерия, индивидуальные наследственные особенности человеческого глаза
(степень экспрессии полиморфных зрительных пигментов) и психики.
Говоря простым языком цвет — это ощущение, которое получает человек при попадании ему в глаз световых лучей.
Одни и те же световые воздействия могут вызвать разные ощущения у разных людей. И для каждого из них цвет будет разным.
Отсюда следует что споры «какой цвет на самом деле» бессмысленны, поскольку для каждого наблюдателя истинный цвет — тот, который видит он сам
Человеческий глаз – это орган, дающий нам возможность видеть окружающий мир.
Зрение дает нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.
Цвет происходит из света
Чтобы видеть цвета, необходим источник света. В сумерках мир теряет свою цветность. Там, где нет света, возникновение цвета невозможно.
Учитывая огромное, многомиллионное количество цветов и их оттенков, колористу нужно обладать глубокими, полноценными знаниями о цветовосприятии и происхождении цвета.
Все цвета представляют собой часть луча света – электромагнитных волн, исходящих от солнца.
Эти волны являются частью спектра электромагнитного излучения, в который входят гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение (свет), инфракрасное излучение, электромагнитное терагерцевое излучение,
электромагнитные микро- и радиоволны. Оптическое излучение – это та часть электромагнитного излучения, которую способны воспринимать наши глазные сенсоры. Мозг обрабатывает полученные от глазных сенсоров сигналы и интерпретирует их в цвет и форму.
Видимое излучение (оптическое)
Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова.
Выделение такой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования и разработанных исторически главным образом при изучении видимого света (линзы и зеркала для фокусирования излучения, призмы, дифракционные решётки, интерференционные приборы для исследования спектрального состава излучения и пр.).
Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины — с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества.
По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.
Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов по Кельвину и светит ярко-белым светом (максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм, где находится и максимум чувствительности глаза).
Именно потому, что мы родились возле такойзвезды, этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.
Излучение оптического диапазона возникает, в частности, при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул.
Чем сильнее нагрето тело, тем выше частота, на которой находится максимум спектра его излучения (см.: Закон смещения Вина). При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие (см.: Болометрия).
Оптическое излучение может создаваться и регистрироваться в химических и биологических реакциях.
Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.
Источником энергии для большинства живых существ на Земле является фотосинтез — биологическая реакция, протекающая в растениях под действием оптического излучения Солнца.
Цвет играет огромную роль в жизни обычного человека. Жизнь колориста посвящена цвету.
Заметно, что цвета спектра, начинаясь с красного и проходя через оттенки противоположные, контрастные красному (зелёный, циан), затем переходят в фиолетовый цвет, снова приближающийся к красному. Такая близость видимого восприятия фиолетового и красного цветов связана с тем, что частоты, соответствующие фиолетовому спектру, приближаются к частотам, превышающим частоты красного ровно в два раза.
Но сами эти последние указанные частоты находятся уже вне видимого спектра, поэтому мы не видим перехода от фиолетового снова к красному цвету, как это происходит в цветовом круге, в который включены неспектральные цвета, и где присутствует переход между красным и фиолетовым через пурпурные оттенки.
При прохождении луча света через призму различные по длине волны, его составляющие, преломляются под разными углами. В результате мы можем наблюдать спектр света. Этот феномен очень похож на феномен радуги.
Следует различать солнечный свет и свет, исходящий от искусственных источников освещения. Только солнечный свет можно считать чистым светом.
Все остальные искусственные источники освещения будут влиять на восприятие цвета. Например, лампы накаливания являются источниками теплого (желтого) света.
Флуоресцентные лампы, чаще всего, дают холодный (синий) свет. Для корректной диагностики цвета необходим дневной свет или же источник освещения, максимально к нему приближенный.
Только солнечный свет можно считать чистым светом. Все остальные искусственные источники освещения будут влиять на восприятие цвета.
Многообразие цветов: Цветовосприятие основывается на способности различать изменения в направлении тона, светлоте/яркости и насыщенности цвета в оптическом диапазоне с длинами волн от 750 нм (красный) до 400 нм (фиолетовый).
Изучив физиологию восприятия цвета, мы можем лучше понять, как формируется цвет, и использовать эти знания на практике.
Мы воспринимаем все многообразие цветов только при наличии и нормальном функционировании всех конусных сенсоров.
Мы способны различать тысячи различных направлений тона. Точное количество зависит от способности глазных сенсоров улавливать и различать световые волны. Эти способности можно развивать тренировками и упражнениями.
Цифры, приведенные ниже, звучат невероятно, но это реальные способности здорового и хорошо подготовленного глаза:
Мы можем различать около 200 чистых цветов. Меняя их насыщенность, мы получаем приблизительно по 500 вариаций каждого цвета. Меняя их светлоту, получаем еще по 200 нюансов каждой вариации.
Хорошо подготовленный человеческий глаз способен различать до 20 миллионов цветовых нюансов!
Цвет субъективен, поскольку мы все воспринимаем его по-разному. Хотя, пока наши глаза здоровы, эти отличия незначительны.
Мы можем различать 200 чистых цветов
Меняя насыщенность и светлоту этих цветов, мы можем различать до 20 миллионов оттенков!
“You only see what you know. You only know what you see.”
«Вы видите только ведомое. Вы ведаете только видимое ».
Марсель Пруст (французский романист), 1871-1922.
Цветные картинки, возникающие в нашем сознании, – это кооперация глазных сенсоров и мозга. Мы «ощущаем» цвета, когда конические сенсоры, находящиеся в сетчатке глаза, генерируют сигналы под воздействием попадающих на них волн определенной длины и передают эти сигналы в мозг. Поскольку в цветовосприятии задействованы не только глазные сенсоры, но и мозг, то в результате мы не только видим цвет, но и получаем на него определенный эмоциональный отклик.
Три характеристики цвета.
Насыщенность – степень отличия хроматического цвета от равного ему по светлоте ахроматического, «глубина» цвета. Два оттенка одного тона могут различаться степенью блёклости. При уменьшении насыщенности каждый хроматический цвет приближается к серому.
Цветовой тон — характеристика цвета, отвечающая за его положение в спектре: любой хроматический цвет может быть отнесён к какому-либо определённому спектральному цвету. Оттенки, имеющие одно и то же положение в спектре (но различающиеся, например, насыщенностью и яркостью), принадлежат к одному и тому же тону. При изменении тона, к примеру, синего цвета в зеленую сторону спектра он сменяется голубым, в обратную — фиолетовым.
Иногда изменение цветового тона соотносят с «теплотой» цвета. Так, красные, оранжевые и жёлтые оттенки, как соответствующие огню и вызывающие соответствующие психофизиологические реакции, называют тёплыми тонами, голубые, синие и фиолетовые, как цвет воды и льда — холодными. Следует учесть, что восприятие «теплоты» цвета зависит как от субъективных психических и физиологических факторов (индивидуальные предпочтения, состояние наблюдателя, адаптация и др.), так и от объективных (наличие цветового фона и др.). Следует отличать физическую характеристику некоторых источников света — цветовую температуру от субъективного ощущения «теплоты» соответственного цвета. Цвет теплового излучения при повышении температуры проходит по «тёплым оттенкам» от красного через жёлтый к белому, но максимальную цветовую температуру имеет цвет циан.
Человеческий глаз – это орган, дающий нам возможность видеть окружающий мир.
Зрение даёт нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.
Конусные сенсоры (0,006 мм в диаметре) способны различать малейшие детали, соответственно активными они становятся при интенсивном дневном или искусственном освещении. Они гораздо лучше, чем палочки, воспринимают быстрые движения и дают высокое визуальное разрешение. Но их восприятие снижается при уменьшении интенсивности света.
Самая высокая концентрация колбочек находится в середине сетчатки, в точке называемой центральной ямкой. Здесь концентрация колбочек достигает 147,000 на квадратный миллиметр, обеспечивая максимальное визуальное разрешение картинки.
Чем ближе к краям сетчатки, тем ниже концентрация конусных сенсоров (колбочек) и тем выше концентрация цилиндрических сенсоров (палочек), отвечающих за сумеречное и периферийное зрение. В центральной ямке палочки отсутствуют, что объясняет нам, почему ночью мы лучше видим тусклые звезды, когда смотрим на точку рядом с ними, а не на них самих.
Существует 3 типа конусных сенсоров (колбочек), каждый из которых отвечает за восприятие одного цвета:
Чувствительный к красному (750 нм)
Чувствительный к зеленому (540 нм)
Чувствительный к синему (440 нм)
Функции колбочек: Восприятие в условиях интенсивной освещенности (дневное зрение)
Восприятие цветов и мелких деталей. Количество колбочек в человеческом глазе: 6-7 миллионов
Эти 3 типа колбочек позволяют нам видеть все многообразие цветов окружающего мира. Поскольку все остальные цвета являются результатом сочетания сигналов, поступающих от этих 3 видов колбочек.
Например: Если объект выглядит желтым – это означает, что отраженные от него лучи стимулируют чувствительные к красному и чувствительные к зеленому колбочки. Если цвет объекта оранжево-желтый – это означает, что чувствительные к красному колбочки были простимулированы сильнее, а чувствительные к зеленому – слабее.
Белый мы воспринимаем в тех случаях, когда все три типа колбочек простимулированы одновременно в равной интенсивности. Такое трехцветное зрение описывается в теории Юнга-Гельмгольца.
Теория Юнга—Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки, не раскрывая все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию.
Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Существует т.н. цветоведение — анализ процесса восприятия и различения цвета на основе систематизированных сведений из физики, физиологии и психологии. Носители разных культур по-разному воспринимают цвет объектов. В зависимости от важности тех или иных цветов и оттенков в обыденной жизни народа, некоторые из них могут иметь большее или меньшее отражение вязыке. Способность цветораспознавания имеет динамику в зависимости от возраста человека. Сочетания цветов воспринимаются гармоничными (гармонирующими) либо нет.
Изучение теорие цвета и тренировка цветовосприятия важны в любой профессии работающей с цветом.
Глаза и разум нужно тренировать для постижения всех тонкостей цвета, также как тренируются и оттачиваются навыки стрижки или иностранные языки: повторение и практика.
Эксперимент 1: Выполняйте упражнение ночью. Выключите свет в комнате – вся комната мгновенно погрузится во мрак, вы ничего не будете видеть. Через несколько секунд глаза привыкнут к низкой освещенности и начнут все четче выявлять контрасты.
Эксперимент 2: Положите перед собой два чистых белых листа бумаги. На середину одного из них положите квадратик красной бумаги. В середине красного квадратика нарисуйте маленький крестик и в течение нескольких минут смотрите на него, не отрывая взора. Затем переведите взгляд на чистый белый лист бумаги. Почти сразу вы увидите на нем образ красного квадратика. Только цвет у него будет другой — голубовато-зеленый. Через несколько секунд он начнет бледнеть и вскоре исчезнет. Почему это происходит? Когда глаза были сфокусированы на красном квадрате, интенсивно возбуждался соответствующий этому цвету тип колбочек. При переводе взгляда на белый лист интенсивность восприятия этих колбочек резко падает и более активными становятся два других типа колбочек – зелено- и синечувствительных.